- 根目录:
- drivers
- net
- ethernet
- freescale
- fec_main.c
/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire processors.
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
*
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
* Copyright (c) 2004-2006 Macq Electronique SA.
*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/fec.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_net.h>
#include <linux/regulator/consumer.h>
#include <linux/if_vlan.h>
#include <asm/cacheflush.h>
#include "fec.h"
static void set_multicast_list(struct net_device *ndev);
#if defined(CONFIG_ARM)
#define FEC_ALIGNMENT 0xf
#else
#define FEC_ALIGNMENT 0x3
#endif
#define DRIVER_NAME "fec"
/* Pause frame feild and FIFO threshold */
#define FEC_ENET_FCE (1 << 5)
#define FEC_ENET_RSEM_V 0x84
#define FEC_ENET_RSFL_V 16
#define FEC_ENET_RAEM_V 0x8
#define FEC_ENET_RAFL_V 0x8
#define FEC_ENET_OPD_V 0xFFF0
/* Controller is ENET-MAC */
#define FEC_QUIRK_ENET_MAC (1 << 0)
/* Controller needs driver to swap frame */
#define FEC_QUIRK_SWAP_FRAME (1 << 1)
/* Controller uses gasket */
#define FEC_QUIRK_USE_GASKET (1 << 2)
/* Controller has GBIT support */
#define FEC_QUIRK_HAS_GBIT (1 << 3)
/* Controller has extend desc buffer */
#define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
/* Controller has hardware checksum support */
#define FEC_QUIRK_HAS_CSUM (1 << 5)
/* Controller has hardware vlan support */
#define FEC_QUIRK_HAS_VLAN (1 << 6)
/* ENET IP errata ERR006358
*
* If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
* detected as not set during a prior frame transmission, then the
* ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
* were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
* frames not being transmitted until there is a 0-to-1 transition on
* ENET_TDAR[TDAR].
*/
#define FEC_QUIRK_ERR006358 (1 << 7)
static struct platform_device_id fec_devtype[] = {
{
/* keep it for coldfire */
.name = DRIVER_NAME,
.driver_data = 0,
}, {
.name = "imx25-fec",
.driver_data = FEC_QUIRK_USE_GASKET,
}, {
.name = "imx27-fec",
.driver_data = 0,
}, {
.name = "imx28-fec",
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
}, {
.name = "imx6q-fec",
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
}, {
.name = "mvf600-fec",
.driver_data = FEC_QUIRK_ENET_MAC,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, fec_devtype);
enum imx_fec_type {
IMX25_FEC = 1, /* runs on i.mx25/50/53 */
IMX27_FEC, /* runs on i.mx27/35/51 */
IMX28_FEC,
IMX6Q_FEC,
MVF600_FEC,
};
static const struct of_device_id fec_dt_ids[] = {
{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fec_dt_ids);
static unsigned char macaddr[ETH_ALEN];
module_param_array(macaddr, byte, NULL, 0);
MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
#if defined(CONFIG_M5272)
/*
* Some hardware gets it MAC address out of local flash memory.
* if this is non-zero then assume it is the address to get MAC from.
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#elif defined (CONFIG_M5272C3)
#define FEC_FLASHMAC (0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 0xffc0406b
#else
#define FEC_FLASHMAC 0
#endif
#endif /* CONFIG_M5272 */
#if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
#error "FEC: descriptor ring size constants too large"
#endif
/* Interrupt events/masks. */
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1522
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1536
/* FEC receive acceleration */
#define FEC_RACC_IPDIS (1 << 1)
#define FEC_RACC_PRODIS (1 << 2)
#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
/*
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* FEC MII MMFR bits definition */
#define FEC_MMFR_ST (1 << 30)
#define FEC_MMFR_OP_READ (2 << 28)
#define FEC_MMFR_OP_WRITE (1 << 28)
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
#define FEC_MMFR_TA (2 << 16)
#define FEC_MMFR_DATA(v) (v & 0xffff)
#define FEC_MII_TIMEOUT 30000 /* us */
/* Transmitter timeout */
#define TX_TIMEOUT (2 * HZ)
#define FEC_PAUSE_FLAG_AUTONEG 0x1
#define FEC_PAUSE_FLAG_ENABLE 0x2
static int mii_cnt;
static inline
struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
{
struct bufdesc *new_bd = bdp + 1;
struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
struct bufdesc_ex *ex_base;
struct bufdesc *base;
int ring_size;
if (bdp >= fep->tx_bd_base) {
base = fep->tx_bd_base;
ring_size = fep->tx_ring_size;
ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
} else {
base = fep->rx_bd_base;
ring_size = fep->rx_ring_size;
ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
}
if (fep->bufdesc_ex)
return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
ex_base : ex_new_bd);
else
return (new_bd >= (base + ring_size)) ?
base : new_bd;
}
static inline
struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
{
struct bufdesc *new_bd = bdp - 1;
struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
struct bufdesc_ex *ex_base;
struct bufdesc *base;
int ring_size;
if (bdp >= fep->tx_bd_base) {
base = fep->tx_bd_base;
ring_size = fep->tx_ring_size;
ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
} else {
base = fep->rx_bd_base;
ring_size = fep->rx_ring_size;
ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
}
if (fep->bufdesc_ex)
return (struct bufdesc *)((ex_new_bd < ex_base) ?
(ex_new_bd + ring_size) : ex_new_bd);
else
return (new_bd < base) ? (new_bd + ring_size) : new_bd;
}
static void *swap_buffer(void *bufaddr, int len)
{
int i;
unsigned int *buf = bufaddr;
for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
*buf = cpu_to_be32(*buf);
return bufaddr;
}
static int
fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
{
/* Only run for packets requiring a checksum. */
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (unlikely(skb_cow_head(skb, 0)))
return -1;
*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
return 0;
}
static netdev_tx_t
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct bufdesc *bdp, *bdp_pre;
void *bufaddr;
unsigned short status;
unsigned int index;
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
status = bdp->cbd_sc;
if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since ndev->tbusy should be set.
