/****************************************************************************** * * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless <ilw@linux.intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <net/mac80211.h> #include <linux/etherdevice.h> #include <asm/unaligned.h> #include "common.h" #include "4965.h" /** * il_verify_inst_sparse - verify runtime uCode image in card vs. host, * using sample data 100 bytes apart. If these sample points are good, * it's a pretty good bet that everything between them is good, too. */ static int il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len) { u32 val; int ret = 0; u32 errcnt = 0; u32 i; D_INFO("ucode inst image size is %u\n", len); for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IL_DL_IO is set */ il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND); val = _il_rd(il, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { ret = -EIO; errcnt++; if (errcnt >= 3) break; } } return ret; } /** * il4965_verify_inst_full - verify runtime uCode image in card vs. host, * looking at all data. */ static int il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len) { u32 val; u32 save_len = len; int ret = 0; u32 errcnt; D_INFO("ucode inst image size is %u\n", len); il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND); errcnt = 0; for (; len > 0; len -= sizeof(u32), image++) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IL_DL_IO is set */ val = _il_rd(il, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { IL_ERR("uCode INST section is invalid at " "offset 0x%x, is 0x%x, s/b 0x%x\n", save_len - len, val, le32_to_cpu(*image)); ret = -EIO; errcnt++; if (errcnt >= 20) break; } } if (!errcnt) D_INFO("ucode image in INSTRUCTION memory is good\n"); return ret; } /** * il4965_verify_ucode - determine which instruction image is in SRAM, * and verify its contents */ int il4965_verify_ucode(struct il_priv *il) { __le32 *image; u32 len; int ret; /* Try bootstrap */ image = (__le32 *) il->ucode_boot.v_addr; len = il->ucode_boot.len; ret = il4965_verify_inst_sparse(il, image, len); if (!ret) { D_INFO("Bootstrap uCode is good in inst SRAM\n"); return 0; } /* Try initialize */ image = (__le32 *) il->ucode_init.v_addr; len = il->ucode_init.len; ret = il4965_verify_inst_sparse(il, image, len); if (!ret) { D_INFO("Initialize uCode is good in inst SRAM\n"); return 0; } /* Try runtime/protocol */ image = (__le32 *) il->ucode_code.v_addr; len = il->ucode_code.len; ret = il4965_verify_inst_sparse(il, image, len); if (!ret) { D_INFO("Runtime uCode is good in inst SRAM\n"); return 0; } IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n"); /* Since nothing seems to match, show first several data entries in * instruction SRAM, so maybe visual inspection will give a clue. * Selection of bootstrap image (vs. other images) is arbitrary. */ image = (__le32 *) il->ucode_boot.v_addr; len = il->ucode_boot.len; ret = il4965_verify_inst_full(il, image, len); return ret; } /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ /* * The device's EEPROM semaphore prevents conflicts between driver and uCode * when accessing the EEPROM; each access is a series of pulses to/from the * EEPROM chip, not a single event, so even reads could conflict if they * weren't arbitrated by the semaphore. */ int il4965_eeprom_acquire_semaphore(struct il_priv *il) { u16 count; int ret; for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { /* Request semaphore */ il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); /* See if we got it */ ret = _il_poll_bit(il, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, EEPROM_SEM_TIMEOUT); if (ret >= 0) return ret; } return ret; } void il4965_eeprom_release_semaphore(struct il_priv *il) { il_clear_bit(il, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); } int il4965_eeprom_check_version(struct il_priv *il) { u16 eeprom_ver; u16 calib_ver; eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION); calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET); if (eeprom_ver < il->cfg->eeprom_ver || calib_ver < il->cfg->eeprom_calib_ver) goto err; IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver); return 0; err: IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x " "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver, calib_ver, il->cfg->eeprom_calib_ver); return -EINVAL; } void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac) { const u8 *addr = il_eeprom_query_addr(il, EEPROM_MAC_ADDRESS); memcpy(mac, addr, ETH_ALEN); } /* Send led command */ static int il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd) { struct il_host_cmd cmd = { .id = C_LEDS, .len = sizeof(struct il_led_cmd), .data = led_cmd, .flags = CMD_ASYNC, .callback = NULL, }; u32 reg; reg = _il_rd(il, CSR_LED_REG); if (reg != (reg & CSR_LED_BSM_CTRL_MSK)) _il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK); return il_send_cmd(il, &cmd); } /* Set led register off */ void il4965_led_enable(struct il_priv *il) { _il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON); } static int il4965_send_tx_power(struct il_priv *il); static int il4965_hw_get_temperature(struct il_priv *il); /* Highest firmware API version supported */ #define IL4965_UCODE_API_MAX 2 /* Lowest firmware API version supported */ #define IL4965_UCODE_API_MIN 2 #define IL4965_FW_PRE "iwlwifi-4965-" #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode" #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api) /* check contents of special bootstrap uCode SRAM */ static int il4965_verify_bsm(struct il_priv *il) { __le32 *image = il->ucode_boot.v_addr; u32 len = il->ucode_boot.len; u32 reg; u32 val; D_INFO("Begin verify bsm\n"); /* verify BSM SRAM contents */ val = il_rd_prph(il, BSM_WR_DWCOUNT_REG); for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len; reg += sizeof(u32), image++) { val = il_rd_prph(il, reg); if (val != le32_to_cpu(*image)) { IL_ERR("BSM