- 根目录:
- drivers
- net
- wireless
- iwlegacy
- 4965.c
/******************************************************************************
*
* Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include <asm/unaligned.h>
#include "common.h"
#include "4965.h"
/**
* il_verify_inst_sparse - verify runtime uCode image in card vs. host,
* using sample data 100 bytes apart. If these sample points are good,
* it's a pretty good bet that everything between them is good, too.
*/
static int
il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
{
u32 val;
int ret = 0;
u32 errcnt = 0;
u32 i;
D_INFO("ucode inst image size is %u\n", len);
for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
/* read data comes through single port, auto-incr addr */
/* NOTE: Use the debugless read so we don't flood kernel log
* if IL_DL_IO is set */
il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
val = _il_rd(il, HBUS_TARG_MEM_RDAT);
if (val != le32_to_cpu(*image)) {
ret = -EIO;
errcnt++;
if (errcnt >= 3)
break;
}
}
return ret;
}
/**
* il4965_verify_inst_full - verify runtime uCode image in card vs. host,
* looking at all data.
*/
static int
il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
{
u32 val;
u32 save_len = len;
int ret = 0;
u32 errcnt;
D_INFO("ucode inst image size is %u\n", len);
il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
errcnt = 0;
for (; len > 0; len -= sizeof(u32), image++) {
/* read data comes through single port, auto-incr addr */
/* NOTE: Use the debugless read so we don't flood kernel log
* if IL_DL_IO is set */
val = _il_rd(il, HBUS_TARG_MEM_RDAT);
if (val != le32_to_cpu(*image)) {
IL_ERR("uCode INST section is invalid at "
"offset 0x%x, is 0x%x, s/b 0x%x\n",
save_len - len, val, le32_to_cpu(*image));
ret = -EIO;
errcnt++;
if (errcnt >= 20)
break;
}
}
if (!errcnt)
D_INFO("ucode image in INSTRUCTION memory is good\n");
return ret;
}
/**
* il4965_verify_ucode - determine which instruction image is in SRAM,
* and verify its contents
*/
int
il4965_verify_ucode(struct il_priv *il)
{
__le32 *image;
u32 len;
int ret;
/* Try bootstrap */
image = (__le32 *) il->ucode_boot.v_addr;
len = il->ucode_boot.len;
ret = il4965_verify_inst_sparse(il, image, len);
if (!ret) {
D_INFO("Bootstrap uCode is good in inst SRAM\n");
return 0;
}
/* Try initialize */
image = (__le32 *) il->ucode_init.v_addr;
len = il->ucode_init.len;
ret = il4965_verify_inst_sparse(il, image, len);
if (!ret) {
D_INFO("Initialize uCode is good in inst SRAM\n");
return 0;
}
/* Try runtime/protocol */
image = (__le32 *) il->ucode_code.v_addr;
len = il->ucode_code.len;
ret = il4965_verify_inst_sparse(il, image, len);
if (!ret) {
D_INFO("Runtime uCode is good in inst SRAM\n");
return 0;
}
IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
/* Since nothing seems to match, show first several data entries in
* instruction SRAM, so maybe visual inspection will give a clue.
* Selection of bootstrap image (vs. other images) is arbitrary. */
image = (__le32 *) il->ucode_boot.v_addr;
len = il->ucode_boot.len;
ret = il4965_verify_inst_full(il, image, len);
return ret;
}
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
/*
* The device's EEPROM semaphore prevents conflicts between driver and uCode
* when accessing the EEPROM; each access is a series of pulses to/from the
* EEPROM chip, not a single event, so even reads could conflict if they
* weren't arbitrated by the semaphore.
*/
int
il4965_eeprom_acquire_semaphore(struct il_priv *il)
{
u16 count;
int ret;
for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
/* Request semaphore */
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
/* See if we got it */
ret =
_il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
EEPROM_SEM_TIMEOUT);
if (ret >= 0)
return ret;
}
return ret;
}
void
il4965_eeprom_release_semaphore(struct il_priv *il)
{
il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
}
int
il4965_eeprom_check_version(struct il_priv *il)
{
u16 eeprom_ver;
u16 calib_ver;
eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
if (eeprom_ver < il->cfg->eeprom_ver ||
calib_ver < il->cfg->eeprom_calib_ver)
goto err;
IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
return 0;
err:
IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
"CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
calib_ver, il->cfg->eeprom_calib_ver);
return -EINVAL;
}
void
il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
{
const u8 *addr = il_eeprom_query_addr(il,
EEPROM_MAC_ADDRESS);
memcpy(mac, addr, ETH_ALEN);
}
/* Send led command */
static int
il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
{
struct il_host_cmd cmd = {
.id = C_LEDS,
.len = sizeof(struct il_led_cmd),
.data = led_cmd,
.flags = CMD_ASYNC,
.callback = NULL,
};
u32 reg;
reg = _il_rd(il, CSR_LED_REG);
if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
return il_send_cmd(il, &cmd);
}
/* Set led register off */
void
il4965_led_enable(struct il_priv *il)
{
_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
}
static int il4965_send_tx_power(struct il_priv *il);
static int il4965_hw_get_temperature(struct il_priv *il);
/* Highest firmware API version supported */
#define IL4965_UCODE_API_MAX 2
/* Lowest firmware API version supported */
#define IL4965_UCODE_API_MIN 2
#define IL4965_FW_PRE "iwlwifi-4965-"
#define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
#define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
/* check contents of special bootstrap uCode SRAM */
static int
il4965_verify_bsm(struct il_priv *il)
{
__le32 *image = il->ucode_boot.v_addr;
u32 len = il->ucode_boot.len;
u32 reg;
u32 val;
D_INFO("Begin verify bsm\n");
/* verify BSM SRAM contents */
val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
reg += sizeof(u32), image++) {
val = il_rd_prph(il, reg);
if (val != le32_to_cpu(*image)) {
IL_ERR("BSM uCode verification failed at "
"addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
len, val, le32_to_cpu(*image));
return -EIO;
}
}
D_INFO("BSM bootstrap uCode image OK\n");
return 0;
}
/**
* il4965_load_bsm - Load bootstrap instructions
*
* BSM operation:
*
* The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
* in special SRAM that does not power down during RFKILL. When powering back
* up after power-saving sleeps (or during initial uCode load), the BSM loads
* the bootstrap program into the on-board processor, and starts it.