*/
netdev_err(ndev, "tx queue full!\n");
return NETDEV_TX_BUSY;
}
/* Protocol checksum off-load for TCP and UDP. */
if (fec_enet_clear_csum(skb, ndev)) {
kfree_skb(skb);
return NETDEV_TX_OK;
}
/* Clear all of the status flags */
status &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer */
bufaddr = skb->data;
bdp->cbd_datlen = skb->len;
/*
* On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh.
*/
if (fep->bufdesc_ex)
index = (struct bufdesc_ex *)bdp -
(struct bufdesc_ex *)fep->tx_bd_base;
else
index = bdp - fep->tx_bd_base;
if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
memcpy(fep->tx_bounce[index], skb->data, skb->len);
bufaddr = fep->tx_bounce[index];
}
/*
* Some design made an incorrect assumption on endian mode of
* the system that it's running on. As the result, driver has to
* swap every frame going to and coming from the controller.
*/
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, skb->len);
/* Save skb pointer */
fep->tx_skbuff[index] = skb;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
bdp->cbd_bufaddr = 0;
fep->tx_skbuff[index] = NULL;
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_OK;
}
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_bdu = 0;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
fep->hwts_tx_en)) {
ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
} else {
ebdp->cbd_esc = BD_ENET_TX_INT;
/* Enable protocol checksum flags
* We do not bother with the IP Checksum bits as they
* are done by the kernel
*/
if (skb->ip_summed == CHECKSUM_PARTIAL)
ebdp->cbd_esc |= BD_ENET_TX_PINS;
}
}
/* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end.
*/
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
bdp->cbd_sc = status;
bdp_pre = fec_enet_get_prevdesc(bdp, fep);
if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
!(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
fep->delay_work.trig_tx = true;
schedule_delayed_work(&(fep->delay_work.delay_work),
msecs_to_jiffies(1));
}
/* If this was the last BD in the ring, start at the beginning again. */
bdp = fec_enet_get_nextdesc(bdp, fep);
skb_tx_timestamp(skb);
fep->cur_tx = bdp;
if (fep->cur_tx == fep->dirty_tx)
netif_stop_queue(ndev);
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
return NETDEV_TX_OK;
}
/* Init RX & TX buffer descriptors
*/
static void fec_enet_bd_init(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct bufdesc *bdp;
unsigned int i;
/* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
if (bdp->cbd_bufaddr)
bdp->cbd_sc = BD_ENET_RX_EMPTY;
else
bdp->cbd_sc = 0;
bdp = fec_enet_get_nextdesc(bdp, fep);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
fep->cur_rx = fep->rx_bd_base;
/* ...and the same for transmit */
bdp = fep->tx_bd_base;
fep->cur_tx = bdp;
for (i = 0; i < fep->tx_ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
bdp->cbd_bufaddr = 0;
bdp = fec_enet_get_nextdesc(bdp, fep);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
fep->dirty_tx = bdp;
}
/* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void
fec_restart(struct net_device *ndev, int duplex)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
int i;
u32 val;
u32 temp_mac[2];
u32 rcntl = OPT_FRAME_SIZE | 0x04;
u32 ecntl = 0x2; /* ETHEREN */
if (netif_running(ndev)) {
netif_device_detach(ndev);
napi_disable(&fep->napi);
netif_stop_queue(ndev);
netif_tx_lock_bh(ndev);
}
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
/*
* enet-mac reset will reset mac address registers too,
* so need to reconfigure it.
*/
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
}
/* Clear any outstanding interrupt. */
writel(0xffc00000, fep->hwp + FEC_IEVENT);
/* Set maximum receive buffer size. */
writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
fec_enet_bd_init(ndev);
/* Set receive and transmit descriptor base. */
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
if (fep->bufdesc_ex)
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
else
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
/* Enable MII mode */
if (duplex) {
/* FD enable */
writel(0x04, fep->hwp + FEC_X_CNTRL);
} else {
/* No Rcv on Xmit */
rcntl |= 0x02;
writel(0x0, fep->hwp + FEC_X_CNTRL);
}
fep->full_duplex = duplex;
/* Set MII speed */
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
#if !defined(CONFIG_M5272)
/* set RX checksum */
val = readl(fep->hwp + FEC_RACC);
if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
val |= FEC_RACC_OPTIONS;
else
val &= ~FEC_RACC_OPTIONS;
writel(val, fep->hwp + FEC_RACC);
#endif
/*
* The phy interface and speed need to get configured
* differently on enet-mac.