uCode verification failed at " "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n", BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND, len, val, le32_to_cpu(*image)); return -EIO; } } D_INFO("BSM bootstrap uCode image OK\n"); return 0; } /** * il4965_load_bsm - Load bootstrap instructions * * BSM operation: * * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program * in special SRAM that does not power down during RFKILL. When powering back * up after power-saving sleeps (or during initial uCode load), the BSM loads * the bootstrap program into the on-board processor, and starts it. * * The bootstrap program loads (via DMA) instructions and data for a new * program from host DRAM locations indicated by the host driver in the * BSM_DRAM_* registers. Once the new program is loaded, it starts * automatically. * * When initializing the NIC, the host driver points the BSM to the * "initialize" uCode image. This uCode sets up some internal data, then * notifies host via "initialize alive" that it is complete. * * The host then replaces the BSM_DRAM_* pointer values to point to the * normal runtime uCode instructions and a backup uCode data cache buffer * (filled initially with starting data values for the on-board processor), * then triggers the "initialize" uCode to load and launch the runtime uCode, * which begins normal operation. * * When doing a power-save shutdown, runtime uCode saves data SRAM into * the backup data cache in DRAM before SRAM is powered down. * * When powering back up, the BSM loads the bootstrap program. This reloads * the runtime uCode instructions and the backup data cache into SRAM, * and re-launches the runtime uCode from where it left off. */ static int il4965_load_bsm(struct il_priv *il) { __le32 *image = il->ucode_boot.v_addr; u32 len = il->ucode_boot.len; dma_addr_t pinst; dma_addr_t pdata; u32 inst_len; u32 data_len; int i; u32 done; u32 reg_offset; int ret; D_INFO("Begin load bsm\n"); il->ucode_type = UCODE_RT; /* make sure bootstrap program is no larger than BSM's SRAM size */ if (len > IL49_MAX_BSM_SIZE) return -EINVAL; /* Tell bootstrap uCode where to find the "Initialize" uCode * in host DRAM ... host DRAM physical address bits 35:4 for 4965. * NOTE: il_init_alive_start() will replace these values, * after the "initialize" uCode has run, to point to * runtime/protocol instructions and backup data cache. */ pinst = il->ucode_init.p_addr >> 4; pdata = il->ucode_init_data.p_addr >> 4; inst_len = il->ucode_init.len; data_len = il->ucode_init_data.len; il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst); il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata); il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len); il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len); /* Fill BSM memory with bootstrap instructions */ for (reg_offset = BSM_SRAM_LOWER_BOUND; reg_offset < BSM_SRAM_LOWER_BOUND + len; reg_offset += sizeof(u32), image++) _il_wr_prph(il, reg_offset, le32_to_cpu(*image)); ret = il4965_verify_bsm(il); if (ret) return ret; /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */ il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0); il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND); il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32)); /* Load bootstrap code into instruction SRAM now, * to prepare to load "initialize" uCode */ il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START); /* Wait for load of bootstrap uCode to finish */ for (i = 0; i < 100; i++) { done = il_rd_prph(il, BSM_WR_CTRL_REG); if (!(done & BSM_WR_CTRL_REG_BIT_START)) break; udelay(10); } if (i < 100) D_INFO("BSM write complete, poll %d iterations\n", i); else { IL_ERR("BSM write did not complete!\n"); return -EIO; } /* Enable future boot loads whenever power management unit triggers it * (e.g. when powering back up after power-save shutdown) */ il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN); return 0; } /** * il4965_set_ucode_ptrs - Set uCode address location * * Tell initialization uCode where to find runtime uCode. * * BSM registers initially contain pointers to initialization uCode. * We need to replace them to load runtime uCode inst and data, * and to save runtime data when powering down. */ static int il4965_set_ucode_ptrs(struct il_priv *il) { dma_addr_t pinst; dma_addr_t pdata; int ret = 0; /* bits 35:4 for 4965 */ pinst = il->ucode_code.p_addr >> 4; pdata = il->ucode_data_backup.p_addr >> 4; /* Tell bootstrap uCode where to find image to load */ il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst); il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata); il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len); /* Inst byte count must be last to set up, bit 31 signals uCode * that all new ptr/size info is in place */ il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, il->ucode_code.len | BSM_DRAM_INST_LOAD); D_INFO("Runtime uCode pointers are set.\n"); return ret; } /** * il4965_init_alive_start - Called after N_ALIVE notification received * * Called after N_ALIVE notification received from "initialize" uCode. * * The 4965 "initialize" ALIVE reply contains calibration data for: * Voltage, temperature, and MIMO tx gain correction, now stored in il * (3945 does not contain this data). * * Tell "initialize" uCode to go ahead and load the runtime uCode. */ static void il4965_init_alive_start(struct il_priv *il) { /* Bootstrap uCode has loaded initialize uCode ... verify inst image. * This is a paranoid check, because we would not have gotten the * "initialize" alive if code weren't properly loaded. */ if (il4965_verify_ucode(il)) { /* Runtime instruction load was bad; * take it all the way back down so we can try again */ D_INFO("Bad \"initialize\" uCode load.\n"); goto restart; } /* Calculate temperature */ il->temperature = il4965_hw_get_temperature(il); /* Send pointers to protocol/runtime uCode image ... init code will * load and launch runtime uCode, which will send us another "Alive" * notification. */ D_INFO("Initialization Alive received.