*
* The bootstrap program loads (via DMA) instructions and data for a new
* program from host DRAM locations indicated by the host driver in the
* BSM_DRAM_* registers. Once the new program is loaded, it starts
* automatically.
*
* When initializing the NIC, the host driver points the BSM to the
* "initialize" uCode image. This uCode sets up some internal data, then
* notifies host via "initialize alive" that it is complete.
*
* The host then replaces the BSM_DRAM_* pointer values to point to the
* normal runtime uCode instructions and a backup uCode data cache buffer
* (filled initially with starting data values for the on-board processor),
* then triggers the "initialize" uCode to load and launch the runtime uCode,
* which begins normal operation.
*
* When doing a power-save shutdown, runtime uCode saves data SRAM into
* the backup data cache in DRAM before SRAM is powered down.
*
* When powering back up, the BSM loads the bootstrap program. This reloads
* the runtime uCode instructions and the backup data cache into SRAM,
* and re-launches the runtime uCode from where it left off.
*/
static int
il4965_load_bsm(struct il_priv *il)
{
__le32 *image = il->ucode_boot.v_addr;
u32 len = il->ucode_boot.len;
dma_addr_t pinst;
dma_addr_t pdata;
u32 inst_len;
u32 data_len;
int i;
u32 done;
u32 reg_offset;
int ret;
D_INFO("Begin load bsm\n");
il->ucode_type = UCODE_RT;
/* make sure bootstrap program is no larger than BSM's SRAM size */
if (len > IL49_MAX_BSM_SIZE)
return -EINVAL;
/* Tell bootstrap uCode where to find the "Initialize" uCode
* in host DRAM ... host DRAM physical address bits 35:4 for 4965.
* NOTE: il_init_alive_start() will replace these values,
* after the "initialize" uCode has run, to point to
* runtime/protocol instructions and backup data cache.
*/
pinst = il->ucode_init.p_addr >> 4;
pdata = il->ucode_init_data.p_addr >> 4;
inst_len = il->ucode_init.len;
data_len = il->ucode_init_data.len;
il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
/* Fill BSM memory with bootstrap instructions */
for (reg_offset = BSM_SRAM_LOWER_BOUND;
reg_offset < BSM_SRAM_LOWER_BOUND + len;
reg_offset += sizeof(u32), image++)
_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
ret = il4965_verify_bsm(il);
if (ret)
return ret;
/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
/* Load bootstrap code into instruction SRAM now,
* to prepare to load "initialize" uCode */
il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
/* Wait for load of bootstrap uCode to finish */
for (i = 0; i < 100; i++) {
done = il_rd_prph(il, BSM_WR_CTRL_REG);
if (!(done & BSM_WR_CTRL_REG_BIT_START))
break;
udelay(10);
}
if (i < 100)
D_INFO("BSM write complete, poll %d iterations\n", i);
else {
IL_ERR("BSM write did not complete!\n");
return -EIO;
}
/* Enable future boot loads whenever power management unit triggers it
* (e.g. when powering back up after power-save shutdown) */
il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
return 0;
}
/**
* il4965_set_ucode_ptrs - Set uCode address location
*
* Tell initialization uCode where to find runtime uCode.
*
* BSM registers initially contain pointers to initialization uCode.
* We need to replace them to load runtime uCode inst and data,
* and to save runtime data when powering down.
*/
static int
il4965_set_ucode_ptrs(struct il_priv *il)
{
dma_addr_t pinst;
dma_addr_t pdata;
int ret = 0;
/* bits 35:4 for 4965 */
pinst = il->ucode_code.p_addr >> 4;
pdata = il->ucode_data_backup.p_addr >> 4;
/* Tell bootstrap uCode where to find image to load */
il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
/* Inst byte count must be last to set up, bit 31 signals uCode
* that all new ptr/size info is in place */
il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
il->ucode_code.len | BSM_DRAM_INST_LOAD);
D_INFO("Runtime uCode pointers are set.\n");
return ret;
}
/**
* il4965_init_alive_start - Called after N_ALIVE notification received
*
* Called after N_ALIVE notification received from "initialize" uCode.
*
* The 4965 "initialize" ALIVE reply contains calibration data for:
* Voltage, temperature, and MIMO tx gain correction, now stored in il
* (3945 does not contain this data).
*
* Tell "initialize" uCode to go ahead and load the runtime uCode.
*/
static void
il4965_init_alive_start(struct il_priv *il)
{
/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
* This is a paranoid check, because we would not have gotten the
* "initialize" alive if code weren't properly loaded. */
if (il4965_verify_ucode(il)) {
/* Runtime instruction load was bad;
* take it all the way back down so we can try again */
D_INFO("Bad \"initialize\" uCode load.\n");
goto restart;
}
/* Calculate temperature */
il->temperature = il4965_hw_get_temperature(il);
/* Send pointers to protocol/runtime uCode image ... init code will
* load and launch runtime uCode, which will send us another "Alive"
* notification. */
D_INFO("Initialization Alive received.\n");
if (il4965_set_ucode_ptrs(il)) {
/* Runtime instruction load won't happen;
* take it all the way back down so we can try again */
D_INFO("Couldn't set up uCode pointers.\n");
goto restart;
}
return;
restart:
queue_work(il->workqueue, &il->restart);
}
static bool
iw4965_is_ht40_channel(__le32 rxon_flags)
{
int chan_mod =
le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
RXON_FLG_CHANNEL_MODE_POS;
return (chan_mod == CHANNEL_MODE_PURE_40 ||
chan_mod == CHANNEL_MODE_MIXED);
}
void
il4965_nic_config(struct il_priv *il)
{
unsigned long flags;
u16 radio_cfg;
spin_lock_irqsave(&il->lock, flags);
radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
/* write radio config values to register */
if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
EEPROM_RF_CFG_DASH_MSK(radio_cfg));
/* set CSR_HW_CONFIG_REG for uCode use */
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
il->calib_info =
(struct il_eeprom_calib_info *)
il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
spin_unlock_irqrestore(&il->lock, flags);
}
/* Reset differential Rx gains in NIC to prepare for chain noise calibration.