*/
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
/* Enable flow control and length check */
rcntl |= 0x40000000 | 0x00000020;
/* RGMII, RMII or MII */
if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
rcntl |= (1 << 6);
else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
rcntl |= (1 << 8);
else
rcntl &= ~(1 << 8);
/* 1G, 100M or 10M */
if (fep->phy_dev) {
if (fep->phy_dev->speed == SPEED_1000)
ecntl |= (1 << 5);
else if (fep->phy_dev->speed == SPEED_100)
rcntl &= ~(1 << 9);
else
rcntl |= (1 << 9);
}
} else {
#ifdef FEC_MIIGSK_ENR
if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
u32 cfgr;
/* disable the gasket and wait */
writel(0, fep->hwp + FEC_MIIGSK_ENR);
while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
udelay(1);
/*
* configure the gasket:
* RMII, 50 MHz, no loopback, no echo
* MII, 25 MHz, no loopback, no echo
*/
cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
/* re-enable the gasket */
writel(2, fep->hwp + FEC_MIIGSK_ENR);
}
#endif
}
#if !defined(CONFIG_M5272)
/* enable pause frame*/
if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
fep->phy_dev && fep->phy_dev->pause)) {
rcntl |= FEC_ENET_FCE;
/* set FIFO threshold parameter to reduce overrun */
writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
/* OPD */
writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
} else {
rcntl &= ~FEC_ENET_FCE;
}
#endif /* !defined(CONFIG_M5272) */
writel(rcntl, fep->hwp + FEC_R_CNTRL);
/* Setup multicast filter. */
set_multicast_list(ndev);
#ifndef CONFIG_M5272
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
#endif
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
/* enable ENET endian swap */
ecntl |= (1 << 8);
/* enable ENET store and forward mode */
writel(1 << 8, fep->hwp + FEC_X_WMRK);
}
if (fep->bufdesc_ex)
ecntl |= (1 << 4);
#ifndef CONFIG_M5272
/* Enable the MIB statistic event counters */
writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
#endif
/* And last, enable the transmit and receive processing */
writel(ecntl, fep->hwp + FEC_ECNTRL);
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
if (fep->bufdesc_ex)
fec_ptp_start_cyclecounter(ndev);
/* Enable interrupts we wish to service */
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
if (netif_running(ndev)) {
netif_tx_unlock_bh(ndev);
netif_wake_queue(ndev);
napi_enable(&fep->napi);
netif_device_attach(ndev);
}
}
static void
fec_stop(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
/* We cannot expect a graceful transmit stop without link !!! */
if (fep->link) {
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
udelay(10);
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
netdev_err(ndev, "Graceful transmit stop did not complete!\n");
}
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
/* We have to keep ENET enabled to have MII interrupt stay working */
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
writel(2, fep->hwp + FEC_ECNTRL);
writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
}
}
static void
fec_timeout(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
ndev->stats.tx_errors++;
fep->delay_work.timeout = true;
schedule_delayed_work(&(fep->delay_work.delay_work), 0);
}
static void fec_enet_work(struct work_struct *work)
{
struct fec_enet_private *fep =
container_of(work,
struct fec_enet_private,
delay_work.delay_work.work);
if (fep->delay_work.timeout) {
fep->delay_work.timeout = false;
fec_restart(fep->netdev, fep->full_duplex);
netif_wake_queue(fep->netdev);
}
if (fep->delay_work.trig_tx) {
fep->delay_work.trig_tx = false;
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
}
}
static void
fec_enet_tx(struct net_device *ndev)
{
struct fec_enet_private *fep;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
int index = 0;
fep = netdev_priv(ndev);
bdp = fep->dirty_tx;
/* get next bdp of dirty_tx */
bdp = fec_enet_get_nextdesc(bdp, fep);
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
/* current queue is empty */
if (bdp == fep->cur_tx)
break;
if (fep->bufdesc_ex)
index = (struct bufdesc_ex *)bdp -
(struct bufdesc_ex *)fep->tx_bd_base;
else
index = bdp - fep->tx_bd_base;
skb = fep->tx_skbuff[index];
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
DMA_TO_DEVICE);
bdp->cbd_bufaddr = 0;
/* Check for errors. */
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
ndev->stats.tx_errors++;
if (status & BD_ENET_TX_HB) /* No heartbeat */
ndev->stats.tx_heartbeat_errors++;
if (status & BD_ENET_TX_LC) /* Late collision */
ndev->stats.tx_window_errors++;
if (status & BD_ENET_TX_RL) /* Retrans limit */
ndev->stats.tx_aborted_errors++;
if (status & BD_ENET_TX_UN) /* Underrun */
ndev->stats.tx_fifo_errors++;
if (status & BD_ENET_TX_CSL) /* Carrier lost */
ndev->stats.tx_carrier_errors++;
} else {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += bdp->cbd_datlen;
}
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
fep->bufdesc_ex) {
struct skb_shared_hwtstamps shhwtstamps;
unsigned long flags;
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
spin_lock_irqsave(&fep->tmreg_lock, flags);
shhwtstamps.hwtstamp = ns_to_ktime(
timecounter_cyc2time(&fep->tc, ebdp->ts));
spin_unlock_irqrestore(&fep->tmreg_lock, flags);
skb_tstamp_tx(skb, &shhwtstamps);
}
if (status & BD_ENET_TX_READY)
netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (status & BD_ENET_TX_DEF)
ndev->stats.collisions++;
/* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
fep->tx_skbuff[index] = NULL;
fep->dirty_tx = bdp;
/* Update pointer to next buffer descriptor to be transmitted */
bdp = fec_enet_get_nextdesc(bdp, fep);
/* Since we have freed up a buffer, the ring is no longer full
*/
if (fep->dirty_tx != fep->cur_tx) {
if (netif_queue_stopped(ndev))
netif_wake_queue(ndev);
}
}
return;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
fec_enet_rx(struct net_device *ndev, int budget)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
int pkt_received = 0;
struct bufdesc_ex *ebdp = NULL;
bool vlan_packet_rcvd = false;
u16 vlan_tag;
int index = 0;
#ifdef CONFIG_M532x
flush_cache_all();
#endif
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