\n"); if (il4965_set_ucode_ptrs(il)) { /* Runtime instruction load won't happen; * take it all the way back down so we can try again */ D_INFO("Couldn't set up uCode pointers.\n"); goto restart; } return; restart: queue_work(il->workqueue, &il->restart); } static bool iw4965_is_ht40_channel(__le32 rxon_flags) { int chan_mod = le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >> RXON_FLG_CHANNEL_MODE_POS; return (chan_mod == CHANNEL_MODE_PURE_40 || chan_mod == CHANNEL_MODE_MIXED); } void il4965_nic_config(struct il_priv *il) { unsigned long flags; u16 radio_cfg; spin_lock_irqsave(&il->lock, flags); radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG); /* write radio config values to register */ if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX) il_set_bit(il, CSR_HW_IF_CONFIG_REG, EEPROM_RF_CFG_TYPE_MSK(radio_cfg) | EEPROM_RF_CFG_STEP_MSK(radio_cfg) | EEPROM_RF_CFG_DASH_MSK(radio_cfg)); /* set CSR_HW_CONFIG_REG for uCode use */ il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | CSR_HW_IF_CONFIG_REG_BIT_MAC_SI); il->calib_info = (struct il_eeprom_calib_info *) il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET); spin_unlock_irqrestore(&il->lock, flags); } /* Reset differential Rx gains in NIC to prepare for chain noise calibration. * Called after every association, but this runs only once! * ... once chain noise is calibrated the first time, it's good forever. */ static void il4965_chain_noise_reset(struct il_priv *il) { struct il_chain_noise_data *data = &(il->chain_noise_data); if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) { struct il_calib_diff_gain_cmd cmd; /* clear data for chain noise calibration algorithm */ data->chain_noise_a = 0; data->chain_noise_b = 0; data->chain_noise_c = 0; data->chain_signal_a = 0; data->chain_signal_b = 0; data->chain_signal_c = 0; data->beacon_count = 0; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD; cmd.diff_gain_a = 0; cmd.diff_gain_b = 0; cmd.diff_gain_c = 0; if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd)) IL_ERR("Could not send C_PHY_CALIBRATION\n"); data->state = IL_CHAIN_NOISE_ACCUMULATE; D_CALIB("Run chain_noise_calibrate\n"); } } static s32 il4965_math_div_round(s32 num, s32 denom, s32 * res) { s32 sign = 1; if (num < 0) { sign = -sign; num = -num; } if (denom < 0) { sign = -sign; denom = -denom; } *res = 1; *res = ((num * 2 + denom) / (denom * 2)) * sign; return 1; } /** * il4965_get_voltage_compensation - Power supply voltage comp for txpower * * Determines power supply voltage compensation for txpower calculations. * Returns number of 1/2-dB steps to subtract from gain table idx, * to compensate for difference between power supply voltage during * factory measurements, vs. current power supply voltage. * * Voltage indication is higher for lower voltage. * Lower voltage requires more gain (lower gain table idx). */ static s32 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage) { s32 comp = 0; if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage || TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage) return 0; il4965_math_div_round(current_voltage - eeprom_voltage, TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp); if (current_voltage > eeprom_voltage) comp *= 2; if ((comp < -2) || (comp > 2)) comp = 0; return comp; } static s32 il4965_get_tx_atten_grp(u16 channel) { if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH && channel <= CALIB_IL_TX_ATTEN_GR5_LCH) return CALIB_CH_GROUP_5; if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH && channel <= CALIB_IL_TX_ATTEN_GR1_LCH) return CALIB_CH_GROUP_1; if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH && channel <= CALIB_IL_TX_ATTEN_GR2_LCH) return CALIB_CH_GROUP_2; if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH && channel <= CALIB_IL_TX_ATTEN_GR3_LCH) return CALIB_CH_GROUP_3; if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH && channel <= CALIB_IL_TX_ATTEN_GR4_LCH) return CALIB_CH_GROUP_4; return -EINVAL; } static u32 il4965_get_sub_band(const struct il_priv *il, u32 channel) { s32 b = -1; for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) { if (il->calib_info->band_info[b].ch_from == 0) continue; if (channel >= il->calib_info->band_info[b].ch_from && channel <= il->calib_info->band_info[b].ch_to) break; } return b; } static s32 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2) { s32 val; if (x2 == x1) return y1; else { il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val); return val + y2; } } /** * il4965_interpolate_chan - Interpolate factory measurements for one channel * * Interpolates factory measurements from the two sample channels within a * sub-band, to apply to channel of interest. Interpolation is proportional to * differences in channel frequencies, which is proportional to differences * in channel number. */ static int il4965_interpolate_chan(struct il_priv *il, u32 channel, struct il_eeprom_calib_ch_info *chan_info) { s32 s = -1; u32 c; u32 m; const struct il_eeprom_calib_measure *m1; const struct il_eeprom_calib_measure *m2; struct il_eeprom_calib_measure *omeas; u32 ch_i1; u32 ch_i2; s = il4965_get_sub_band(il, channel); if (s >= EEPROM_TX_POWER_BANDS) { IL_ERR("Tx Power can not find channel %d\n", channel); return -1; } ch_i1 = il->calib_info->band_info[s].ch1.ch_num; ch_i2 = il->calib_info->band_info[s].ch2.ch_num; chan_info->ch_num = (u8) channel; D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s, ch_i1, ch_i2); for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) { for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) { m1 = &(il->calib_info->band_info[s].ch1. measurements[c][m]); m2 = &(il->calib_info->band_info[s].ch2. measurements[c][m]); omeas = &(chan_info->measurements[c][m]); omeas->actual_pow = (u8) il4965_interpolate_value(channel, ch_i1, m1->actual_pow, ch_i2, m2->actual_pow); omeas->gain_idx = (u8) il4965_interpolate_value(channel, ch_i1, m1->gain_idx, ch_i2, m2->gain_idx); omeas->temperature = (u8) il4965_interpolate_value(channel, ch_i1, m1->temperature, ch_i2, m2->temperature); omeas->pa_det = (s8) il4965_interpolate_value(channel, ch_i1, m1->pa_det, ch_i2, m2->pa_det); D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c, m, m1->actual_pow, m2->actual_pow, omeas->actual_pow); D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c, m, m1->gain_idx, m2->gain_idx, omeas->gain_idx); D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c, m, m1->pa_det, m2->pa_det, omeas->pa_det); D_TXPOWER("chain %d meas %d T1=%d T2=%d T=%d\n", c, m, m1->temperature, m2->temperature, omeas->temperature); } } return 0; } /* bit-rate-dependent table to prevent Tx distortion, in half-dB units, * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */ static s32 back_off_table[] = { 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */ 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */ 10 /* CCK */ }; /* Thermal compensation values for txpower for various frequency ranges ... * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */ static struct il4965_txpower_comp_entry { s32 degrees_per_05db_a; s32 degrees_per_05db_a_denom; } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = { { 9, 2}, /* group 0 5.2, ch 34-43 */ { 4, 1}, /* group 1 5.2, ch 44-70 */ { 4, 1}, /* group 2 5.2, ch 71-124 */ { 4, 1}, /* group 3 5.2, ch 125-200 */ { 3, 1} /* group 4 2.4, ch all */ }; static s32 get_min_power_idx(s32 rate_power_idx, u32 band) { if (!band) { if ((rate_power_idx & 7) <= 4) return MIN_TX_GAIN_IDX_52GHZ_EXT; } return MIN_TX_GAIN_IDX; } struct gain_entry { u8 dsp; u8 radio; }; static const struct gain_entry gain_table[2][108] = { /* 5.2GHz power gain idx table */ { {123, 0x3F}, /* highest txpower */ {117, 0x3F}, {110, 0x3F}, {104, 0x3F}, {98, 0x3F}, {110, 0x3E}, {104, 0x3E}, {98, 0x3E}, {110, 0x3D}, {104, 0x3D}, {98, 0x3D}, {110, 0x3C}, {104, 0x3C}, {98, 0x3C}, {110, 0x3B}, {104, 0x3B}, {98, 0x3B}, {110, 0x3A}, {104, 0x3A}, {98, 0x3A}, {110, 0x39}, {104, 0x39}, {98, 0x39}, {110, 0x38}, {104, 0x38}, {98, 0x38}, {110, 0x37}, {104, 0x37}, {98, 0x37}, {110, 0x36}, {104, 0x36}, {98, 0x36}, {110, 0x35}, {104, 0x35}, {98, 0x35}, {110, 0x34}, {104, 0x34}, {98, 0x34}, {110, 0x33}, {104, 0x33}, {98, 0x33}, {110, 0x32}, {104, 0x32}, {98, 0x32}, {110, 0x31}, {104, 0x31}, {98, 0x31}, {110, 0x30}, {104, 0x30}, {98, 0x30}, {110, 0x25}, {104, 0x25}, {98, 0x25}, {110, 0x24}, {104, 0x24}, {98, 0x24}, {110, 0x23}, {104, 0x23}, {98, 0x23}, {110, 0x22}, {104, 0x18}, {98, 0x18}, {110, 0x17}, {104, 0x17}, {98, 0x17}, {110, 0x16}, {104, 0x16}, {98, 0x16}, {110, 0x15}, {104, 0x15}, {98, 0x15}, {110, 0x14}, {104, 0x14}, {98, 0x14}, {110, 0x13}, {104, 0x13}, {98, 0x13}, {110, 0x12}, {104, 0x08}, {98, 0x08}, {110, 0x07}, {104, 0x07}, {98, 0x07}, {110, 0x06}, {104, 0x06}, {98, 0x06}, {110, 0x05}, {104, 0x05}, {98, 0x05}, {110, 0x04}, {104, 0x04}, {98, 0x04}, {110, 0x03}, {104, 0x03}, {98, 0x03}, {110, 0x02}, {104, 0x02}, {98, 0x02}, {110, 0x01}, {104, 0x01}, {98, 0x01}, {110, 0x00}, {104, 0x00}, {98, 0x00}, {93, 0x00}, {88, 0x00}, {83, 0x00}, {78, 0x00}, }, /* 2.4GHz power gain idx table */ { {110, 0x3f}, /* highest txpower */ {104, 0x3f}, {98, 0x3f}, {110, 0x3e}, {104, 0x3e}, {98, 0x3e}, {110, 0x3d}, {104, 0x3d}, {98, 0x3d}, {110, 0x3c}, {104, 0x3c}, {98, 0x3c}, {110, 0x3b}, {104, 0x3b}, {98, 0x3b}, {110, 0x3a}, {104, 0x3a}, {98, 0x3a}, {110, 0x39}, {104, 0x39}, {98, 0x39}, {110, 0x38}, {104, 0x38}, {98, 0x38}, {110, 0x37}, {104, 0x37}, {98, 0x37}, {110, 0x36}, {104, 0x36}, {98, 0x36}, {110, 0x35}, {104, 0x35}, {98, 0x35}, {110, 0x34}, {104, 0x34}, {98, 0x34}, {110, 0x33}, {104, 0x33}, {98, 0x33}, {110, 0x32}, {104, 0x32}, {98, 0x32}, {110, 0x31}, {104, 0x31}, {98, 0x31}, {110, 0x30}, {104, 0x30}, {98, 0x30}, {110, 0x6}, {104, 0x6}, {98, 0x6}, {110, 0x5}, {104, 0x5}, {98, 0x5}, {110, 0x4}, {104, 0x4}, {98, 0x4}, {110, 0x3}, {104, 0x3}, {98, 0x3}, {110, 0x2}, {104, 0x2}, {98, 0x2}, {110, 0x1}, {104, 0x1}, {98, 0x1}, {110, 0x0}, {104, 0x0}, {98, 0x0}, {97, 0}, {96, 0}, {95, 0}, {94, 0}, {93, 0}, {92, 0}, {91, 0}, {90, 0}, {89, 0}, {88, 0}, {87, 0}, {86, 0}, {85, 0}, {84, 0}, {83, 0}, {82, 0}, {81, 0}, {80, 0}, {79, 0}, {78, 0}, {77, 0}, {76, 0}, {75, 0}, {74, 0}, {73, 0}, {72, 0}, {71, 0}, {70, 0}, {69, 0}, {68, 0}, {67, 0}, {66, 0}, {65, 0}, {64, 0}, {63, 0}, {62, 0}, {61, 0}, {60, 0}, {59, 0}, } }; static int il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40, u8 ctrl_chan_high, struct il4965_tx_power_db *tx_power_tbl) { u8 saturation_power; s32 target_power; s32 user_target_power; s32 power_limit; s32 current_temp; s32 reg_limit; s32 current_regulatory; s32 txatten_grp = CALIB_CH_GROUP_MAX; int i; int c; const struct il_channel_info *ch_info = NULL; struct il_eeprom_calib_ch_info ch_eeprom_info; const struct il_eeprom_calib_measure *measurement; s16 voltage; s32 init_voltage; s32 voltage_compensation; s32 degrees_per_05db_num; s32 degrees_per_05db_denom; s32 factory_temp; s32 temperature_comp[2]; s32 factory_gain_idx[2]; s32 factory_actual_pwr[2]; s32 power_idx; /* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units * are used for idxing into txpower table) */ user_target_power = 2 * il->tx_power_user_lmt; /* Get current (RXON) channel, band, width */ D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40); ch_info = il_get_channel_info(il, il->band, channel); if (!il_is_channel_valid(ch_info)) return -EINVAL; /* get txatten group, used to select 1) thermal txpower adjustment * and 2) mimo txpower balance between Tx chains. */ txatten_grp = il4965_get_tx_atten_grp(channel); if (txatten_grp < 0) { IL_ERR("Can't find txatten group for channel %d.