* Called after every association, but this runs only once!
* ... once chain noise is calibrated the first time, it's good forever. */
static void
il4965_chain_noise_reset(struct il_priv *il)
{
struct il_chain_noise_data *data = &(il->chain_noise_data);
if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
struct il_calib_diff_gain_cmd cmd;
/* clear data for chain noise calibration algorithm */
data->chain_noise_a = 0;
data->chain_noise_b = 0;
data->chain_noise_c = 0;
data->chain_signal_a = 0;
data->chain_signal_b = 0;
data->chain_signal_c = 0;
data->beacon_count = 0;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = 0;
cmd.diff_gain_b = 0;
cmd.diff_gain_c = 0;
if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
IL_ERR("Could not send C_PHY_CALIBRATION\n");
data->state = IL_CHAIN_NOISE_ACCUMULATE;
D_CALIB("Run chain_noise_calibrate\n");
}
}
static s32
il4965_math_div_round(s32 num, s32 denom, s32 * res)
{
s32 sign = 1;
if (num < 0) {
sign = -sign;
num = -num;
}
if (denom < 0) {
sign = -sign;
denom = -denom;
}
*res = 1;
*res = ((num * 2 + denom) / (denom * 2)) * sign;
return 1;
}
/**
* il4965_get_voltage_compensation - Power supply voltage comp for txpower
*
* Determines power supply voltage compensation for txpower calculations.
* Returns number of 1/2-dB steps to subtract from gain table idx,
* to compensate for difference between power supply voltage during
* factory measurements, vs. current power supply voltage.
*
* Voltage indication is higher for lower voltage.
* Lower voltage requires more gain (lower gain table idx).
*/
static s32
il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
{
s32 comp = 0;
if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
return 0;
il4965_math_div_round(current_voltage - eeprom_voltage,
TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
if (current_voltage > eeprom_voltage)
comp *= 2;
if ((comp < -2) || (comp > 2))
comp = 0;
return comp;
}
static s32
il4965_get_tx_atten_grp(u16 channel)
{
if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
return CALIB_CH_GROUP_5;
if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
return CALIB_CH_GROUP_1;
if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
return CALIB_CH_GROUP_2;
if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
return CALIB_CH_GROUP_3;
if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
return CALIB_CH_GROUP_4;
return -EINVAL;
}
static u32
il4965_get_sub_band(const struct il_priv *il, u32 channel)
{
s32 b = -1;
for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
if (il->calib_info->band_info[b].ch_from == 0)
continue;
if (channel >= il->calib_info->band_info[b].ch_from &&
channel <= il->calib_info->band_info[b].ch_to)
break;
}
return b;
}
static s32
il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
{
s32 val;
if (x2 == x1)
return y1;
else {
il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
return val + y2;
}
}
/**
* il4965_interpolate_chan - Interpolate factory measurements for one channel
*
* Interpolates factory measurements from the two sample channels within a
* sub-band, to apply to channel of interest. Interpolation is proportional to
* differences in channel frequencies, which is proportional to differences
* in channel number.
*/
static int
il4965_interpolate_chan(struct il_priv *il, u32 channel,
struct il_eeprom_calib_ch_info *chan_info)
{
s32 s = -1;
u32 c;
u32 m;
const struct il_eeprom_calib_measure *m1;
const struct il_eeprom_calib_measure *m2;
struct il_eeprom_calib_measure *omeas;
u32 ch_i1;
u32 ch_i2;
s = il4965_get_sub_band(il, channel);
if (s >= EEPROM_TX_POWER_BANDS) {
IL_ERR("Tx Power can not find channel %d\n", channel);
return -1;
}
ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
chan_info->ch_num = (u8) channel;
D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
ch_i1, ch_i2);
for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
m1 = &(il->calib_info->band_info[s].ch1.
measurements[c][m]);
m2 = &(il->calib_info->band_info[s].ch2.
measurements[c][m]);
omeas = &(chan_info->measurements[c][m]);
omeas->actual_pow =
(u8) il4965_interpolate_value(channel, ch_i1,
m1->actual_pow, ch_i2,
m2->actual_pow);
omeas->gain_idx =
(u8) il4965_interpolate_value(channel, ch_i1,
m1->gain_idx, ch_i2,
m2->gain_idx);
omeas->temperature =
(u8) il4965_interpolate_value(channel, ch_i1,
m1->temperature,
ch_i2,
m2->temperature);
omeas->pa_det =
(s8) il4965_interpolate_value(channel, ch_i1,
m1->pa_det, ch_i2,
m2->pa_det);
D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
m, m1->actual_pow, m2->actual_pow,
omeas->actual_pow);
D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
m, m1->gain_idx, m2->gain_idx,
omeas->gain_idx);
D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
m, m1->pa_det, m2->pa_det, omeas->pa_det);
D_TXPOWER("chain %d meas %d T1=%d T2=%d T=%d\n", c,
m, m1->temperature, m2->temperature,
omeas->temperature);
}
}
return 0;
}
/* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
* for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
static s32 back_off_table[] = {
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
10 /* CCK */
};
/* Thermal compensation values for txpower for various frequency ranges ...
* ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
static struct il4965_txpower_comp_entry {
s32 degrees_per_05db_a;
s32 degrees_per_05db_a_denom;
} tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
{
9, 2}, /* group 0 5.2, ch 34-43 */
{
4, 1}, /* group 1 5.2, ch 44-70 */
{
4, 1}, /* group 2 5.2, ch 71-124 */
{
4, 1}, /* group 3 5.2, ch 125-200 */
{
3, 1} /* group 4 2.4, ch all */
};
static s32
get_min_power_idx(s32 rate_power_idx, u32 band)
{
if (!band) {
if ((rate_power_idx & 7) <= 4)
return MIN_TX_GAIN_IDX_52GHZ_EXT;
}
return MIN_TX_GAIN_IDX;
}
struct gain_entry {
u8 dsp;
u8 radio;
};
static const struct gain_entry gain_table[2][108] = {
/* 5.2GHz power gain idx table */
{
{123, 0x3F}, /* highest txpower */
{117, 0x3F},
{110, 0x3F},
{104, 0x3F},
{98, 0x3F},
{110, 0x3E},
{104, 0x3E},
{98, 0x3E},
{110, 0x3D},
{104, 0x3D},
{98, 0x3D},
{110, 0x3C},
{104, 0x3C},
{98, 0x3C},
{110, 0x3B},
{104, 0x3B},
{98, 0x3B},
{110, 0x3A},
{104, 0x3A},
{98, 0x3A},
{110, 0x39},
{104, 0x39},
{98, 0x39},
{110, 0x38},
{104, 0x38},
{98, 0x38},
{110, 0x37},
{104, 0x37},
{98, 0x37},
{110, 0x36},
{104, 0x36},
{98, 0x36},
{110, 0x35},
{104, 0x35},
{98, 0x35},
{110, 0x34},
{104, 0x34},
{98, 0x34},
{110, 0x33},
{104, 0x33},
{98, 0x33},
{110, 0x32},
{104, 0x32},
{98, 0x32},
{110, 0x31},
{104, 0x31},
{98, 0x31},
{110, 0x30},
{104, 0x30},
{98, 0x30},
{110, 0x25},
{104, 0x25},
{98, 0x25},
{110, 0x24},
{104, 0x24},
{98, 0x24},
{110, 0x23},
{104, 0x23},
{98, 0x23},
{110, 0x22},
{104, 0x18},
{98, 0x18},
{110, 0x17},
{104, 0x17},
{98, 0x17},
{110, 0x16},
{104, 0x16},
{98, 0x16},
{110, 0x15},
{104, 0x15},
{98, 0x15},
{110, 0x14},
{104, 0x14},
{98, 0x14},
{110, 0x13},
{104, 0x13},
{98, 0x13},
{110, 0x12},
{104, 0x08},
{98, 0x08},
{110, 0x07},
{104, 0x07},
{98, 0x07},
{110, 0x06},
{104, 0x06},
{98, 0x06},
{110, 0x05},
{104, 0x05},
{98, 0x05},
{110, 0x04},
{104, 0x04},
{98, 0x04},
{110, 0x03},
{104, 0x03},
{98, 0x03},
{110, 0x02},
{104, 0x02},
{98, 0x02},
{110, 0x01},
{104, 0x01},
{98, 0x01},
{110, 0x00},
{104, 0x00},
{98, 0x00},
{93, 0x00},
{88, 0x00},
{83, 0x00},
{78, 0x00},
},
/* 2.4GHz power gain idx table */
{
{110, 0x3f}, /* highest txpower */
{104, 0x3f},
{98, 0x3f},
{110, 0x3e},
{104, 0x3e},
{98, 0x3e},
{110, 0x3d},
{104, 0x3d},
{98, 0x3d},
{110, 0x3c},
{104, 0x3c},
{98, 0x3c},
{110, 0x3b},
{104, 0x3b},
{98, 0x3b},
{110, 0x3a},
{104, 0x3a},
{98, 0x3a},
{110, 0x39},
{104, 0x39},
{98, 0x39},
{110, 0x38},
{104, 0x38},
{98, 0x38},
{110, 0x37},
{104, 0x37},
{98, 0x37},
{110, 0x36},
{104, 0x36},
{98, 0x36},
{110, 0x35},
{104, 0x35},
{98, 0x35},
{110, 0x34},
{104, 0x34},
{98, 0x34},
{110, 0x33},
{104, 0x33},
{98, 0x33},
{110, 0x32},
{104, 0x32},
{98, 0x32},
{110, 0x31},
{104, 0x31},
{98, 0x31},
{110, 0x30},
{104, 0x30},
{98, 0x30},
{110, 0x6},
{104, 0x6},
{98, 0x6},
{110, 0x5},
{104, 0x5},
{98, 0x5},
{110, 0x4},
{104, 0x4},
{98, 0x4},
{110, 0x3},
{104, 0x3},
{98, 0x3},
{110, 0x2},
{104, 0x2},
{98, 0x2},
{110, 0x1},
{104, 0x1},
{98, 0x1},
{110, 0x0},
{104, 0x0},
{98, 0x0},
{97, 0},
{96, 0},
{95, 0},
{94, 0},
{93, 0},
{92, 0},
{91, 0},
{90, 0},
{89, 0},
{88, 0},
{87, 0},
{86, 0},
{85, 0},
{84, 0},
{83, 0},
{82, 0},
{81, 0},
{80, 0},
{79, 0},
{78, 0},
{77, 0},
{76, 0},
{75, 0},
{74, 0},
{73, 0},
{72, 0},
{71, 0},
{70, 0},
{69, 0},
{68, 0},
{67, 0},
{66, 0},
{65, 0},
{64, 0},
{63, 0},
{62, 0},
{61, 0},
{60, 0},
{59, 0},
}
};
static int
il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
u8 ctrl_chan_high,
struct il4965_tx_power_db *tx_power_tbl)
{
u8 saturation_power;
s32 target_power;
s32 user_target_power;
s32 power_limit;
s32 current_temp;
s32 reg_limit;
s32 current_regulatory;
s32 txatten_grp = CALIB_CH_GROUP_MAX;
int i;
int c;
const struct il_channel_info *ch_info = NULL;
struct il_eeprom_calib_ch_info ch_eeprom_info;
const struct il_eeprom_calib_measure *measurement;
s16 voltage;
s32 init_voltage;
s32 voltage_compensation;
s32 degrees_per_05db_num;
s32 degrees_per_05db_denom;
s32 factory_temp;
s32 temperature_comp[2];
s32 factory_gain_idx[2];
s32 factory_actual_pwr[2];
s32 power_idx;
/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
* are used for idxing into txpower table) */
user_target_power = 2 * il->tx_power_user_lmt;
/* Get current (RXON) channel, band, width */
D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
ch_info = il_get_channel_info(il, il->band, channel);
if (!il_is_channel_valid(ch_info))
return -EINVAL;
/* get txatten group, used to select 1) thermal txpower adjustment
* and 2) mimo txpower balance between Tx chains. */
txatten_grp = il4965_get_tx_atten_grp(channel);
if (txatten_grp < 0) {
IL_ERR("Can't find txatten group for channel %d.\n", channel);
return txatten_grp;
}
D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
txatten_grp);
if (is_ht40) {
if (ctrl_chan_high)
channel -= 2;
else
channel += 2;
}
/* hardware txpower limits ...