if (pkt_received >= budget)
break;
pkt_received++;
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((status & BD_ENET_RX_LAST) == 0)
netdev_err(ndev, "rcv is not +last\n");
if (!fep->opened)
goto rx_processing_done;
/* Check for errors. */
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
ndev->stats.rx_errors++;
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */
ndev->stats.rx_length_errors++;
}
if (status & BD_ENET_RX_NO) /* Frame alignment */
ndev->stats.rx_frame_errors++;
if (status & BD_ENET_RX_CR) /* CRC Error */
ndev->stats.rx_crc_errors++;
if (status & BD_ENET_RX_OV) /* FIFO overrun */
ndev->stats.rx_fifo_errors++;
}
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (status & BD_ENET_RX_CL) {
ndev->stats.rx_errors++;
ndev->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame. */
ndev->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
ndev->stats.rx_bytes += pkt_len;
if (fep->bufdesc_ex)
index = (struct bufdesc_ex *)bdp -
(struct bufdesc_ex *)fep->rx_bd_base;
else
index = bdp - fep->rx_bd_base;
data = fep->rx_skbuff[index]->data;
dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(data, pkt_len);
/* Extract the enhanced buffer descriptor */
ebdp = NULL;
if (fep->bufdesc_ex)
ebdp = (struct bufdesc_ex *)bdp;
/* If this is a VLAN packet remove the VLAN Tag */
vlan_packet_rcvd = false;
if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
/* Push and remove the vlan tag */
struct vlan_hdr *vlan_header =
(struct vlan_hdr *) (data + ETH_HLEN);
vlan_tag = ntohs(vlan_header->h_vlan_TCI);
pkt_len -= VLAN_HLEN;
vlan_packet_rcvd = true;
}
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
if (unlikely(!skb)) {
ndev->stats.rx_dropped++;
} else {
int payload_offset = (2 * ETH_ALEN);
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pkt_len - 4); /* Make room */
/* Extract the frame data without the VLAN header. */
skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
if (vlan_packet_rcvd)
payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
data + payload_offset,
pkt_len - 4 - (2 * ETH_ALEN));
skb->protocol = eth_type_trans(skb, ndev);
/* Get receive timestamp from the skb */
if (fep->hwts_rx_en && fep->bufdesc_ex) {
struct skb_shared_hwtstamps *shhwtstamps =
skb_hwtstamps(skb);
unsigned long flags;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
spin_lock_irqsave(&fep->tmreg_lock, flags);
shhwtstamps->hwtstamp = ns_to_ktime(
timecounter_cyc2time(&fep->tc, ebdp->ts));
spin_unlock_irqrestore(&fep->tmreg_lock, flags);
}
if (fep->bufdesc_ex &&
(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
/* don't check it */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
}
/* Handle received VLAN packets */
if (vlan_packet_rcvd)
__vlan_hwaccel_put_tag(skb,
htons(ETH_P_8021Q),
vlan_tag);
napi_gro_receive(&fep->napi, skb);
}
dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
rx_processing_done:
/* Clear the status flags for this buffer */
status &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty */
status |= BD_ENET_RX_EMPTY;
bdp->cbd_sc = status;
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = BD_ENET_RX_INT;
ebdp->cbd_prot = 0;
ebdp->cbd_bdu = 0;
}
/* Update BD pointer to next entry */
bdp = fec_enet_get_nextdesc(bdp, fep);
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
}
fep->cur_rx = bdp;
return pkt_received;
}
static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct fec_enet_private *fep = netdev_priv(ndev);
uint int_events;
irqreturn_t ret = IRQ_NONE;
do {
int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events, fep->hwp + FEC_IEVENT);
if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
ret = IRQ_HANDLED;
/* Disable the RX interrupt */
if (napi_schedule_prep(&fep->napi)) {
writel(FEC_RX_DISABLED_IMASK,
fep->hwp + FEC_IMASK);
__napi_schedule(&fep->napi);
}
}
if (int_events & FEC_ENET_MII) {
ret = IRQ_HANDLED;
complete(&fep->mdio_done);
}
} while (int_events);
return ret;
}
static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
{
struct net_device *ndev = napi->dev;
int pkts = fec_enet_rx(ndev, budget);
struct fec_enet_private *fep = netdev_priv(ndev);
fec_enet_tx(ndev);
if (pkts < budget) {
napi_complete(napi);
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
}
return pkts;
}
/* ------------------------------------------------------------------------- */
static void fec_get_mac(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
unsigned char *iap, tmpaddr[ETH_ALEN];
/*
* try to get mac address in following order:
*
* 1) module parameter via kernel command line in form
* fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
*/
iap = macaddr;
/*
* 2) from device tree data
*/
if (!is_valid_ether_addr(iap)) {
struct device_node *np = fep->pdev->dev.of_node;
if (np) {
const char *mac = of_get_mac_address(np);
if (mac)
iap = (unsigned char *) mac;
}
}
/*
* 3) from flash or fuse (via platform data)
*/
if (!is_valid_ether_addr(iap)) {
#ifdef CONFIG_M5272
if (FEC_FLASHMAC)
iap = (unsigned char *)FEC_FLASHMAC;
#else
if (pdata)
iap = (unsigned char *)&pdata->mac;
#endif
}
/*
* 4) FEC mac registers set by bootloader
*/
if (!is_valid_ether_addr(iap)) {
*((__be32 *) &tmpaddr[0]) =
cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
*((__be16 *) &tmpaddr[4]) =
cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
iap = &tmpaddr[0];
}
/*
* 5) random mac address
*/
if (!is_valid_ether_addr(iap)) {
/* Report it and use a random ethernet address instead */
netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
eth_hw_addr_random(ndev);
netdev_info(ndev, "Using random MAC address: %pM\n",
ndev->dev_addr);
return;
}
memcpy(ndev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using macaddr */
if (iap == macaddr)
ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
}
/* ------------------------------------------------------------------------- */
/*
* Phy section
*/
static void fec_enet_adjust_link(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phy_dev = fep->phy_dev;
int status_change = 0;
/* Prevent a state halted on mii error */
if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