\n", channel); return txatten_grp; } D_TXPOWER("channel %d belongs to txatten group %d\n", channel, txatten_grp); if (is_ht40) { if (ctrl_chan_high) channel -= 2; else channel += 2; } /* hardware txpower limits ... * saturation (clipping distortion) txpowers are in half-dBm */ if (band) saturation_power = il->calib_info->saturation_power24; else saturation_power = il->calib_info->saturation_power52; if (saturation_power < IL_TX_POWER_SATURATION_MIN || saturation_power > IL_TX_POWER_SATURATION_MAX) { if (band) saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24; else saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52; } /* regulatory txpower limits ... reg_limit values are in half-dBm, * max_power_avg values are in dBm, convert * 2 */ if (is_ht40) reg_limit = ch_info->ht40_max_power_avg * 2; else reg_limit = ch_info->max_power_avg * 2; if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) || (reg_limit > IL_TX_POWER_REGULATORY_MAX)) { if (band) reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24; else reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52; } /* Interpolate txpower calibration values for this channel, * based on factory calibration tests on spaced channels. */ il4965_interpolate_chan(il, channel, &ch_eeprom_info); /* calculate tx gain adjustment based on power supply voltage */ voltage = le16_to_cpu(il->calib_info->voltage); init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage); voltage_compensation = il4965_get_voltage_compensation(voltage, init_voltage); D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage, voltage, voltage_compensation); /* get current temperature (Celsius) */ current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN); current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX); current_temp = KELVIN_TO_CELSIUS(current_temp); /* select thermal txpower adjustment params, based on channel group * (same frequency group used for mimo txatten adjustment) */ degrees_per_05db_num = tx_power_cmp_tble[txatten_grp].degrees_per_05db_a; degrees_per_05db_denom = tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom; /* get per-chain txpower values from factory measurements */ for (c = 0; c < 2; c++) { measurement = &ch_eeprom_info.measurements[c][1]; /* txgain adjustment (in half-dB steps) based on difference * between factory and current temperature */ factory_temp = measurement->temperature; il4965_math_div_round((current_temp - factory_temp) * degrees_per_05db_denom, degrees_per_05db_num, &temperature_comp[c]); factory_gain_idx[c] = measurement->gain_idx; factory_actual_pwr[c] = measurement->actual_pow; D_TXPOWER("chain = %d\n", c); D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n", factory_temp, current_temp, temperature_comp[c]); D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c], factory_actual_pwr[c]); } /* for each of 33 bit-rates (including 1 for CCK) */ for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) { u8 is_mimo_rate; union il4965_tx_power_dual_stream tx_power; /* for mimo, reduce each chain's txpower by half * (3dB, 6 steps), so total output power is regulatory * compliant. */ if (i & 0x8) { current_regulatory = reg_limit - IL_TX_POWER_MIMO_REGULATORY_COMPENSATION; is_mimo_rate = 1; } else { current_regulatory = reg_limit; is_mimo_rate = 0; } /* find txpower limit, either hardware or regulatory */ power_limit = saturation_power - back_off_table[i]; if (power_limit > current_regulatory) power_limit = current_regulatory; /* reduce user's txpower request if necessary * for this rate on this channel */ target_power = user_target_power; if (target_power > power_limit) target_power = power_limit; D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i, saturation_power - back_off_table[i], current_regulatory, user_target_power, target_power); /* for each of 2 Tx chains (radio transmitters) */ for (c = 0; c < 2; c++) { s32 atten_value; if (is_mimo_rate) atten_value = (s32) le32_to_cpu(il->card_alive_init. tx_atten[txatten_grp][c]); else atten_value = 0; /* calculate idx; higher idx means lower txpower */ power_idx = (u8) (factory_gain_idx[c] - (target_power - factory_actual_pwr[c]) - temperature_comp[c] - voltage_compensation + atten_value); /* D_TXPOWER("calculated txpower idx %d\n", power_idx); */ if (power_idx < get_min_power_idx(i, band)) power_idx = get_min_power_idx(i, band); /* adjust 5 GHz idx to support negative idxes */ if (!band) power_idx += 9; /* CCK, rate 32, reduce txpower for CCK */ if (i == POWER_TBL_CCK_ENTRY) power_idx += IL_TX_POWER_CCK_COMPENSATION_C_STEP; /* stay within the table! */ if (power_idx > 107) { IL_WARN("txpower idx %d > 107\n", power_idx); power_idx = 107; } if (power_idx < 0) { IL_WARN("txpower idx %d < 0\n", power_idx); power_idx = 0; } /* fill txpower command for this rate/chain */ tx_power.s.radio_tx_gain[c] = gain_table[band][power_idx].radio; tx_power.s.dsp_predis_atten[c] = gain_table[band][power_idx].dsp; D_TXPOWER("chain %d mimo %d idx %d " "gain 0x%02x dsp %d\n", c, atten_value, power_idx, tx_power.s.radio_tx_gain[c], tx_power.s.dsp_predis_atten[c]); } /* for each chain */ tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw); } /* for each rate */ return 0; } /** * il4965_send_tx_power - Configure the TXPOWER level user limit * * Uses the active RXON for channel, band, and characteristics (ht40, high) * The power limit is taken from il->tx_power_user_lmt. */ static int il4965_send_tx_power(struct il_priv *il) { struct il4965_txpowertable_cmd cmd = { 0 }; int ret; u8 band = 0; bool is_ht40 = false; u8 ctrl_chan_high = 0; if (WARN_ONCE (test_bit(S_SCAN_HW, &il->status), "TX Power requested while scanning!