* saturation (clipping distortion) txpowers are in half-dBm */
if (band)
saturation_power = il->calib_info->saturation_power24;
else
saturation_power = il->calib_info->saturation_power52;
if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
saturation_power > IL_TX_POWER_SATURATION_MAX) {
if (band)
saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
else
saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
}
/* regulatory txpower limits ... reg_limit values are in half-dBm,
* max_power_avg values are in dBm, convert * 2 */
if (is_ht40)
reg_limit = ch_info->ht40_max_power_avg * 2;
else
reg_limit = ch_info->max_power_avg * 2;
if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
(reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
if (band)
reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
else
reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
}
/* Interpolate txpower calibration values for this channel,
* based on factory calibration tests on spaced channels. */
il4965_interpolate_chan(il, channel, &ch_eeprom_info);
/* calculate tx gain adjustment based on power supply voltage */
voltage = le16_to_cpu(il->calib_info->voltage);
init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
voltage_compensation =
il4965_get_voltage_compensation(voltage, init_voltage);
D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
voltage, voltage_compensation);
/* get current temperature (Celsius) */
current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
current_temp = KELVIN_TO_CELSIUS(current_temp);
/* select thermal txpower adjustment params, based on channel group
* (same frequency group used for mimo txatten adjustment) */
degrees_per_05db_num =
tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
degrees_per_05db_denom =
tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
/* get per-chain txpower values from factory measurements */
for (c = 0; c < 2; c++) {
measurement = &ch_eeprom_info.measurements[c][1];
/* txgain adjustment (in half-dB steps) based on difference
* between factory and current temperature */
factory_temp = measurement->temperature;
il4965_math_div_round((current_temp -
factory_temp) * degrees_per_05db_denom,
degrees_per_05db_num,
&temperature_comp[c]);
factory_gain_idx[c] = measurement->gain_idx;
factory_actual_pwr[c] = measurement->actual_pow;
D_TXPOWER("chain = %d\n", c);
D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
factory_temp, current_temp, temperature_comp[c]);
D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
factory_actual_pwr[c]);
}
/* for each of 33 bit-rates (including 1 for CCK) */
for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
u8 is_mimo_rate;
union il4965_tx_power_dual_stream tx_power;
/* for mimo, reduce each chain's txpower by half
* (3dB, 6 steps), so total output power is regulatory
* compliant. */
if (i & 0x8) {
current_regulatory =
reg_limit -
IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
is_mimo_rate = 1;
} else {
current_regulatory = reg_limit;
is_mimo_rate = 0;
}
/* find txpower limit, either hardware or regulatory */
power_limit = saturation_power - back_off_table[i];
if (power_limit > current_regulatory)
power_limit = current_regulatory;
/* reduce user's txpower request if necessary
* for this rate on this channel */
target_power = user_target_power;
if (target_power > power_limit)
target_power = power_limit;
D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
saturation_power - back_off_table[i],
current_regulatory, user_target_power, target_power);
/* for each of 2 Tx chains (radio transmitters) */
for (c = 0; c < 2; c++) {
s32 atten_value;
if (is_mimo_rate)
atten_value =
(s32) le32_to_cpu(il->card_alive_init.
tx_atten[txatten_grp][c]);
else
atten_value = 0;
/* calculate idx; higher idx means lower txpower */
power_idx =
(u8) (factory_gain_idx[c] -
(target_power - factory_actual_pwr[c]) -
temperature_comp[c] - voltage_compensation +
atten_value);
/* D_TXPOWER("calculated txpower idx %d\n",
power_idx); */
if (power_idx < get_min_power_idx(i, band))
power_idx = get_min_power_idx(i, band);
/* adjust 5 GHz idx to support negative idxes */
if (!band)
power_idx += 9;
/* CCK, rate 32, reduce txpower for CCK */
if (i == POWER_TBL_CCK_ENTRY)
power_idx +=
IL_TX_POWER_CCK_COMPENSATION_C_STEP;
/* stay within the table! */
if (power_idx > 107) {
IL_WARN("txpower idx %d > 107\n", power_idx);
power_idx = 107;
}
if (power_idx < 0) {
IL_WARN("txpower idx %d < 0\n", power_idx);
power_idx = 0;
}
/* fill txpower command for this rate/chain */
tx_power.s.radio_tx_gain[c] =
gain_table[band][power_idx].radio;
tx_power.s.dsp_predis_atten[c] =
gain_table[band][power_idx].dsp;
D_TXPOWER("chain %d mimo %d idx %d "
"gain 0x%02x dsp %d\n", c, atten_value,
power_idx, tx_power.s.radio_tx_gain[c],
tx_power.s.dsp_predis_atten[c]);
} /* for each chain */
tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
} /* for each rate */
return 0;
}
/**
* il4965_send_tx_power - Configure the TXPOWER level user limit
*
* Uses the active RXON for channel, band, and characteristics (ht40, high)
* The power limit is taken from il->tx_power_user_lmt.