phy_dev->state = PHY_RESUMING;
return;
}
if (phy_dev->link) {
if (!fep->link) {
fep->link = phy_dev->link;
status_change = 1;
}
if (fep->full_duplex != phy_dev->duplex)
status_change = 1;
if (phy_dev->speed != fep->speed) {
fep->speed = phy_dev->speed;
status_change = 1;
}
/* if any of the above changed restart the FEC */
if (status_change)
fec_restart(ndev, phy_dev->duplex);
} else {
if (fep->link) {
fec_stop(ndev);
fep->link = phy_dev->link;
status_change = 1;
}
}
if (status_change)
phy_print_status(phy_dev);
}
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct fec_enet_private *fep = bus->priv;
unsigned long time_left;
fep->mii_timeout = 0;
init_completion(&fep->mdio_done);
/* start a read op */
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
time_left = wait_for_completion_timeout(&fep->mdio_done,
usecs_to_jiffies(FEC_MII_TIMEOUT));
if (time_left == 0) {
fep->mii_timeout = 1;
netdev_err(fep->netdev, "MDIO read timeout\n");
return -ETIMEDOUT;
}
/* return value */
return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
}
static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct fec_enet_private *fep = bus->priv;
unsigned long time_left;
fep->mii_timeout = 0;
init_completion(&fep->mdio_done);
/* start a write op */
writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
FEC_MMFR_TA | FEC_MMFR_DATA(value),
fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
time_left = wait_for_completion_timeout(&fep->mdio_done,
usecs_to_jiffies(FEC_MII_TIMEOUT));
if (time_left == 0) {
fep->mii_timeout = 1;
netdev_err(fep->netdev, "MDIO write timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int fec_enet_mdio_reset(struct mii_bus *bus)
{
return 0;
}
static int fec_enet_mii_probe(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct phy_device *phy_dev = NULL;
char mdio_bus_id[MII_BUS_ID_SIZE];
char phy_name[MII_BUS_ID_SIZE + 3];
int phy_id;
int dev_id = fep->dev_id;
fep->phy_dev = NULL;
/* check for attached phy */
for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
if ((fep->mii_bus->phy_mask & (1 << phy_id)))
continue;
if (fep->mii_bus->phy_map[phy_id] == NULL)
continue;
if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
continue;
if (dev_id--)
continue;
strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
break;
}
if (phy_id >= PHY_MAX_ADDR) {
netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
phy_id = 0;
}
snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
fep->phy_interface);
if (IS_ERR(phy_dev)) {
netdev_err(ndev, "could not attach to PHY\n");
return PTR_ERR(phy_dev);
}
/* mask with MAC supported features */
if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
phy_dev->supported &= PHY_GBIT_FEATURES;
#if !defined(CONFIG_M5272)
phy_dev->supported |= SUPPORTED_Pause;
#endif
}
else
phy_dev->supported &= PHY_BASIC_FEATURES;
phy_dev->advertising = phy_dev->supported;
fep->phy_dev = phy_dev;
fep->link = 0;
fep->full_duplex = 0;
netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
fep->phy_dev->irq);
return 0;
}
static int fec_enet_mii_init(struct platform_device *pdev)
{
static struct mii_bus *fec0_mii_bus;
struct net_device *ndev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
int err = -ENXIO, i;
/*
* The dual fec interfaces are not equivalent with enet-mac.
* Here are the differences:
*
* - fec0 supports MII & RMII modes while fec1 only supports RMII
* - fec0 acts as the 1588 time master while fec1 is slave
* - external phys can only be configured by fec0
*
* That is to say fec1 can not work independently. It only works
* when fec0 is working. The reason behind this design is that the
* second interface is added primarily for Switch mode.
*
* Because of the last point above, both phys are attached on fec0
* mdio interface in board design, and need to be configured by
* fec0 mii_bus.
*/
if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
/* fec1 uses fec0 mii_bus */
if (mii_cnt && fec0_mii_bus) {
fep->mii_bus = fec0_mii_bus;
mii_cnt++;
return 0;
}
return -ENOENT;
}
fep->mii_timeout = 0;
/*
* Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
*
* The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
* for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
* Reference Manual has an error on this, and gets fixed on i.MX6Q
* document.
*/
fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
fep->phy_speed--;
fep->phy_speed <<= 1;
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
fep->mii_bus = mdiobus_alloc();
if (fep->mii_bus == NULL) {
err = -ENOMEM;
goto err_out;
}
fep->mii_bus->name = "fec_enet_mii_bus";
fep->mii_bus->read = fec_enet_mdio_read;
fep->mii_bus->write = fec_enet_mdio_write;
fep->mii_bus->reset = fec_enet_mdio_reset;
snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, fep->dev_id + 1);
fep->mii_bus->priv = fep;
fep->mii_bus->parent = &pdev->dev;
fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!fep->mii_bus->irq) {
err = -ENOMEM;
goto err_out_free_mdiobus;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
fep->mii_bus->irq[i] = PHY_POLL;
if (mdiobus_register(fep->mii_bus))
goto err_out_free_mdio_irq;
mii_cnt++;
/* save fec0 mii_bus */
if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
fec0_mii_bus = fep->mii_bus;
return 0;
err_out_free_mdio_irq:
kfree(fep->mii_bus->irq);
err_out_free_mdiobus:
mdiobus_free(fep->mii_bus);
err_out:
return err;
}
static void fec_enet_mii_remove(struct fec_enet_private *fep)
{
if (--mii_cnt == 0) {
mdiobus_unregister(fep->mii_bus);
kfree(fep->mii_bus->irq);
mdiobus_free(fep->mii_bus);
}
}
static int fec_enet_get_settings(struct net_device *ndev,
struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phydev = fep->phy_dev;
if (!phydev)
return -ENODEV;
return phy_ethtool_gset(phydev, cmd);
}
static int fec_enet_set_settings(struct net_device *ndev,
struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phydev = fep->phy_dev;
if (!phydev)
return -ENODEV;
return phy_ethtool_sset(phydev, cmd);
}
static void fec_enet_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *info)
{
struct fec_enet_private *fep = netdev_priv(ndev);
strlcpy(info->driver, fep->pdev->dev.driver->name,