\n")) return -EAGAIN; band = il->band == IEEE80211_BAND_2GHZ; is_ht40 = iw4965_is_ht40_channel(il->active.flags); if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK)) ctrl_chan_high = 1; cmd.band = band; cmd.channel = il->active.channel; ret = il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel), is_ht40, ctrl_chan_high, &cmd.tx_power); if (ret) goto out; ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd); out: return ret; } static int il4965_send_rxon_assoc(struct il_priv *il) { int ret = 0; struct il4965_rxon_assoc_cmd rxon_assoc; const struct il_rxon_cmd *rxon1 = &il->staging; const struct il_rxon_cmd *rxon2 = &il->active; if (rxon1->flags == rxon2->flags && rxon1->filter_flags == rxon2->filter_flags && rxon1->cck_basic_rates == rxon2->cck_basic_rates && rxon1->ofdm_ht_single_stream_basic_rates == rxon2->ofdm_ht_single_stream_basic_rates && rxon1->ofdm_ht_dual_stream_basic_rates == rxon2->ofdm_ht_dual_stream_basic_rates && rxon1->rx_chain == rxon2->rx_chain && rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) { D_INFO("Using current RXON_ASSOC. Not resending.\n"); return 0; } rxon_assoc.flags = il->staging.flags; rxon_assoc.filter_flags = il->staging.filter_flags; rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates; rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates; rxon_assoc.reserved = 0; rxon_assoc.ofdm_ht_single_stream_basic_rates = il->staging.ofdm_ht_single_stream_basic_rates; rxon_assoc.ofdm_ht_dual_stream_basic_rates = il->staging.ofdm_ht_dual_stream_basic_rates; rxon_assoc.rx_chain_select_flags = il->staging.rx_chain; ret = il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc), &rxon_assoc, NULL); return ret; } static int il4965_commit_rxon(struct il_priv *il) { /* cast away the const for active_rxon in this function */ struct il_rxon_cmd *active_rxon = (void *)&il->active; int ret; bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK); if (!il_is_alive(il)) return -EBUSY; /* always get timestamp with Rx frame */ il->staging.flags |= RXON_FLG_TSF2HOST_MSK; ret = il_check_rxon_cmd(il); if (ret) { IL_ERR("Invalid RXON configuration. Not committing.\n"); return -EINVAL; } /* * receive commit_rxon request * abort any previous channel switch if still in process */ if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) && il->switch_channel != il->staging.channel) { D_11H("abort channel switch on %d\n", le16_to_cpu(il->switch_channel)); il_chswitch_done(il, false); } /* If we don't need to send a full RXON, we can use * il_rxon_assoc_cmd which is used to reconfigure filter * and other flags for the current radio configuration. */ if (!il_full_rxon_required(il)) { ret = il_send_rxon_assoc(il); if (ret) { IL_ERR("Error setting RXON_ASSOC (%d)\n", ret); return ret; } memcpy(active_rxon, &il->staging, sizeof(*active_rxon)); il_print_rx_config_cmd(il); /* * We do not commit tx power settings while channel changing, * do it now if tx power changed. */ il_set_tx_power(il, il->tx_power_next, false); return 0; } /* If we are currently associated and the new config requires * an RXON_ASSOC and the new config wants the associated mask enabled, * we must clear the associated from the active configuration * before we apply the new config */ if (il_is_associated(il) && new_assoc) { D_INFO("Toggling associated bit on current RXON\n"); active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK; ret = il_send_cmd_pdu(il, C_RXON, sizeof(struct il_rxon_cmd), active_rxon); /* If the mask clearing failed then we set * active_rxon back to what it was previously */ if (ret) { active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK; IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret); return ret; } il_clear_ucode_stations(il); il_restore_stations(il); ret = il4965_restore_default_wep_keys(il); if (ret) { IL_ERR("Failed to restore WEP keys (%d)\n", ret); return ret; } } D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n" "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"), le16_to_cpu(il->staging.channel), il->staging.bssid_addr); il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto); /* Apply the new configuration * RXON unassoc clears the station table in uCode so restoration of * stations is needed after it (the RXON command) completes */ if (!new_assoc) { ret = il_send_cmd_pdu(il, C_RXON, sizeof(struct il_rxon_cmd), &il->staging); if (ret) { IL_ERR("Error setting new RXON (%d)\n", ret); return ret; } D_INFO("Return from !new_assoc RXON.\n"); memcpy(active_rxon, &il->staging, sizeof(*active_rxon)); il_clear_ucode_stations(il); il_restore_stations(il); ret = il4965_restore_default_wep_keys(il); if (ret) { IL_ERR("Failed to restore WEP keys (%d)\n", ret); return ret; } } if (new_assoc) { il->start_calib = 0; /* Apply the new configuration * RXON assoc doesn't clear the station table in uCode, */ ret = il_send_cmd_pdu(il, C_RXON, sizeof(struct il_rxon_cmd), &il->staging); if (ret) { IL_ERR("Error setting new RXON (%d)\n", ret); return ret; } memcpy(active_rxon, &il->staging, sizeof(*active_rxon)); } il_print_rx_config_cmd(il); il4965_init_sensitivity(il); /* If we issue a new RXON command which required a tune then we must * send a new TXPOWER command or we won't be able to Tx any frames */ ret = il_set_tx_power(il, il->tx_power_next, true); if (ret) { IL_ERR("Error sending TX power (%d)\n", ret); return ret; } return 0; } static int il4965_hw_channel_switch(struct il_priv *il, struct ieee80211_channel_switch *ch_switch) { int rc; u8 band = 0; bool is_ht40 = false; u8 ctrl_chan_high = 0; struct il4965_channel_switch_cmd cmd; const struct il_channel_info *ch_info; u32 switch_time_in_usec, ucode_switch_time; u16 ch; u32 tsf_low; u8 switch_count; u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval); struct ieee80211_vif *vif = il->vif; band = (il->band == IEEE80211_BAND_2GHZ); if (WARN_ON_ONCE(vif == NULL)) return -EIO; is_ht40 = iw4965_is_ht40_channel(il->staging.flags); if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK)) ctrl_chan_high = 1; cmd.band = band; cmd.expect_beacon = 0; ch = ch_switch->chandef.chan->hw_value; cmd.channel = cpu_to_le16(ch); cmd.rxon_flags = il->staging.flags; cmd.rxon_filter_flags = il->staging.filter_flags; switch_count = ch_switch->count; tsf_low = ch_switch->timestamp & 0x0ffffffff; /* * calculate the ucode channel switch time * adding TSF as one of the factor for when to switch */ if (il->ucode_beacon_time > tsf_low && beacon_interval) { if (switch_count > ((il->ucode_beacon_time - tsf_low) / beacon_interval)) { switch_count -= (il->ucode_beacon_time - tsf_low) / beacon_interval; } else switch_count = 0; } if (switch_count <= 1) cmd.switch_time = cpu_to_le32(il->ucode_beacon_time); else { switch_time_in_usec = vif->bss_conf.beacon_int * switch_count * TIME_UNIT; ucode_switch_time = il_usecs_to_beacons(il, switch_time_in_usec, beacon_interval); cmd.switch_time = il_add_beacon_time(il, il->ucode_beacon_time, ucode_switch_time, beacon_interval); } D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time); ch_info = il_get_channel_info(il, il->band, ch); if (ch_info) cmd.expect_beacon = il_is_channel_radar(ch_info); else { IL_ERR("invalid channel switch from %u to %u\n", il->active.channel, ch); return -EFAULT; } rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high, &cmd.tx_power); if (rc) { D_11H("error:%d fill txpower_tbl\n", rc); return rc; } return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd); } /** * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array */ static void il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq, u16 byte_cnt) { struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr; int txq_id = txq->q.id; int write_ptr = txq->q.write_ptr; int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE; __le16 bc_ent; WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX); bc_ent = cpu_to_le16(len & 0xFFF); /* Set up byte count within first 256 entries */ scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; /* If within first 64 entries, duplicate at end */ if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; } /** * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin) * @stats: Provides the temperature reading from the uCode * * A return of <0 indicates bogus data in the stats */ static int il4965_hw_get_temperature(struct il_priv *il) { s32 temperature; s32 vt; s32 R1, R2, R3; u32 R4; if (test_bit(S_TEMPERATURE, &il->status) && (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) { D_TEMP("Running HT40 temperature calibration\n"); R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]); R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]); R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]); R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]); } else { D_TEMP("Running temperature calibration\n"); R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]); R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]); R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]); R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]); } /* * Temperature is only 23 bits, so sign extend out to 32. * * NOTE If we haven't received a stats notification yet * with an updated temperature, use R4 provided to us in the * "initialize" ALIVE response. */ if (!test_bit(S_TEMPERATURE, &il->status)) vt = sign_extend32(R4, 23); else vt = sign_extend32(le32_to_cpu (il->_4965.stats.general.common.temperature), 23); D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt); if (R3 == R1) { IL_ERR("Calibration conflict R1 == R3\n"); return -1; } /* Calculate temperature in degrees Kelvin, adjust by 97%. * Add offset to center the adjustment around 0 degrees Centigrade. */ temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2); temperature /= (R3 - R1); temperature = (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET; D_TEMP("Calibrated temperature: %dK, %dC\n", temperature, KELVIN_TO_CELSIUS(temperature)); return temperature; } /* Adjust Txpower only if temperature variance is greater than threshold. */ #define IL_TEMPERATURE_THRESHOLD 3 /** * il4965_is_temp_calib_needed - determines if new calibration is needed * * If the temperature changed has changed sufficiently, then a recalibration * is needed. * * Assumes caller will replace il->last_temperature once calibration * executed. */ static int il4965_is_temp_calib_needed(struct il_priv *il) { int temp_diff; if (!test_bit(S_STATS, &il->status)) { D_TEMP("Temperature not updated -- no stats.\n"); return 0; } temp_diff = il->temperature - il->last_temperature; /* get absolute value */ if (temp_diff < 0) { D_POWER("Getting cooler, delta %d\n", temp_diff); temp_diff = -temp_diff; } else if (temp_diff == 0) D_POWER("Temperature unchanged\n"); else D_POWER("Getting warmer, delta %d\n", temp_diff); if (temp_diff < IL_TEMPERATURE_THRESHOLD) { D_POWER(" => thermal txpower calib not needed\n"); return 0; } D_POWER(" => thermal txpower calib needed\n"); return 1; } void il4965_temperature_calib(struct il_priv *il) { s32 temp; temp = il4965_hw_get_temperature(il); if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp)) return; if (il->temperature != temp) { if (il->temperature) D_TEMP("Temperature changed " "from %dC to %dC\n", KELVIN_TO_CELSIUS(il->temperature), KELVIN_TO_CELSIUS(temp)); else D_TEMP("Temperature " "initialized to %dC\n", KELVIN_TO_CELSIUS(temp)); } il->temperature = temp; set_bit(S_TEMPERATURE, &il->status); if (!il->disable_tx_power_cal && unlikely(!test_bit(S_SCANNING, &il->status)) && il4965_is_temp_calib_needed(il)) queue_work(il->workqueue, &il->txpower_work); } static u16 il4965_get_hcmd_size(u8 cmd_id, u16 len) { switch (cmd_id) { case C_RXON: return (u16) sizeof(struct il4965_rxon_cmd); default: return len; } } static u16 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data) { struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data; addsta->mode = cmd->mode; memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify)); memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo)); addsta->station_flags = cmd->station_flags; addsta->station_flags_msk = cmd->station_flags_msk; addsta->tid_disable_tx = cmd->tid_disable_tx; addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid; addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid; addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn; addsta->sleep_tx_count = cmd->sleep_tx_count; addsta->reserved1 = cpu_to_le16(0); addsta->reserved2 = cpu_to_le16(0); return (u16) sizeof(struct il4965_addsta_cmd); } static void il4965_post_scan(struct il_priv *il) { /* * Since setting the RXON may have been deferred while * performing the scan, fire one off if needed */ if (memcmp(&il->staging, &il->active, sizeof(il->staging))) il_commit_rxon(il); } static void il4965_post_associate(struct il_priv *il) { struct ieee80211_vif *vif = il->vif; int ret = 0; if (!vif || !il->is_open) return; if (test_bit(S_EXIT_PENDING, &il->status)) return; il_scan_cancel_timeout(il, 200); il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; il_commit_rxon(il); ret = il_send_rxon_timing(il); if (ret) IL_WARN("RXON timing - " "Attempting to continue.\n"); il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK; il_set_rxon_ht(il, &il->current_ht_config); if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid); D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid, vif->bss_conf.beacon_int); if (vif->bss_conf.use_short_preamble) il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; if (il->staging.flags & RXON_FLG_BAND_24G_MSK) { if (vif->bss_conf.use_short_slot) il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK; } il_commit_rxon(il); D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid, il->active.bssid_addr); switch (vif->type) { case NL80211_IFTYPE_STATION: break; case NL80211_IFTYPE_ADHOC: il4965_send_beacon_cmd(il); break; default: IL_ERR("%s Should not be called in %d mode\n", __func__, vif->type); break; } /* the chain noise calibration will enabled PM upon completion * If chain noise has already been run, then we need to enable * power management here */ if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE) il_power_update_mode(il, false); /* Enable Rx differential gain and sensitivity calibrations */ il4965_chain_noise_reset(il); il->start_calib = 1; } static void il4965_config_ap(struct il_priv *il) { struct ieee80211_vif *vif = il->vif; int ret = 0; lockdep_assert_held(&il->mutex); if (test_bit(S_EXIT_PENDING, &il->status)) return; /* The following should be done only at AP bring up */ if (!il_is_associated(il)) { /* RXON - unassoc (to set timing command) */ il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; il_commit_rxon(il); /* RXON Timing */ ret = il_send_rxon_timing(il); if (ret) IL_WARN("RXON timing failed - " "Attempting to continue.\n"); /* AP has all antennas */ il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant; il_set_rxon_ht(il, &il->current_ht_config); if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); il->staging.assoc_id = 0; if (vif->bss_conf.use_short_preamble) il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; if (il->staging.flags & RXON_FLG_BAND_24G_MSK) { if (vif->bss_conf.use_short_slot) il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK; } /* need to send beacon cmd before committing assoc RXON! */ il4965_send_beacon_cmd(il); /* restore RXON assoc */ il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK; il_commit_rxon(il); } il4965_send_beacon_cmd(il); } const struct il_ops il4965_ops = { .txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl, .txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd, .txq_free_tfd = il4965_hw_txq_free_tfd, .txq_init = il4965_hw_tx_queue_init, .is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr, .init_alive_start = il4965_init_alive_start, .load_ucode = il4965_load_bsm, .dump_nic_error_log = il4965_dump_nic_error_log, .dump_fh = il4965_dump_fh, .set_channel_switch = il4965_hw_channel_switch, .apm_init = il_apm_init, .send_tx_power = il4965_send_tx_power, .update_chain_flags = il4965_update_chain_flags, .eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore, .eeprom_release_semaphore = il4965_eeprom_release_semaphore, .rxon_assoc = il4965_send_rxon_assoc, .commit_rxon = il4965_commit_rxon, .set_rxon_chain = il4965_set_rxon_chain, .get_hcmd_size = il4965_get_hcmd_size, .build_addsta_hcmd = il4965_build_addsta_hcmd, .request_scan = il4965_request_scan, .post_scan = il4965_post_scan, .post_associate = il4965_post_associate, .config_ap = il4965_config_ap, .manage_ibss_station = il4965_manage_ibss_station, .update_bcast_stations = il4965_update_bcast_stations, .send_led_cmd = il4965_send_led_cmd, }; struct il_cfg il4965_cfg = { .name = "Intel(R) Wireless WiFi Link 4965AGN", .fw_name_pre = IL4965_FW_PRE, .ucode_api_max = IL4965_UCODE_API_MAX, .ucode_api_min = IL4965_UCODE_API_MIN, .sku = IL_SKU_A | IL_SKU_G | IL_SKU_N, .valid_tx_ant = ANT_AB, .valid_rx_ant = ANT_ABC, .eeprom_ver = EEPROM_4965_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION, .mod_params = &il4965_mod_params, .led_mode = IL_LED_BLINK, /* * Force use of chains B and C for scan RX on 5 GHz band * because the device has off-channel reception on chain A. */ .scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC, .eeprom_size = IL4965_EEPROM_IMG_SIZE, .num_of_queues = IL49_NUM_QUEUES, .num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES, .pll_cfg_val = 0, .set_l0s = true, .use_bsm = true, .led_compensation = 61, .chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS, .wd_timeout = IL_DEF_WD_TIMEOUT, .temperature_kelvin = true, .ucode_tracing = true, .sensitivity_calib_by_driver = true, .chain_noise_calib_by_driver = true, .regulatory_bands = { EEPROM_REGULATORY_BAND_1_CHANNELS, EEPROM_REGULATORY_BAND_2_CHANNELS, EEPROM_REGULATORY_BAND_3_CHANNELS, EEPROM_REGULATORY_BAND_4_CHANNELS, EEPROM_REGULATORY_BAND_5_CHANNELS, EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS, EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS }, }; /* Module firmware */ MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));