*/
static int
il4965_send_tx_power(struct il_priv *il)
{
struct il4965_txpowertable_cmd cmd = { 0 };
int ret;
u8 band = 0;
bool is_ht40 = false;
u8 ctrl_chan_high = 0;
if (WARN_ONCE
(test_bit(S_SCAN_HW, &il->status),
"TX Power requested while scanning!\n"))
return -EAGAIN;
band = il->band == IEEE80211_BAND_2GHZ;
is_ht40 = iw4965_is_ht40_channel(il->active.flags);
if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
ctrl_chan_high = 1;
cmd.band = band;
cmd.channel = il->active.channel;
ret =
il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
is_ht40, ctrl_chan_high, &cmd.tx_power);
if (ret)
goto out;
ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
out:
return ret;
}
static int
il4965_send_rxon_assoc(struct il_priv *il)
{
int ret = 0;
struct il4965_rxon_assoc_cmd rxon_assoc;
const struct il_rxon_cmd *rxon1 = &il->staging;
const struct il_rxon_cmd *rxon2 = &il->active;
if (rxon1->flags == rxon2->flags &&
rxon1->filter_flags == rxon2->filter_flags &&
rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
rxon1->ofdm_ht_single_stream_basic_rates ==
rxon2->ofdm_ht_single_stream_basic_rates &&
rxon1->ofdm_ht_dual_stream_basic_rates ==
rxon2->ofdm_ht_dual_stream_basic_rates &&
rxon1->rx_chain == rxon2->rx_chain &&
rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
D_INFO("Using current RXON_ASSOC. Not resending.\n");
return 0;
}
rxon_assoc.flags = il->staging.flags;
rxon_assoc.filter_flags = il->staging.filter_flags;
rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
rxon_assoc.reserved = 0;
rxon_assoc.ofdm_ht_single_stream_basic_rates =
il->staging.ofdm_ht_single_stream_basic_rates;
rxon_assoc.ofdm_ht_dual_stream_basic_rates =
il->staging.ofdm_ht_dual_stream_basic_rates;
rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
ret =
il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
&rxon_assoc, NULL);
return ret;
}
static int
il4965_commit_rxon(struct il_priv *il)
{
/* cast away the const for active_rxon in this function */
struct il_rxon_cmd *active_rxon = (void *)&il->active;
int ret;
bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
if (!il_is_alive(il))
return -EBUSY;
/* always get timestamp with Rx frame */
il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
ret = il_check_rxon_cmd(il);
if (ret) {
IL_ERR("Invalid RXON configuration. Not committing.\n");
return -EINVAL;
}
/*
* receive commit_rxon request
* abort any previous channel switch if still in process
*/
if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
il->switch_channel != il->staging.channel) {
D_11H("abort channel switch on %d\n",
le16_to_cpu(il->switch_channel));
il_chswitch_done(il, false);
}
/* If we don't need to send a full RXON, we can use
* il_rxon_assoc_cmd which is used to reconfigure filter
* and other flags for the current radio configuration. */
if (!il_full_rxon_required(il)) {
ret = il_send_rxon_assoc(il);
if (ret) {
IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
return ret;
}
memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
il_print_rx_config_cmd(il);
/*
* We do not commit tx power settings while channel changing,
* do it now if tx power changed.
*/
il_set_tx_power(il, il->tx_power_next, false);
return 0;
}
/* If we are currently associated and the new config requires
* an RXON_ASSOC and the new config wants the associated mask enabled,
* we must clear the associated from the active configuration
* before we apply the new config */
if (il_is_associated(il) && new_assoc) {
D_INFO("Toggling associated bit on current RXON\n");
active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
ret =
il_send_cmd_pdu(il, C_RXON,
sizeof(struct il_rxon_cmd), active_rxon);
/* If the mask clearing failed then we set
* active_rxon back to what it was previously */
if (ret) {
active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
return ret;
}
il_clear_ucode_stations(il);
il_restore_stations(il);
ret = il4965_restore_default_wep_keys(il);
if (ret) {
IL_ERR("Failed to restore WEP keys (%d)\n", ret);
return ret;
}
}
D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
"* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
/* Apply the new configuration
* RXON unassoc clears the station table in uCode so restoration of
* stations is needed after it (the RXON command) completes
*/
if (!new_assoc) {
ret =
il_send_cmd_pdu(il, C_RXON,
sizeof(struct il_rxon_cmd), &il->staging);
if (ret) {
IL_ERR("Error setting new RXON (%d)\n", ret);
return ret;
}
D_INFO("Return from !new_assoc RXON.\n");
memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
il_clear_ucode_stations(il);
il_restore_stations(il);
ret = il4965_restore_default_wep_keys(il);
if (ret) {
IL_ERR("Failed to restore WEP keys (%d)\n", ret);
return ret;
}
}
if (new_assoc) {
il->start_calib = 0;
/* Apply the new configuration
* RXON assoc doesn't clear the station table in uCode,
*/
ret =
il_send_cmd_pdu(il, C_RXON,
sizeof(struct il_rxon_cmd), &il->staging);