sizeof(info->driver));
strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
}
static int fec_enet_get_ts_info(struct net_device *ndev,
struct ethtool_ts_info *info)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (fep->bufdesc_ex) {
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
if (fep->ptp_clock)
info->phc_index = ptp_clock_index(fep->ptp_clock);
else
info->phc_index = -1;
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_ALL);
return 0;
} else {
return ethtool_op_get_ts_info(ndev, info);
}
}
#if !defined(CONFIG_M5272)
static void fec_enet_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct fec_enet_private *fep = netdev_priv(ndev);
pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
pause->rx_pause = pause->tx_pause;
}
static int fec_enet_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (pause->tx_pause != pause->rx_pause) {
netdev_info(ndev,
"hardware only support enable/disable both tx and rx");
return -EINVAL;
}
fep->pause_flag = 0;
/* tx pause must be same as rx pause */
fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
if (pause->rx_pause || pause->autoneg) {
fep->phy_dev->supported |= ADVERTISED_Pause;
fep->phy_dev->advertising |= ADVERTISED_Pause;
} else {
fep->phy_dev->supported &= ~ADVERTISED_Pause;
fep->phy_dev->advertising &= ~ADVERTISED_Pause;
}
if (pause->autoneg) {
if (netif_running(ndev))
fec_stop(ndev);
phy_start_aneg(fep->phy_dev);
}
if (netif_running(ndev))
fec_restart(ndev, 0);
return 0;
}
static const struct fec_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} fec_stats[] = {
/* RMON TX */
{ "tx_dropped", RMON_T_DROP },
{ "tx_packets", RMON_T_PACKETS },
{ "tx_broadcast", RMON_T_BC_PKT },
{ "tx_multicast", RMON_T_MC_PKT },
{ "tx_crc_errors", RMON_T_CRC_ALIGN },
{ "tx_undersize", RMON_T_UNDERSIZE },
{ "tx_oversize", RMON_T_OVERSIZE },
{ "tx_fragment", RMON_T_FRAG },
{ "tx_jabber", RMON_T_JAB },
{ "tx_collision", RMON_T_COL },
{ "tx_64byte", RMON_T_P64 },
{ "tx_65to127byte", RMON_T_P65TO127 },
{ "tx_128to255byte", RMON_T_P128TO255 },
{ "tx_256to511byte", RMON_T_P256TO511 },
{ "tx_512to1023byte", RMON_T_P512TO1023 },
{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
{ "tx_octets", RMON_T_OCTETS },
/* IEEE TX */
{ "IEEE_tx_drop", IEEE_T_DROP },
{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
{ "IEEE_tx_1col", IEEE_T_1COL },
{ "IEEE_tx_mcol", IEEE_T_MCOL },
{ "IEEE_tx_def", IEEE_T_DEF },
{ "IEEE_tx_lcol", IEEE_T_LCOL },
{ "IEEE_tx_excol", IEEE_T_EXCOL },
{ "IEEE_tx_macerr", IEEE_T_MACERR },
{ "IEEE_tx_cserr", IEEE_T_CSERR },
{ "IEEE_tx_sqe", IEEE_T_SQE },
{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
/* RMON RX */
{ "rx_packets", RMON_R_PACKETS },
{ "rx_broadcast", RMON_R_BC_PKT },
{ "rx_multicast", RMON_R_MC_PKT },
{ "rx_crc_errors", RMON_R_CRC_ALIGN },
{ "rx_undersize", RMON_R_UNDERSIZE },
{ "rx_oversize", RMON_R_OVERSIZE },
{ "rx_fragment", RMON_R_FRAG },
{ "rx_jabber", RMON_R_JAB },
{ "rx_64byte", RMON_R_P64 },
{ "rx_65to127byte", RMON_R_P65TO127 },
{ "rx_128to255byte", RMON_R_P128TO255 },
{ "rx_256to511byte", RMON_R_P256TO511 },
{ "rx_512to1023byte", RMON_R_P512TO1023 },
{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
{ "rx_octets", RMON_R_OCTETS },
/* IEEE RX */
{ "IEEE_rx_drop", IEEE_R_DROP },
{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
{ "IEEE_rx_crc", IEEE_R_CRC },
{ "IEEE_rx_align", IEEE_R_ALIGN },
{ "IEEE_rx_macerr", IEEE_R_MACERR },
{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
};
static void fec_enet_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
data[i] = readl(fep->hwp + fec_stats[i].offset);
}
static void fec_enet_get_strings(struct net_device *netdev,
u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
fec_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static int fec_enet_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(fec_stats);
default:
return -EOPNOTSUPP;
}
}
#endif /* !defined(CONFIG_M5272) */
static int fec_enet_nway_reset(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phy_dev;
if (!phydev)
return -ENODEV;
return genphy_restart_aneg(phydev);
}
static const struct ethtool_ops fec_enet_ethtool_ops = {
#if !defined(CONFIG_M5272)
.get_pauseparam = fec_enet_get_pauseparam,
.set_pauseparam = fec_enet_set_pauseparam,
#endif
.get_settings = fec_enet_get_settings,
.set_settings = fec_enet_set_settings,
.get_drvinfo = fec_enet_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ts_info = fec_enet_get_ts_info,
.nway_reset = fec_enet_nway_reset,
#ifndef CONFIG_M5272
.get_ethtool_stats = fec_enet_get_ethtool_stats,
.get_strings = fec_enet_get_strings,
.get_sset_count = fec_enet_get_sset_count,
#endif
};
static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phydev = fep->phy_dev;
if (!netif_running(ndev))
return -EINVAL;
if (!phydev)
return -ENODEV;
if (fep->bufdesc_ex) {
if (cmd == SIOCSHWTSTAMP)
return fec_ptp_set(ndev, rq);
if (cmd == SIOCGHWTSTAMP)
return fec_ptp_get(ndev, rq);
}
return phy_mii_ioctl(phydev, rq, cmd);
}
static void fec_enet_free_buffers(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
skb = fep->rx_skbuff[i];
if (bdp->cbd_bufaddr)
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
if (skb)
dev_kfree_skb(skb);
bdp = fec_enet_get_nextdesc(bdp, fep);
}
bdp = fep->tx_bd_base;
for (i = 0; i < fep->tx_ring_size; i++)
kfree(fep->tx_bounce[i]);
}
static int fec_enet_alloc_buffers(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
if (!skb) {
fec_enet_free_buffers(ndev);
return -ENOMEM;
}
fep->rx_skbuff[i] = skb;
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
fec_enet_free_buffers(ndev);
if (net_ratelimit())
netdev_err(ndev, "Rx DMA memory map failed\n");
return -ENOMEM;
}
bdp->cbd_sc = BD_ENET_RX_EMPTY;
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = BD_ENET_RX_INT;
}
bdp = fec_enet_get_nextdesc(bdp, fep);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
bdp = fep->tx_bd_base;
for (i = 0; i < fep->tx_ring_size; i++) {
fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = BD_ENET_TX_INT;
}
bdp = fec_enet_get_nextdesc(bdp, fep);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
return 0;
}