if (ret) {
IL_ERR("Error setting new RXON (%d)\n", ret);
return ret;
}
memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
}
il_print_rx_config_cmd(il);
il4965_init_sensitivity(il);
/* If we issue a new RXON command which required a tune then we must
* send a new TXPOWER command or we won't be able to Tx any frames */
ret = il_set_tx_power(il, il->tx_power_next, true);
if (ret) {
IL_ERR("Error sending TX power (%d)\n", ret);
return ret;
}
return 0;
}
static int
il4965_hw_channel_switch(struct il_priv *il,
struct ieee80211_channel_switch *ch_switch)
{
int rc;
u8 band = 0;
bool is_ht40 = false;
u8 ctrl_chan_high = 0;
struct il4965_channel_switch_cmd cmd;
const struct il_channel_info *ch_info;
u32 switch_time_in_usec, ucode_switch_time;
u16 ch;
u32 tsf_low;
u8 switch_count;
u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
struct ieee80211_vif *vif = il->vif;
band = (il->band == IEEE80211_BAND_2GHZ);
if (WARN_ON_ONCE(vif == NULL))
return -EIO;
is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
ctrl_chan_high = 1;
cmd.band = band;
cmd.expect_beacon = 0;
ch = ch_switch->chandef.chan->hw_value;
cmd.channel = cpu_to_le16(ch);
cmd.rxon_flags = il->staging.flags;
cmd.rxon_filter_flags = il->staging.filter_flags;
switch_count = ch_switch->count;
tsf_low = ch_switch->timestamp & 0x0ffffffff;
/*
* calculate the ucode channel switch time
* adding TSF as one of the factor for when to switch
*/
if (il->ucode_beacon_time > tsf_low && beacon_interval) {
if (switch_count >
((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
switch_count -=
(il->ucode_beacon_time - tsf_low) / beacon_interval;
} else
switch_count = 0;
}
if (switch_count <= 1)
cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
else {
switch_time_in_usec =
vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
ucode_switch_time =
il_usecs_to_beacons(il, switch_time_in_usec,
beacon_interval);
cmd.switch_time =
il_add_beacon_time(il, il->ucode_beacon_time,
ucode_switch_time, beacon_interval);
}
D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
ch_info = il_get_channel_info(il, il->band, ch);
if (ch_info)
cmd.expect_beacon = il_is_channel_radar(ch_info);
else {
IL_ERR("invalid channel switch from %u to %u\n",
il->active.channel, ch);
return -EFAULT;
}
rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
&cmd.tx_power);
if (rc) {
D_11H("error:%d fill txpower_tbl\n", rc);
return rc;
}
return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
}
/**
* il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
*/
static void
il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
u16 byte_cnt)
{
struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
int txq_id = txq->q.id;
int write_ptr = txq->q.write_ptr;
int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
__le16 bc_ent;
WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
bc_ent = cpu_to_le16(len & 0xFFF);
/* Set up byte count within first 256 entries */
scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
/* If within first 64 entries, duplicate at end */
if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
bc_ent;
}
/**
* il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
* @stats: Provides the temperature reading from the uCode
*
* A return of <0 indicates bogus data in the stats
*/
static int
il4965_hw_get_temperature(struct il_priv *il)
{
s32 temperature;
s32 vt;
s32 R1, R2, R3;
u32 R4;
if (test_bit(S_TEMPERATURE, &il->status) &&
(il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
D_TEMP("Running HT40 temperature calibration\n");
R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
} else {
D_TEMP("Running temperature calibration\n");
R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
}
/*
* Temperature is only 23 bits, so sign extend out to 32.
*
* NOTE If we haven't received a stats notification yet
* with an updated temperature, use R4 provided to us in the
* "initialize" ALIVE response.
*/
if (!test_bit(S_TEMPERATURE, &il->status))
vt = sign_extend32(R4, 23);
else
vt = sign_extend32(le32_to_cpu
(il->_4965.stats.general.common.temperature),
23);
D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
if (R3 == R1) {
IL_ERR("Calibration conflict R1 == R3\n");
return -1;
}
/* Calculate temperature in degrees Kelvin, adjust by 97%.
* Add offset to center the adjustment around 0 degrees Centigrade. */
temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
temperature /= (R3 - R1);
temperature =
(temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
KELVIN_TO_CELSIUS(temperature));
return temperature;
}
/* Adjust Txpower only if temperature variance is greater than threshold. */
#define IL_TEMPERATURE_THRESHOLD 3
/**
* il4965_is_temp_calib_needed - determines if new calibration is needed
*
* If the temperature changed has changed sufficiently, then a recalibration
* is needed.
*
* Assumes caller will replace il->last_temperature once calibration
* executed.
*/
static int
il4965_is_temp_calib_needed(struct il_priv *il)
{
int temp_diff;
if (!test_bit(S_STATS, &il->status)) {
D_TEMP("Temperature not updated -- no stats.\n");
return 0;
}
temp_diff = il->temperature - il->last_temperature;
/* get absolute value */
if (temp_diff < 0) {
D_POWER("Getting cooler, delta %d\n", temp_diff);
temp_diff = -temp_diff;
} else if (temp_diff == 0)
D_POWER("Temperature unchanged\n");
else
D_POWER("Getting warmer, delta %d\n", temp_diff);
if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
D_POWER(" => thermal txpower calib not needed\n");
return 0;
}
D_POWER(" => thermal txpower calib needed\n");
return 1;
}
void
il4965_temperature_calib(struct il_priv *il)
{
s32 temp;
temp = il4965_hw_get_temperature(il);
if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
return;
if (il->temperature != temp) {
if (il->temperature)
D_TEMP("Temperature changed " "from %dC to %dC\n",
KELVIN_TO_CELSIUS(il->temperature),
KELVIN_TO_CELSIUS(temp));
else
D_TEMP("Temperature " "initialized to %dC\n",
KELVIN_TO_CELSIUS(temp));
}
il->temperature = temp;
set_bit(S_TEMPERATURE, &il->status);
if (!il->disable_tx_power_cal &&
unlikely(!test_bit(S_SCANNING, &il->status)) &&
il4965_is_temp_calib_needed(il))
queue_work(il->workqueue, &il->txpower_work);
}
static u16
il4965_get_hcmd_size(u8 cmd_id, u16 len)
{
switch (cmd_id) {
case C_RXON:
return (u16) sizeof(struct il4965_rxon_cmd);
default:
return len;
}
}
static u16
il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
{
struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
addsta->mode = cmd->mode;
memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
addsta->station_flags = cmd->station_flags;
addsta->station_flags_msk = cmd->station_flags_msk;
addsta->tid_disable_tx = cmd->tid_disable_tx;
addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
addsta->sleep_tx_count = cmd->sleep_tx_count;
addsta->reserved1 = cpu_to_le16(0);
addsta->reserved2 = cpu_to_le16(0);
return (u16) sizeof(struct il4965_addsta_cmd);
}
static void
il4965_post_scan(struct il_priv *il)
{
/*
* Since setting the RXON may have been deferred while
* performing the scan, fire one off if needed
*/
if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
il_commit_rxon(il);
}
static void
il4965_post_associate(struct il_priv *il)
{
struct ieee80211_vif *vif = il->vif;
int ret = 0;
if (!vif || !il->is_open)
return;
if (test_bit(S_EXIT_PENDING, &il->status))
return;
il_scan_cancel_timeout(il, 200);
il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
il_commit_rxon(il);
ret = il_send_rxon_timing(il);
if (ret)
IL_WARN("RXON timing - " "Attempting to continue.\n");
il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
il_set_rxon_ht(il, &il->current_ht_config);
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
vif->bss_conf.beacon_int);
if (vif->bss_conf.use_short_preamble)
il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
if (vif->bss_conf.use_short_slot)
il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
}
il_commit_rxon(il);
D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
il->active.bssid_addr);
switch (vif->type) {
case NL80211_IFTYPE_STATION:
break;
case NL80211_IFTYPE_ADHOC:
il4965_send_beacon_cmd(il);
break;
default:
IL_ERR("%s Should not be called in %d mode\n", __func__,
vif->type);
break;
}
/* the chain noise calibration will enabled PM upon completion
* If chain noise has already been run, then we need to enable
* power management here */
if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
il_power_update_mode(il, false);
/* Enable Rx differential gain and sensitivity calibrations */
il4965_chain_noise_reset(il);
il->start_calib = 1;
}
static void
il4965_config_ap(struct il_priv *il)
{
struct ieee80211_vif *vif = il->vif;
int ret = 0;
lockdep_assert_held(&il->mutex);
if (test_bit(S_EXIT_PENDING, &il->status))
return;
/* The following should be done only at AP bring up */
if (!il_is_associated(il)) {
/* RXON - unassoc (to set timing command) */
il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
il_commit_rxon(il);
/* RXON Timing */
ret = il_send_rxon_timing(il);
if (ret)
IL_WARN("RXON timing failed - "
"Attempting to continue.\n");
/* AP has all antennas */
il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
il_set_rxon_ht(il, &il->current_ht_config);
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
il->staging.assoc_id = 0;
if (vif->bss_conf.use_short_preamble)
il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
if (vif->bss_conf.use_short_slot)
il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
}
/* need to send beacon cmd before committing assoc RXON! */
il4965_send_beacon_cmd(il);
/* restore RXON assoc */
il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
il_commit_rxon(il);
}
il4965_send_beacon_cmd(il);
}
const struct il_ops il4965_ops = {
.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
.txq_free_tfd = il4965_hw_txq_free_tfd,
.txq_init = il4965_hw_tx_queue_init,
.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
.init_alive_start = il4965_init_alive_start,
.load_ucode = il4965_load_bsm,
.dump_nic_error_log = il4965_dump_nic_error_log,
.dump_fh = il4965_dump_fh,
.set_channel_switch = il4965_hw_channel_switch,
.apm_init = il_apm_init,
.send_tx_power = il4965_send_tx_power,
.update_chain_flags = il4965_update_chain_flags,
.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
.rxon_assoc = il4965_send_rxon_assoc,
.commit_rxon = il4965_commit_rxon,
.set_rxon_chain = il4965_set_rxon_chain,
.get_hcmd_size = il4965_get_hcmd_size,
.build_addsta_hcmd = il4965_build_addsta_hcmd,
.request_scan = il4965_request_scan,
.post_scan = il4965_post_scan,
.post_associate = il4965_post_associate,
.config_ap = il4965_config_ap,
.manage_ibss_station = il4965_manage_ibss_station,
.update_bcast_stations = il4965_update_bcast_stations,
.send_led_cmd = il4965_send_led_cmd,
};
struct il_cfg il4965_cfg = {
.name = "Intel(R) Wireless WiFi Link 4965AGN",
.fw_name_pre = IL4965_FW_PRE,
.ucode_api_max = IL4965_UCODE_API_MAX,
.ucode_api_min = IL4965_UCODE_API_MIN,
.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
.valid_tx_ant = ANT_AB,
.valid_rx_ant = ANT_ABC,
.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
.mod_params = &il4965_mod_params,
.led_mode = IL_LED_BLINK,
/*
* Force use of chains B and C for scan RX on 5 GHz band
* because the device has off-channel reception on chain A.
*/
.scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC,
.eeprom_size = IL4965_EEPROM_IMG_SIZE,
.num_of_queues = IL49_NUM_QUEUES,
.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
.pll_cfg_val = 0,
.set_l0s = true,
.use_bsm = true,
.led_compensation = 61,
.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
.wd_timeout = IL_DEF_WD_TIMEOUT,
.temperature_kelvin = true,
.ucode_tracing = true,
.sensitivity_calib_by_driver = true,
.chain_noise_calib_by_driver = true,
.regulatory_bands = {
EEPROM_REGULATORY_BAND_1_CHANNELS,
EEPROM_REGULATORY_BAND_2_CHANNELS,
EEPROM_REGULATORY_BAND_3_CHANNELS,
EEPROM_REGULATORY_BAND_4_CHANNELS,
EEPROM_REGULATORY_BAND_5_CHANNELS,
EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
},
};
/* Module firmware */
MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));