static int
fec_enet_open(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
ret = fec_enet_alloc_buffers(ndev);
if (ret)
return ret;
/* Probe and connect to PHY when open the interface */
ret = fec_enet_mii_probe(ndev);
if (ret) {
fec_enet_free_buffers(ndev);
return ret;
}
napi_enable(&fep->napi);
phy_start(fep->phy_dev);
netif_start_queue(ndev);
fep->opened = 1;
return 0;
}
static int
fec_enet_close(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
/* Don't know what to do yet. */
napi_disable(&fep->napi);
fep->opened = 0;
netif_stop_queue(ndev);
fec_stop(ndev);
if (fep->phy_dev) {
phy_stop(fep->phy_dev);
phy_disconnect(fep->phy_dev);
}
fec_enet_free_buffers(ndev);
return 0;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
#define HASH_BITS 6 /* #bits in hash */
#define CRC32_POLY 0xEDB88320
static void set_multicast_list(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct netdev_hw_addr *ha;
unsigned int i, bit, data, crc, tmp;
unsigned char hash;
if (ndev->flags & IFF_PROMISC) {
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp |= 0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
return;
}
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp &= ~0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
if (ndev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's
*/
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
return;
}
/* Clear filter and add the addresses in hash register
*/
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
netdev_for_each_mc_addr(ha, ndev) {
/* calculate crc32 value of mac address */
crc = 0xffffffff;
for (i = 0; i < ndev->addr_len; i++) {
data = ha->addr[i];
for (bit = 0; bit < 8; bit++, data >>= 1) {
crc = (crc >> 1) ^
(((crc ^ data) & 1) ? CRC32_POLY : 0);
}
}
/* only upper 6 bits (HASH_BITS) are used
* which point to specific bit in he hash registers
*/
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
if (hash > 31) {
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
tmp |= 1 << (hash - 32);
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
} else {
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
tmp |= 1 << hash;
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
}
}
}
/* Set a MAC change in hardware. */
static int
fec_set_mac_address(struct net_device *ndev, void *p)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
fep->hwp + FEC_ADDR_LOW);
writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
fep->hwp + FEC_ADDR_HIGH);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* fec_poll_controller - FEC Poll controller function
* @dev: The FEC network adapter
*
* Polled functionality used by netconsole and others in non interrupt mode
*
*/
static void fec_poll_controller(struct net_device *dev)
{
int i;
struct fec_enet_private *fep = netdev_priv(dev);
for (i = 0; i < FEC_IRQ_NUM; i++) {
if (fep->irq[i] > 0) {
disable_irq(fep->irq[i]);
fec_enet_interrupt(fep->irq[i], dev);
enable_irq(fep->irq[i]);
}
}
}
#endif
static int fec_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct fec_enet_private *fep = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
netdev->features = features;
/* Receive checksum has been changed */
if (changed & NETIF_F_RXCSUM) {
if (features & NETIF_F_RXCSUM)
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
else
fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
if (netif_running(netdev)) {
fec_stop(netdev);
fec_restart(netdev, fep->phy_dev->duplex);
netif_wake_queue(netdev);
} else {
fec_restart(netdev, fep->phy_dev->duplex);
}
}
return 0;
}
static const struct net_device_ops fec_netdev_ops = {
.ndo_open = fec_enet_open,
.ndo_stop = fec_enet_close,
.ndo_start_xmit = fec_enet_start_xmit,
.ndo_set_rx_mode = set_multicast_list,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = fec_timeout,
.ndo_set_mac_address = fec_set_mac_address,
.ndo_do_ioctl = fec_enet_ioctl,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fec_poll_controller,
#endif
.ndo_set_features = fec_set_features,
};
/*
* XXX: We need to clean up on failure exits here.
*
*/
static int fec_enet_init(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct bufdesc *cbd_base;
/* Allocate memory for buffer descriptors. */
cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
GFP_KERNEL);
if (!cbd_base)
return -ENOMEM;
memset(cbd_base, 0, PAGE_SIZE);
fep->netdev = ndev;
/* Get the Ethernet address */
fec_get_mac(ndev);
/* init the tx & rx ring size */
fep->tx_ring_size = TX_RING_SIZE;
fep->rx_ring_size = RX_RING_SIZE;
/* Set receive and transmit descriptor base. */
fep->rx_bd_base = cbd_base;
if (fep->bufdesc_ex)
fep->tx_bd_base = (struct bufdesc *)
(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
else
fep->tx_bd_base = cbd_base + fep->rx_ring_size;
/* The FEC Ethernet specific entries in the device structure */
ndev->watchdog_timeo = TX_TIMEOUT;
ndev->netdev_ops = &fec_netdev_ops;
ndev->ethtool_ops = &fec_enet_ethtool_ops;
writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
/* enable hw VLAN support */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
}
if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
/* enable hw accelerator */
ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM);
ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM);
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
}
fec_restart(ndev, 0);
return 0;
}
#ifdef CONFIG_OF
static void fec_reset_phy(struct platform_device *pdev)
{
int err, phy_reset;
int msec = 1;
struct device_node *np = pdev->dev.of_node;
if (!np)
return;
of_property_read_u32(np, "phy-reset-duration", &msec);
/* A sane reset duration should not be longer than 1s */
if (msec > 1000)
msec = 1;
phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
if (!gpio_is_valid(phy_reset))
return;
err = devm_gpio_request_one(&pdev->dev, phy_reset,
GPIOF_OUT_INIT_LOW, "phy-reset");
if (err) {
dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
return;
}
msleep(msec);
gpio_set_value(phy_reset, 1);
}
#else /* CONFIG_OF */
static void fec_reset_phy(struct platform_device *pdev)
{
/*
* In case of platform probe, the reset has been done
* by machine code.
*/
}
#endif /* CONFIG_OF */
static int
fec_probe(struct platform_device *pdev)
{
struct fec_enet_private *fep;
struct fec_platform_data *pdata;
struct net_device *ndev;
int i, irq, ret = 0;
struct resource *r;
const struct of_device_id *of_id;
static int dev_id;
of_id = of_match_device(fec_dt_ids, &pdev->dev);
if (of_id)
pdev->id_entry = of_id->data;
/* Init network device */
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &pdev->dev);
/* setup board info structure */
fep = netdev_priv(ndev);
#if !defined(CONFIG_M5272)
/* default enable pause frame auto negotiation */
if (pdev->id_entry &&
(pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
#endif
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fep->hwp = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(fep->hwp)) {
ret = PTR_ERR(fep->hwp);
goto failed_ioremap;
}
fep->pdev = pdev;
fep->dev_id = dev_id++;
fep->bufdesc_ex = 0;
platform_set_drvdata(pdev, ndev);
ret = of_get_phy_mode(pdev->dev.of_node);
if (ret < 0) {
pdata = dev_get_platdata(&pdev->dev);
if (pdata)
fep->phy_interface = pdata->phy;
else
fep->phy_interface = PHY_INTERFACE_MODE_MII;
} else {
fep->phy_interface = ret;
}
fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fep->clk_ipg)) {
ret = PTR_ERR(fep->clk_ipg);
goto failed_clk;
}
fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(fep->clk_ahb)) {
ret = PTR_ERR(fep->clk_ahb);
goto failed_clk;
}
/* enet_out is optional, depends on board */
fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
if (IS_ERR(fep->clk_enet_out))
fep->clk_enet_out = NULL;
fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
fep->bufdesc_ex =
pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
if (IS_ERR(fep->clk_ptp)) {
fep->clk_ptp = NULL;
fep->bufdesc_ex = 0;
}
ret = clk_prepare_enable(fep->clk_ahb);
if (ret)
goto failed_clk;
ret = clk_prepare_enable(fep->clk_ipg);
if (ret)
goto failed_clk_ipg;
if (fep->clk_enet_out) {
ret = clk_prepare_enable(fep->clk_enet_out);
if (ret)
goto failed_clk_enet_out;
}
if (fep->clk_ptp) {
ret = clk_prepare_enable(fep->clk_ptp);
if (ret)
goto failed_clk_ptp;
}
fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
if (!IS_ERR(fep->reg_phy)) {
ret = regulator_enable(fep->reg_phy);
if (ret) {
dev_err(&pdev->dev,
"Failed to enable phy regulator: %d\n", ret);
goto failed_regulator;
}
} else {
fep->reg_phy = NULL;
}
fec_reset_phy(pdev);
if (fep->bufdesc_ex)
fec_ptp_init(pdev);
ret = fec_enet_init(ndev);
if (ret)
goto failed_init;
for (i = 0; i < FEC_IRQ_NUM; i++) {
irq = platform_get_irq(pdev, i);
if (irq < 0) {
if (i)
break;
ret = irq;
goto failed_irq;
}
ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
0, pdev->name, ndev);
if (ret)
goto failed_irq;
}
ret = fec_enet_mii_init(pdev);
if (ret)
goto failed_mii_init;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(ndev);
ret = register_netdev(ndev);
if (ret)
goto failed_register;
if (fep->bufdesc_ex && fep->ptp_clock)
netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
return 0;
failed_register:
fec_enet_mii_remove(fep);
failed_mii_init:
failed_irq:
failed_init:
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
failed_regulator:
if (fep->clk_ptp)
clk_disable_unprepare(fep->clk_ptp);
failed_clk_ptp:
if (fep->clk_enet_out)
clk_disable_unprepare(fep->clk_enet_out);
failed_clk_enet_out:
clk_disable_unprepare(fep->clk_ipg);
failed_clk_ipg:
clk_disable_unprepare(fep->clk_ahb);
failed_clk:
failed_ioremap:
free_netdev(ndev);
return ret;
}
static int
fec_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(ndev);
cancel_delayed_work_sync(&(fep->delay_work.delay_work));
unregister_netdev(ndev);
fec_enet_mii_remove(fep);
del_timer_sync(&fep->time_keep);
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
if (fep->clk_ptp)
clk_disable_unprepare(fep->clk_ptp);
if (fep->ptp_clock)
ptp_clock_unregister(fep->ptp_clock);
if (fep->clk_enet_out)
clk_disable_unprepare(fep->clk_enet_out);
clk_disable_unprepare(fep->clk_ipg);
clk_disable_unprepare(fep->clk_ahb);
free_netdev(ndev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int
fec_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
if (netif_running(ndev)) {
fec_stop(ndev);
netif_device_detach(ndev);
}
if (fep->clk_ptp)
clk_disable_unprepare(fep->clk_ptp);
if (fep->clk_enet_out)
clk_disable_unprepare(fep->clk_enet_out);
clk_disable_unprepare(fep->clk_ipg);
clk_disable_unprepare(fep->clk_ahb);
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
return 0;
}
static int
fec_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
if (fep->reg_phy) {
ret = regulator_enable(fep->reg_phy);
if (ret)
return ret;
}
ret = clk_prepare_enable(fep->clk_ahb);
if (ret)
goto failed_clk_ahb;
ret = clk_prepare_enable(fep->clk_ipg);
if (ret)
goto failed_clk_ipg;
if (fep->clk_enet_out) {
ret = clk_prepare_enable(fep->clk_enet_out);
if (ret)
goto failed_clk_enet_out;
}
if (fep->clk_ptp) {
ret = clk_prepare_enable(fep->clk_ptp);
if (ret)
goto failed_clk_ptp;
}
if (netif_running(ndev)) {
fec_restart(ndev, fep->full_duplex);
netif_device_attach(ndev);
}
return 0;
failed_clk_ptp:
if (fep->clk_enet_out)
clk_disable_unprepare(fep->clk_enet_out);
failed_clk_enet_out:
clk_disable_unprepare(fep->clk_ipg);
failed_clk_ipg:
clk_disable_unprepare(fep->clk_ahb);
failed_clk_ahb:
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
static struct platform_driver fec_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.pm = &fec_pm_ops,
.of_match_table = fec_dt_ids,
},
.id_table = fec_devtype,
.probe = fec_probe,
.remove = fec_drv_remove,
};
module_platform_driver(fec_driver);
MODULE_ALIAS("platform:"DRIVER_NAME);
MODULE_LICENSE("GPL");