/* * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * Right now, I am very wasteful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * * Much better multiple PHY support by Magnus Damm. * Copyright (c) 2000 Ericsson Radio Systems AB. * * Support for FEC controller of ColdFire processors. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) * * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) * Copyright (c) 2004-2006 Macq Electronique SA. * * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/ip.h> #include <net/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/phy.h> #include <linux/fec.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/of_net.h> #include <linux/regulator/consumer.h> #include <linux/if_vlan.h> #include <asm/cacheflush.h> #include "fec.h" static void set_multicast_list(struct net_device *ndev); #if defined(CONFIG_ARM) #define FEC_ALIGNMENT 0xf #else #define FEC_ALIGNMENT 0x3 #endif #define DRIVER_NAME "fec" /* Pause frame feild and FIFO threshold */ #define FEC_ENET_FCE (1 << 5) #define FEC_ENET_RSEM_V 0x84 #define FEC_ENET_RSFL_V 16 #define FEC_ENET_RAEM_V 0x8 #define FEC_ENET_RAFL_V 0x8 #define FEC_ENET_OPD_V 0xFFF0 /* Controller is ENET-MAC */ #define FEC_QUIRK_ENET_MAC (1 << 0) /* Controller needs driver to swap frame */ #define FEC_QUIRK_SWAP_FRAME (1 << 1) /* Controller uses gasket */ #define FEC_QUIRK_USE_GASKET (1 << 2) /* Controller has GBIT support */ #define FEC_QUIRK_HAS_GBIT (1 << 3) /* Controller has extend desc buffer */ #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4) /* Controller has hardware checksum support */ #define FEC_QUIRK_HAS_CSUM (1 << 5) /* Controller has hardware vlan support */ #define FEC_QUIRK_HAS_VLAN (1 << 6) /* ENET IP errata ERR006358 * * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously * detected as not set during a prior frame transmission, then the * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in * frames not being transmitted until there is a 0-to-1 transition on * ENET_TDAR[TDAR]. */ #define FEC_QUIRK_ERR006358 (1 << 7) static struct platform_device_id fec_devtype[] = { { /* keep it for coldfire */ .name = DRIVER_NAME, .driver_data = 0, }, { .name = "imx25-fec", .driver_data = FEC_QUIRK_USE_GASKET, }, { .name = "imx27-fec", .driver_data = 0, }, { .name = "imx28-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME, }, { .name = "imx6q-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358, }, { .name = "mvf600-fec", .driver_data = FEC_QUIRK_ENET_MAC, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, fec_devtype); enum imx_fec_type { IMX25_FEC = 1, /* runs on i.mx25/50/53 */ IMX27_FEC, /* runs on i.mx27/35/51 */ IMX28_FEC, IMX6Q_FEC, MVF600_FEC, }; static const struct of_device_id fec_dt_ids[] = { { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fec_dt_ids); static unsigned char macaddr[ETH_ALEN]; module_param_array(macaddr, byte, NULL, 0); MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); #if defined(CONFIG_M5272) /* * Some hardware gets it MAC address out of local flash memory. * if this is non-zero then assume it is the address to get MAC from. */ #if defined(CONFIG_NETtel) #define FEC_FLASHMAC 0xf0006006 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) #define FEC_FLASHMAC 0xf0006000 #elif defined(CONFIG_CANCam) #define FEC_FLASHMAC 0xf0020000 #elif defined (CONFIG_M5272C3) #define FEC_FLASHMAC (0xffe04000 + 4) #elif defined(CONFIG_MOD5272) #define FEC_FLASHMAC 0xffc0406b #else #define FEC_FLASHMAC 0 #endif #endif /* CONFIG_M5272 */ #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE) #error "FEC: descriptor ring size constants too large" #endif /* Interrupt events/masks. */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII) #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF)) /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1522 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1536 /* FEC receive acceleration */ #define FEC_RACC_IPDIS (1 << 1) #define FEC_RACC_PRODIS (1 << 2) #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) /* * The 5270/5271/5280/5282/532x RX control register also contains maximum frame * size bits. Other FEC hardware does not, so we need to take that into * account when setting it. */ #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) #else #define OPT_FRAME_SIZE 0 #endif /* FEC MII MMFR bits definition */ #define FEC_MMFR_ST (1 << 30) #define FEC_MMFR_OP_READ (2 << 28) #define FEC_MMFR_OP_WRITE (1 << 28) #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) #define FEC_MMFR_TA (2 << 16) #define FEC_MMFR_DATA(v) (v & 0xffff) #define FEC_MII_TIMEOUT 30000 /* us */ /* Transmitter timeout */ #define TX_TIMEOUT (2 * HZ) #define FEC_PAUSE_FLAG_AUTONEG 0x1 #define FEC_PAUSE_FLAG_ENABLE 0x2 static int mii_cnt; static inline struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep) { struct bufdesc *new_bd = bdp + 1; struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1; struct bufdesc_ex *ex_base; struct bufdesc *base; int ring_size; if (bdp >= fep->tx_bd_base) { base = fep->tx_bd_base; ring_size = fep->tx_ring_size; ex_base = (struct bufdesc_ex *)fep->tx_bd_base; } else { base = fep->rx_bd_base; ring_size = fep->rx_ring_size; ex_base = (struct bufdesc_ex *)fep->rx_bd_base; } if (fep->bufdesc_ex) return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ? ex_base : ex_new_bd); else return (new_bd >= (base + ring_size)) ? base : new_bd; } static inline struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep) { struct bufdesc *new_bd = bdp - 1; struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1; struct bufdesc_ex *ex_base; struct bufdesc *base; int ring_size; if (bdp >= fep->tx_bd_base) { base = fep->tx_bd_base; ring_size = fep->tx_ring_size; ex_base = (struct bufdesc_ex *)fep->tx_bd_base; } else { base = fep->rx_bd_base; ring_size = fep->rx_ring_size; ex_base = (struct bufdesc_ex *)fep->rx_bd_base; } if (fep->bufdesc_ex) return (struct bufdesc *)((ex_new_bd < ex_base) ? (ex_new_bd + ring_size) : ex_new_bd); else return (new_bd < base) ? (new_bd + ring_size) : new_bd; } static void *swap_buffer(void *bufaddr, int len) { int i; unsigned int *buf = bufaddr; for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++) *buf = cpu_to_be32(*buf); return bufaddr; } static int fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) { /* Only run for packets requiring a checksum. */ if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (unlikely(skb_cow_head(skb, 0))) return -1; *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; return 0; } static netdev_tx_t fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *bdp, *bdp_pre; void *bufaddr; unsigned short status; unsigned int index; /* Fill in a Tx ring entry */ bdp = fep->cur_tx; status = bdp->cbd_sc; if (status & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since ndev->tbusy should be set. */ netdev_err(ndev, "tx queue full!\n"); return NETDEV_TX_BUSY; } /* Protocol checksum off-load for TCP and UDP. */ if (fec_enet_clear_csum(skb, ndev)) { kfree_skb(skb); return NETDEV_TX_OK; } /* Clear all of the status flags */ status &= ~BD_ENET_TX_STATS; /* Set buffer length and buffer pointer */ bufaddr = skb->data; bdp->cbd_datlen = skb->len; /* * On some FEC implementations data must be aligned on * 4-byte boundaries. Use bounce buffers to copy data * and get it aligned. Ugh. */ if (fep->bufdesc_ex) index = (struct bufdesc_ex *)bdp - (struct bufdesc_ex *)fep->tx_bd_base; else index = bdp - fep->tx_bd_base; if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { memcpy(fep->tx_bounce[index], skb->data, skb->len); bufaddr = fep->tx_bounce[index]; } /* * Some design made an incorrect assumption on endian mode of * the system that it's running on. As the result, driver has to * swap every frame going to and coming from the controller. */ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(bufaddr, skb->len); /* Save skb pointer */ fep->tx_skbuff[index] = skb; /* Push the data cache so the CPM does not get stale memory * data. */ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) { bdp->cbd_bufaddr = 0; fep->tx_skbuff[index] = NULL; dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "Tx DMA memory map failed\n"); return NETDEV_TX_OK; } if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_bdu = 0; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && fep->hwts_tx_en)) { ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; } else { ebdp->cbd_esc = BD_ENET_TX_INT; /* Enable protocol checksum flags * We do not bother with the IP Checksum bits as they * are done by the kernel */ if (skb->ip_summed == CHECKSUM_PARTIAL) ebdp->cbd_esc |= BD_ENET_TX_PINS; } } /* Send it on its way. Tell FEC it's ready, interrupt when done, * it's the last BD of the frame, and to put the CRC on the end. */ status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); bdp->cbd_sc = status; bdp_pre = fec_enet_get_prevdesc(bdp, fep); if ((id_entry->driver_data & FEC_QUIRK_ERR006358) && !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) { fep->delay_work.trig_tx = true; schedule_delayed_work(&(fep->delay_work.delay_work), msecs_to_jiffies(1)); } /* If this was the last BD in the ring, start at the beginning again. */ bdp = fec_enet_get_nextdesc(bdp, fep); skb_tx_timestamp(skb); fep->cur_tx = bdp; if (fep->cur_tx == fep->dirty_tx) netif_stop_queue(ndev); /* Trigger transmission start */ writel(0, fep->hwp + FEC_X_DES_ACTIVE); return NETDEV_TX_OK; } /* Init RX & TX buffer descriptors */ static void fec_enet_bd_init(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); struct bufdesc *bdp; unsigned int i; /* Initialize the receive buffer descriptors. */ bdp = fep->rx_bd_base; for (i = 0; i < fep->rx_ring_size; i++) { /* Initialize the BD for every fragment in the page. */ if (bdp->cbd_bufaddr) bdp->cbd_sc = BD_ENET_RX_EMPTY; else bdp->cbd_sc = 0; bdp = fec_enet_get_nextdesc(bdp, fep); } /* Set the last buffer to wrap */ bdp = fec_enet_get_prevdesc(bdp, fep); bdp->cbd_sc |= BD_SC_WRAP; fep->cur_rx = fep->rx_bd_base; /* ...and the same for transmit */ bdp = fep->tx_bd_base; fep->cur_tx = bdp; for (i = 0; i < fep->tx_ring_size; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) { dev_kfree_skb_any(fep->tx_skbuff[i]); fep->tx_skbuff[i] = NULL; } bdp->cbd_bufaddr = 0; bdp = fec_enet_get_nextdesc(bdp, fep); } /* Set the last buffer to wrap */ bdp = fec_enet_get_prevdesc(bdp, fep); bdp->cbd_sc |= BD_SC_WRAP; fep->dirty_tx = bdp; } /* This function is called to start or restart the FEC during a link * change. This only happens when switching between half and full * duplex. */ static void fec_restart(struct net_device *ndev, int duplex) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); int i; u32 val; u32 temp_mac[2]; u32 rcntl = OPT_FRAME_SIZE | 0x04; u32 ecntl = 0x2; /* ETHEREN */ if (netif_running(ndev)) { netif_device_detach(ndev); napi_disable(&fep->napi); netif_stop_queue(ndev); netif_tx_lock_bh(ndev); } /* Whack a reset. We should wait for this. */ writel(1, fep->hwp + FEC_ECNTRL); udelay(10); /* * enet-mac reset will reset mac address registers too, * so need to reconfigure it. */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); } /* Clear any outstanding interrupt. */ writel(0xffc00000, fep->hwp + FEC_IEVENT); /* Set maximum receive buffer size. */ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); fec_enet_bd_init(ndev); /* Set receive and transmit descriptor base. */ writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); if (fep->bufdesc_ex) writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex) * fep->rx_ring_size, fep->hwp + FEC_X_DES_START); else writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * fep->rx_ring_size, fep->hwp + FEC_X_DES_START); for (i = 0; i <= TX_RING_MOD_MASK; i++) { if (fep->tx_skbuff[i]) { dev_kfree_skb_any(fep->tx_skbuff[i]); fep->tx_skbuff[i] = NULL; } } /* Enable MII mode */ if (duplex) { /* FD enable */ writel(0x04, fep->hwp + FEC_X_CNTRL); } else { /* No Rcv on Xmit */ rcntl |= 0x02; writel(0x0, fep->hwp + FEC_X_CNTRL); } fep->full_duplex = duplex; /* Set MII speed */ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); #if !defined(CONFIG_M5272) /* set RX checksum */ val = readl(fep->hwp + FEC_RACC); if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) val |= FEC_RACC_OPTIONS; else val &= ~FEC_RACC_OPTIONS; writel(val, fep->hwp + FEC_RACC); #endif /* * The phy interface and speed need to get configured * differently on enet-mac. */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { /* Enable flow control and length check */ rcntl |= 0x40000000 | 0x00000020; /* RGMII, RMII or MII */ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII) rcntl |= (1 << 6); else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) rcntl |= (1 << 8); else rcntl &= ~(1 << 8); /* 1G, 100M or 10M */ if (fep->phy_dev) { if (fep->phy_dev->speed == SPEED_1000) ecntl |= (1 << 5); else if (fep->phy_dev->speed == SPEED_100) rcntl &= ~(1 << 9); else rcntl |= (1 << 9); } } else { #ifdef FEC_MIIGSK_ENR if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) { u32 cfgr; /* disable the gasket and wait */ writel(0, fep->hwp + FEC_MIIGSK_ENR); while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) udelay(1); /* * configure the gasket: * RMII, 50 MHz, no loopback, no echo * MII, 25 MHz, no loopback, no echo */ cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; if (fep->phy_dev && fep->phy_dev->speed == SPEED_10) cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); /* re-enable the gasket */ writel(2, fep->hwp + FEC_MIIGSK_ENR); } #endif } #if !defined(CONFIG_M5272) /* enable pause frame*/ if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && fep->phy_dev && fep->phy_dev->pause)) { rcntl |= FEC_ENET_FCE; /* set FIFO threshold parameter to reduce overrun */ writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); /* OPD */ writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); } else { rcntl &= ~FEC_ENET_FCE; } #endif /* !defined(CONFIG_M5272) */ writel(rcntl, fep->hwp + FEC_R_CNTRL); /* Setup multicast filter. */ set_multicast_list(ndev); #ifndef CONFIG_M5272 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_HASH_TABLE_LOW); #endif if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { /* enable ENET endian swap */ ecntl |= (1 << 8); /* enable ENET store and forward mode */ writel(1 << 8, fep->hwp + FEC_X_WMRK); } if (fep->bufdesc_ex) ecntl |= (1 << 4); #ifndef CONFIG_M5272 /* Enable the MIB statistic event counters */ writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); #endif /* And last, enable the transmit and receive processing */ writel(ecntl, fep->hwp + FEC_ECNTRL); writel(0, fep->hwp + FEC_R_DES_ACTIVE); if (fep->bufdesc_ex) fec_ptp_start_cyclecounter(ndev); /* Enable interrupts we wish to service */ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); if (netif_running(ndev)) { netif_tx_unlock_bh(ndev); netif_wake_queue(ndev); napi_enable(&fep->napi); netif_device_attach(ndev); } } static void fec_stop(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); /* We cannot expect a graceful transmit stop without link !!! */ if (fep->link) { writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ udelay(10); if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) netdev_err(ndev, "Graceful transmit stop did not complete!\n"); } /* Whack a reset. We should wait for this. */ writel(1, fep->hwp + FEC_ECNTRL); udelay(10); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); /* We have to keep ENET enabled to have MII interrupt stay working */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { writel(2, fep->hwp + FEC_ECNTRL); writel(rmii_mode, fep->hwp + FEC_R_CNTRL); } } static void fec_timeout(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); ndev->stats.tx_errors++; fep->delay_work.timeout = true; schedule_delayed_work(&(fep->delay_work.delay_work), 0); } static void fec_enet_work(struct work_struct *work) { struct fec_enet_private *fep = container_of(work, struct fec_enet_private, delay_work.delay_work.work); if (fep->delay_work.timeout) { fep->delay_work.timeout = false; fec_restart(fep->netdev, fep->full_duplex); netif_wake_queue(fep->netdev); } if (fep->delay_work.trig_tx) { fep->delay_work.trig_tx = false; writel(0, fep->hwp + FEC_X_DES_ACTIVE); } } static void fec_enet_tx(struct net_device *ndev) { struct fec_enet_private *fep; struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; int index = 0; fep = netdev_priv(ndev); bdp = fep->dirty_tx; /* get next bdp of dirty_tx */ bdp = fec_enet_get_nextdesc(bdp, fep); while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { /* current queue is empty */ if (bdp == fep->cur_tx) break; if (fep->bufdesc_ex) index = (struct bufdesc_ex *)bdp - (struct bufdesc_ex *)fep->tx_bd_base; else index = bdp - fep->tx_bd_base; skb = fep->tx_skbuff[index]; dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len, DMA_TO_DEVICE); bdp->cbd_bufaddr = 0; /* Check for errors. */ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { ndev->stats.tx_errors++; if (status & BD_ENET_TX_HB) /* No heartbeat */ ndev->stats.tx_heartbeat_errors++; if (status & BD_ENET_TX_LC) /* Late collision */ ndev->stats.tx_window_errors++; if (status & BD_ENET_TX_RL) /* Retrans limit */ ndev->stats.tx_aborted_errors++; if (status & BD_ENET_TX_UN) /* Underrun */ ndev->stats.tx_fifo_errors++; if (status & BD_ENET_TX_CSL) /* Carrier lost */ ndev->stats.tx_carrier_errors++; } else { ndev->stats.tx_packets++; ndev->stats.tx_bytes += bdp->cbd_datlen; } if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && fep->bufdesc_ex) { struct skb_shared_hwtstamps shhwtstamps; unsigned long flags; struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; memset(&shhwtstamps, 0, sizeof(shhwtstamps)); spin_lock_irqsave(&fep->tmreg_lock, flags); shhwtstamps.hwtstamp = ns_to_ktime( timecounter_cyc2time(&fep->tc, ebdp->ts)); spin_unlock_irqrestore(&fep->tmreg_lock, flags); skb_tstamp_tx(skb, &shhwtstamps); } if (status & BD_ENET_TX_READY) netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n"); /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (status & BD_ENET_TX_DEF) ndev->stats.collisions++; /* Free the sk buffer associated with this last transmit */ dev_kfree_skb_any(skb); fep->tx_skbuff[index] = NULL; fep->dirty_tx = bdp; /* Update pointer to next buffer descriptor to be transmitted */ bdp = fec_enet_get_nextdesc(bdp, fep); /* Since we have freed up a buffer, the ring is no longer full */ if (fep->dirty_tx != fep->cur_tx) { if (netif_queue_stopped(ndev)) netif_wake_queue(ndev); } } return; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int fec_enet_rx(struct net_device *ndev, int budget) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; ushort pkt_len; __u8 *data; int pkt_received = 0; struct bufdesc_ex *ebdp = NULL; bool vlan_packet_rcvd = false; u16 vlan_tag; int index = 0; #ifdef CONFIG_M532x flush_cache_all(); #endif /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { if (pkt_received >= budget) break; pkt_received++; /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((status & BD_ENET_RX_LAST) == 0) netdev_err(ndev, "rcv is not +last\n"); if (!fep->opened) goto rx_processing_done; /* Check for errors. */ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { ndev->stats.rx_errors++; if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ ndev->stats.rx_length_errors++; } if (status & BD_ENET_RX_NO) /* Frame alignment */ ndev->stats.rx_frame_errors++; if (status & BD_ENET_RX_CR) /* CRC Error */ ndev->stats.rx_crc_errors++; if (status & BD_ENET_RX_OV) /* FIFO overrun */ ndev->stats.rx_fifo_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (status & BD_ENET_RX_CL) { ndev->stats.rx_errors++; ndev->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ ndev->stats.rx_packets++; pkt_len = bdp->cbd_datlen; ndev->stats.rx_bytes += pkt_len; if (fep->bufdesc_ex) index = (struct bufdesc_ex *)bdp - (struct bufdesc_ex *)fep->rx_bd_base; else index = bdp - fep->rx_bd_base; data = fep->rx_skbuff[index]->data; dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(data, pkt_len); /* Extract the enhanced buffer descriptor */ ebdp = NULL; if (fep->bufdesc_ex) ebdp = (struct bufdesc_ex *)bdp; /* If this is a VLAN packet remove the VLAN Tag */ vlan_packet_rcvd = false; if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) { /* Push and remove the vlan tag */ struct vlan_hdr *vlan_header = (struct vlan_hdr *) (data + ETH_HLEN); vlan_tag = ntohs(vlan_header->h_vlan_TCI); pkt_len -= VLAN_HLEN; vlan_packet_rcvd = true; } /* This does 16 byte alignment, exactly what we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN); if (unlikely(!skb)) { ndev->stats.rx_dropped++; } else { int payload_offset = (2 * ETH_ALEN); skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len - 4); /* Make room */ /* Extract the frame data without the VLAN header. */ skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN)); if (vlan_packet_rcvd) payload_offset = (2 * ETH_ALEN) + VLAN_HLEN; skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN), data + payload_offset, pkt_len - 4 - (2 * ETH_ALEN)); skb->protocol = eth_type_trans(skb, ndev); /* Get receive timestamp from the skb */ if (fep->hwts_rx_en && fep->bufdesc_ex) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); unsigned long flags; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); spin_lock_irqsave(&fep->tmreg_lock, flags); shhwtstamps->hwtstamp = ns_to_ktime( timecounter_cyc2time(&fep->tc, ebdp->ts)); spin_unlock_irqrestore(&fep->tmreg_lock, flags); } if (fep->bufdesc_ex && (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) { /* don't check it */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { skb_checksum_none_assert(skb); } } /* Handle received VLAN packets */ if (vlan_packet_rcvd) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); napi_gro_receive(&fep->napi, skb); } dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); rx_processing_done: /* Clear the status flags for this buffer */ status &= ~BD_ENET_RX_STATS; /* Mark the buffer empty */ status |= BD_ENET_RX_EMPTY; bdp->cbd_sc = status; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_RX_INT; ebdp->cbd_prot = 0; ebdp->cbd_bdu = 0; } /* Update BD pointer to next entry */ bdp = fec_enet_get_nextdesc(bdp, fep); /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ writel(0, fep->hwp + FEC_R_DES_ACTIVE); } fep->cur_rx = bdp; return pkt_received; } static irqreturn_t fec_enet_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct fec_enet_private *fep = netdev_priv(ndev); uint int_events; irqreturn_t ret = IRQ_NONE; do { int_events = readl(fep->hwp + FEC_IEVENT); writel(int_events, fep->hwp + FEC_IEVENT); if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) { ret = IRQ_HANDLED; /* Disable the RX interrupt */ if (napi_schedule_prep(&fep->napi)) { writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); __napi_schedule(&fep->napi); } } if (int_events & FEC_ENET_MII) { ret = IRQ_HANDLED; complete(&fep->mdio_done); } } while (int_events); return ret; } static int fec_enet_rx_napi(struct napi_struct *napi, int budget) { struct net_device *ndev = napi->dev; int pkts = fec_enet_rx(ndev, budget); struct fec_enet_private *fep = netdev_priv(ndev); fec_enet_tx(ndev); if (pkts < budget) { napi_complete(napi); writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); } return pkts; } /* ------------------------------------------------------------------------- */ static void fec_get_mac(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); unsigned char *iap, tmpaddr[ETH_ALEN]; /* * try to get mac address in following order: * * 1) module parameter via kernel command line in form * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 */ iap = macaddr; /* * 2) from device tree data */ if (!is_valid_ether_addr(iap)) { struct device_node *np = fep->pdev->dev.of_node; if (np) { const char *mac = of_get_mac_address(np); if (mac) iap = (unsigned char *) mac; } } /* * 3) from flash or fuse (via platform data) */ if (!is_valid_ether_addr(iap)) { #ifdef CONFIG_M5272 if (FEC_FLASHMAC) iap = (unsigned char *)FEC_FLASHMAC; #else if (pdata) iap = (unsigned char *)&pdata->mac; #endif } /* * 4) FEC mac registers set by bootloader */ if (!is_valid_ether_addr(iap)) { *((__be32 *) &tmpaddr[0]) = cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); *((__be16 *) &tmpaddr[4]) = cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); iap = &tmpaddr[0]; } /* * 5) random mac address */ if (!is_valid_ether_addr(iap)) { /* Report it and use a random ethernet address instead */ netdev_err(ndev, "Invalid MAC address: %pM\n", iap); eth_hw_addr_random(ndev); netdev_info(ndev, "Using random MAC address: %pM\n", ndev->dev_addr); return; } memcpy(ndev->dev_addr, iap, ETH_ALEN); /* Adjust MAC if using macaddr */ if (iap == macaddr) ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; } /* ------------------------------------------------------------------------- */ /* * Phy section */ static void fec_enet_adjust_link(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phy_dev = fep->phy_dev; int status_change = 0; /* Prevent a state halted on mii error */ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { phy_dev->state = PHY_RESUMING; return; } if (phy_dev->link) { if (!fep->link) { fep->link = phy_dev->link; status_change = 1; } if (fep->full_duplex != phy_dev->duplex) status_change = 1; if (phy_dev->speed != fep->speed) { fep->speed = phy_dev->speed; status_change = 1; } /* if any of the above changed restart the FEC */ if (status_change) fec_restart(ndev, phy_dev->duplex); } else { if (fep->link) { fec_stop(ndev); fep->link = phy_dev->link; status_change = 1; } } if (status_change) phy_print_status(phy_dev); } static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct fec_enet_private *fep = bus->priv; unsigned long time_left; fep->mii_timeout = 0; init_completion(&fep->mdio_done); /* start a read op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, usecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; netdev_err(fep->netdev, "MDIO read timeout\n"); return -ETIMEDOUT; } /* return value */ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); } static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct fec_enet_private *fep = bus->priv; unsigned long time_left; fep->mii_timeout = 0; init_completion(&fep->mdio_done); /* start a write op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA | FEC_MMFR_DATA(value), fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, usecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; netdev_err(fep->netdev, "MDIO write timeout\n"); return -ETIMEDOUT; } return 0; } static int fec_enet_mdio_reset(struct mii_bus *bus) { return 0; } static int fec_enet_mii_probe(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct phy_device *phy_dev = NULL; char mdio_bus_id[MII_BUS_ID_SIZE]; char phy_name[MII_BUS_ID_SIZE + 3]; int phy_id; int dev_id = fep->dev_id; fep->phy_dev = NULL; /* check for attached phy */ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { if ((fep->mii_bus->phy_mask & (1 << phy_id))) continue; if (fep->mii_bus->phy_map[phy_id] == NULL) continue; if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) continue; if (dev_id--) continue; strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); break; } if (phy_id >= PHY_MAX_ADDR) { netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); phy_id = 0; } snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id); phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, fep->phy_interface); if (IS_ERR(phy_dev)) { netdev_err(ndev, "could not attach to PHY\n"); return PTR_ERR(phy_dev); } /* mask with MAC supported features */ if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) { phy_dev->supported &= PHY_GBIT_FEATURES; #if !defined(CONFIG_M5272) phy_dev->supported |= SUPPORTED_Pause; #endif } else phy_dev->supported &= PHY_BASIC_FEATURES; phy_dev->advertising = phy_dev->supported; fep->phy_dev = phy_dev; fep->link = 0; fep->full_duplex = 0; netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), fep->phy_dev->irq); return 0; } static int fec_enet_mii_init(struct platform_device *pdev) { static struct mii_bus *fec0_mii_bus; struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); int err = -ENXIO, i; /* * The dual fec interfaces are not equivalent with enet-mac. * Here are the differences: * * - fec0 supports MII & RMII modes while fec1 only supports RMII * - fec0 acts as the 1588 time master while fec1 is slave * - external phys can only be configured by fec0 * * That is to say fec1 can not work independently. It only works * when fec0 is working. The reason behind this design is that the * second interface is added primarily for Switch mode. * * Because of the last point above, both phys are attached on fec0 * mdio interface in board design, and need to be configured by * fec0 mii_bus. */ if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) { /* fec1 uses fec0 mii_bus */ if (mii_cnt && fec0_mii_bus) { fep->mii_bus = fec0_mii_bus; mii_cnt++; return 0; } return -ENOENT; } fep->mii_timeout = 0; /* * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) * * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 * Reference Manual has an error on this, and gets fixed on i.MX6Q * document. */ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000); if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) fep->phy_speed--; fep->phy_speed <<= 1; writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); fep->mii_bus = mdiobus_alloc(); if (fep->mii_bus == NULL) { err = -ENOMEM; goto err_out; } fep->mii_bus->name = "fec_enet_mii_bus"; fep->mii_bus->read = fec_enet_mdio_read; fep->mii_bus->write = fec_enet_mdio_write; fep->mii_bus->reset = fec_enet_mdio_reset; snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, fep->dev_id + 1); fep->mii_bus->priv = fep; fep->mii_bus->parent = &pdev->dev; fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); if (!fep->mii_bus->irq) { err = -ENOMEM; goto err_out_free_mdiobus; } for (i = 0; i < PHY_MAX_ADDR; i++) fep->mii_bus->irq[i] = PHY_POLL; if (mdiobus_register(fep->mii_bus)) goto err_out_free_mdio_irq; mii_cnt++; /* save fec0 mii_bus */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) fec0_mii_bus = fep->mii_bus; return 0; err_out_free_mdio_irq: kfree(fep->mii_bus->irq); err_out_free_mdiobus: mdiobus_free(fep->mii_bus); err_out: return err; } static void fec_enet_mii_remove(struct fec_enet_private *fep) { if (--mii_cnt == 0) { mdiobus_unregister(fep->mii_bus); kfree(fep->mii_bus->irq); mdiobus_free(fep->mii_bus); } } static int fec_enet_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_gset(phydev, cmd); } static int fec_enet_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_sset(phydev, cmd); } static void fec_enet_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct fec_enet_private *fep = netdev_priv(ndev); strlcpy(info->driver, fep->pdev->dev.driver->name, sizeof(info->driver)); strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); } static int fec_enet_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { struct fec_enet_private *fep = netdev_priv(ndev); if (fep->bufdesc_ex) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; if (fep->ptp_clock) info->phc_index = ptp_clock_index(fep->ptp_clock); else info->phc_index = -1; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_ALL); return 0; } else { return ethtool_op_get_ts_info(ndev, info); } } #if !defined(CONFIG_M5272) static void fec_enet_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct fec_enet_private *fep = netdev_priv(ndev); pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; pause->rx_pause = pause->tx_pause; } static int fec_enet_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct fec_enet_private *fep = netdev_priv(ndev); if (pause->tx_pause != pause->rx_pause) { netdev_info(ndev, "hardware only support enable/disable both tx and rx"); return -EINVAL; } fep->pause_flag = 0; /* tx pause must be same as rx pause */ fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; if (pause->rx_pause || pause->autoneg) { fep->phy_dev->supported |= ADVERTISED_Pause; fep->phy_dev->advertising |= ADVERTISED_Pause; } else { fep->phy_dev->supported &= ~ADVERTISED_Pause; fep->phy_dev->advertising &= ~ADVERTISED_Pause; } if (pause->autoneg) { if (netif_running(ndev)) fec_stop(ndev); phy_start_aneg(fep->phy_dev); } if (netif_running(ndev)) fec_restart(ndev, 0); return 0; } static const struct fec_stat { char name[ETH_GSTRING_LEN]; u16 offset; } fec_stats[] = { /* RMON TX */ { "tx_dropped", RMON_T_DROP }, { "tx_packets", RMON_T_PACKETS }, { "tx_broadcast", RMON_T_BC_PKT }, { "tx_multicast", RMON_T_MC_PKT }, { "tx_crc_errors", RMON_T_CRC_ALIGN }, { "tx_undersize", RMON_T_UNDERSIZE }, { "tx_oversize", RMON_T_OVERSIZE }, { "tx_fragment", RMON_T_FRAG }, { "tx_jabber", RMON_T_JAB }, { "tx_collision", RMON_T_COL }, { "tx_64byte", RMON_T_P64 }, { "tx_65to127byte", RMON_T_P65TO127 }, { "tx_128to255byte", RMON_T_P128TO255 }, { "tx_256to511byte", RMON_T_P256TO511 }, { "tx_512to1023byte", RMON_T_P512TO1023 }, { "tx_1024to2047byte", RMON_T_P1024TO2047 }, { "tx_GTE2048byte", RMON_T_P_GTE2048 }, { "tx_octets", RMON_T_OCTETS }, /* IEEE TX */ { "IEEE_tx_drop", IEEE_T_DROP }, { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, { "IEEE_tx_1col", IEEE_T_1COL }, { "IEEE_tx_mcol", IEEE_T_MCOL }, { "IEEE_tx_def", IEEE_T_DEF }, { "IEEE_tx_lcol", IEEE_T_LCOL }, { "IEEE_tx_excol", IEEE_T_EXCOL }, { "IEEE_tx_macerr", IEEE_T_MACERR }, { "IEEE_tx_cserr", IEEE_T_CSERR }, { "IEEE_tx_sqe", IEEE_T_SQE }, { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, /* RMON RX */ { "rx_packets", RMON_R_PACKETS }, { "rx_broadcast", RMON_R_BC_PKT }, { "rx_multicast", RMON_R_MC_PKT }, { "rx_crc_errors", RMON_R_CRC_ALIGN }, { "rx_undersize", RMON_R_UNDERSIZE }, { "rx_oversize", RMON_R_OVERSIZE }, { "rx_fragment", RMON_R_FRAG }, { "rx_jabber", RMON_R_JAB }, { "rx_64byte", RMON_R_P64 }, { "rx_65to127byte", RMON_R_P65TO127 }, { "rx_128to255byte", RMON_R_P128TO255 }, { "rx_256to511byte", RMON_R_P256TO511 }, { "rx_512to1023byte", RMON_R_P512TO1023 }, { "rx_1024to2047byte", RMON_R_P1024TO2047 }, { "rx_GTE2048byte", RMON_R_P_GTE2048 }, { "rx_octets", RMON_R_OCTETS }, /* IEEE RX */ { "IEEE_rx_drop", IEEE_R_DROP }, { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, { "IEEE_rx_crc", IEEE_R_CRC }, { "IEEE_rx_align", IEEE_R_ALIGN }, { "IEEE_rx_macerr", IEEE_R_MACERR }, { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, }; static void fec_enet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct fec_enet_private *fep = netdev_priv(dev); int i; for (i = 0; i < ARRAY_SIZE(fec_stats); i++) data[i] = readl(fep->hwp + fec_stats[i].offset); } static void fec_enet_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(fec_stats); i++) memcpy(data + i * ETH_GSTRING_LEN, fec_stats[i].name, ETH_GSTRING_LEN); break; } } static int fec_enet_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(fec_stats); default: return -EOPNOTSUPP; } } #endif /* !defined(CONFIG_M5272) */ static int fec_enet_nway_reset(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return genphy_restart_aneg(phydev); } static const struct ethtool_ops fec_enet_ethtool_ops = { #if !defined(CONFIG_M5272) .get_pauseparam = fec_enet_get_pauseparam, .set_pauseparam = fec_enet_set_pauseparam, #endif .get_settings = fec_enet_get_settings, .set_settings = fec_enet_set_settings, .get_drvinfo = fec_enet_get_drvinfo, .get_link = ethtool_op_get_link, .get_ts_info = fec_enet_get_ts_info, .nway_reset = fec_enet_nway_reset, #ifndef CONFIG_M5272 .get_ethtool_stats = fec_enet_get_ethtool_stats, .get_strings = fec_enet_get_strings, .get_sset_count = fec_enet_get_sset_count, #endif }; static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; if (fep->bufdesc_ex) { if (cmd == SIOCSHWTSTAMP) return fec_ptp_set(ndev, rq); if (cmd == SIOCGHWTSTAMP) return fec_ptp_get(ndev, rq); } return phy_mii_ioctl(phydev, rq, cmd); } static void fec_enet_free_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; struct sk_buff *skb; struct bufdesc *bdp; bdp = fep->rx_bd_base; for (i = 0; i < fep->rx_ring_size; i++) { skb = fep->rx_skbuff[i]; if (bdp->cbd_bufaddr) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); if (skb) dev_kfree_skb(skb); bdp = fec_enet_get_nextdesc(bdp, fep); } bdp = fep->tx_bd_base; for (i = 0; i < fep->tx_ring_size; i++) kfree(fep->tx_bounce[i]); } static int fec_enet_alloc_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; struct sk_buff *skb; struct bufdesc *bdp; bdp = fep->rx_bd_base; for (i = 0; i < fep->rx_ring_size; i++) { skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); if (!skb) { fec_enet_free_buffers(ndev); return -ENOMEM; } fep->rx_skbuff[i] = skb; bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) { fec_enet_free_buffers(ndev); if (net_ratelimit()) netdev_err(ndev, "Rx DMA memory map failed\n"); return -ENOMEM; } bdp->cbd_sc = BD_ENET_RX_EMPTY; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_RX_INT; } bdp = fec_enet_get_nextdesc(bdp, fep); } /* Set the last buffer to wrap. */ bdp = fec_enet_get_prevdesc(bdp, fep); bdp->cbd_sc |= BD_SC_WRAP; bdp = fep->tx_bd_base; for (i = 0; i < fep->tx_ring_size; i++) { fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); bdp->cbd_sc = 0; bdp->cbd_bufaddr = 0; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_TX_INT; } bdp = fec_enet_get_nextdesc(bdp, fep); } /* Set the last buffer to wrap. */ bdp = fec_enet_get_prevdesc(bdp, fep); bdp->cbd_sc |= BD_SC_WRAP; return 0; } static int fec_enet_open(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int ret; /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ ret = fec_enet_alloc_buffers(ndev); if (ret) return ret; /* Probe and connect to PHY when open the interface */ ret = fec_enet_mii_probe(ndev); if (ret) { fec_enet_free_buffers(ndev); return ret; } napi_enable(&fep->napi); phy_start(fep->phy_dev); netif_start_queue(ndev); fep->opened = 1; return 0; } static int fec_enet_close(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); /* Don't know what to do yet. */ napi_disable(&fep->napi); fep->opened = 0; netif_stop_queue(ndev); fec_stop(ndev); if (fep->phy_dev) { phy_stop(fep->phy_dev); phy_disconnect(fep->phy_dev); } fec_enet_free_buffers(ndev); return 0; } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ #define HASH_BITS 6 /* #bits in hash */ #define CRC32_POLY 0xEDB88320 static void set_multicast_list(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct netdev_hw_addr *ha; unsigned int i, bit, data, crc, tmp; unsigned char hash; if (ndev->flags & IFF_PROMISC) { tmp = readl(fep->hwp + FEC_R_CNTRL); tmp |= 0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); return; } tmp = readl(fep->hwp + FEC_R_CNTRL); tmp &= ~0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); if (ndev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's */ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); return; } /* Clear filter and add the addresses in hash register */ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); netdev_for_each_mc_addr(ha, ndev) { /* calculate crc32 value of mac address */ crc = 0xffffffff; for (i = 0; i < ndev->addr_len; i++) { data = ha->addr[i]; for (bit = 0; bit < 8; bit++, data >>= 1) { crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CRC32_POLY : 0); } } /* only upper 6 bits (HASH_BITS) are used * which point to specific bit in he hash registers */ hash = (crc >> (32 - HASH_BITS)) & 0x3f; if (hash > 31) { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); tmp |= 1 << (hash - 32); writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); } else { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); tmp |= 1 << hash; writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); } } } /* Set a MAC change in hardware. */ static int fec_set_mac_address(struct net_device *ndev, void *p) { struct fec_enet_private *fep = netdev_priv(ndev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), fep->hwp + FEC_ADDR_LOW); writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), fep->hwp + FEC_ADDR_HIGH); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * fec_poll_controller - FEC Poll controller function * @dev: The FEC network adapter * * Polled functionality used by netconsole and others in non interrupt mode * */ static void fec_poll_controller(struct net_device *dev) { int i; struct fec_enet_private *fep = netdev_priv(dev); for (i = 0; i < FEC_IRQ_NUM; i++) { if (fep->irq[i] > 0) { disable_irq(fep->irq[i]); fec_enet_interrupt(fep->irq[i], dev); enable_irq(fep->irq[i]); } } } #endif static int fec_set_features(struct net_device *netdev, netdev_features_t features) { struct fec_enet_private *fep = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; netdev->features = features; /* Receive checksum has been changed */ if (changed & NETIF_F_RXCSUM) { if (features & NETIF_F_RXCSUM) fep->csum_flags |= FLAG_RX_CSUM_ENABLED; else fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; if (netif_running(netdev)) { fec_stop(netdev); fec_restart(netdev, fep->phy_dev->duplex); netif_wake_queue(netdev); } else { fec_restart(netdev, fep->phy_dev->duplex); } } return 0; } static const struct net_device_ops fec_netdev_ops = { .ndo_open = fec_enet_open, .ndo_stop = fec_enet_close, .ndo_start_xmit = fec_enet_start_xmit, .ndo_set_rx_mode = set_multicast_list, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = fec_timeout, .ndo_set_mac_address = fec_set_mac_address, .ndo_do_ioctl = fec_enet_ioctl, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = fec_poll_controller, #endif .ndo_set_features = fec_set_features, }; /* * XXX: We need to clean up on failure exits here. * */ static int fec_enet_init(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *cbd_base; /* Allocate memory for buffer descriptors. */ cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, GFP_KERNEL); if (!cbd_base) return -ENOMEM; memset(cbd_base, 0, PAGE_SIZE); fep->netdev = ndev; /* Get the Ethernet address */ fec_get_mac(ndev); /* init the tx & rx ring size */ fep->tx_ring_size = TX_RING_SIZE; fep->rx_ring_size = RX_RING_SIZE; /* Set receive and transmit descriptor base. */ fep->rx_bd_base = cbd_base; if (fep->bufdesc_ex) fep->tx_bd_base = (struct bufdesc *) (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size); else fep->tx_bd_base = cbd_base + fep->rx_ring_size; /* The FEC Ethernet specific entries in the device structure */ ndev->watchdog_timeo = TX_TIMEOUT; ndev->netdev_ops = &fec_netdev_ops; ndev->ethtool_ops = &fec_enet_ethtool_ops; writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) { /* enable hw VLAN support */ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; } if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) { /* enable hw accelerator */ ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM); ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM); fep->csum_flags |= FLAG_RX_CSUM_ENABLED; } fec_restart(ndev, 0); return 0; } #ifdef CONFIG_OF static void fec_reset_phy(struct platform_device *pdev) { int err, phy_reset; int msec = 1; struct device_node *np = pdev->dev.of_node; if (!np) return; of_property_read_u32(np, "phy-reset-duration", &msec); /* A sane reset duration should not be longer than 1s */ if (msec > 1000) msec = 1; phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); if (!gpio_is_valid(phy_reset)) return; err = devm_gpio_request_one(&pdev->dev, phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset"); if (err) { dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); return; } msleep(msec); gpio_set_value(phy_reset, 1); } #else /* CONFIG_OF */ static void fec_reset_phy(struct platform_device *pdev) { /* * In case of platform probe, the reset has been done * by machine code. */ } #endif /* CONFIG_OF */ static int fec_probe(struct platform_device *pdev) { struct fec_enet_private *fep; struct fec_platform_data *pdata; struct net_device *ndev; int i, irq, ret = 0; struct resource *r; const struct of_device_id *of_id; static int dev_id; of_id = of_match_device(fec_dt_ids, &pdev->dev); if (of_id) pdev->id_entry = of_id->data; /* Init network device */ ndev = alloc_etherdev(sizeof(struct fec_enet_private)); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, &pdev->dev); /* setup board info structure */ fep = netdev_priv(ndev); #if !defined(CONFIG_M5272) /* default enable pause frame auto negotiation */ if (pdev->id_entry && (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT)) fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; #endif r = platform_get_resource(pdev, IORESOURCE_MEM, 0); fep->hwp = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(fep->hwp)) { ret = PTR_ERR(fep->hwp); goto failed_ioremap; } fep->pdev = pdev; fep->dev_id = dev_id++; fep->bufdesc_ex = 0; platform_set_drvdata(pdev, ndev); ret = of_get_phy_mode(pdev->dev.of_node); if (ret < 0) { pdata = dev_get_platdata(&pdev->dev); if (pdata) fep->phy_interface = pdata->phy; else fep->phy_interface = PHY_INTERFACE_MODE_MII; } else { fep->phy_interface = ret; } fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(fep->clk_ipg)) { ret = PTR_ERR(fep->clk_ipg); goto failed_clk; } fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(fep->clk_ahb)) { ret = PTR_ERR(fep->clk_ahb); goto failed_clk; } /* enet_out is optional, depends on board */ fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); if (IS_ERR(fep->clk_enet_out)) fep->clk_enet_out = NULL; fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); fep->bufdesc_ex = pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX; if (IS_ERR(fep->clk_ptp)) { fep->clk_ptp = NULL; fep->bufdesc_ex = 0; } ret = clk_prepare_enable(fep->clk_ahb); if (ret) goto failed_clk; ret = clk_prepare_enable(fep->clk_ipg); if (ret) goto failed_clk_ipg; if (fep->clk_enet_out) { ret = clk_prepare_enable(fep->clk_enet_out); if (ret) goto failed_clk_enet_out; } if (fep->clk_ptp) { ret = clk_prepare_enable(fep->clk_ptp); if (ret) goto failed_clk_ptp; } fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); if (!IS_ERR(fep->reg_phy)) { ret = regulator_enable(fep->reg_phy); if (ret) { dev_err(&pdev->dev, "Failed to enable phy regulator: %d\n", ret); goto failed_regulator; } } else { fep->reg_phy = NULL; } fec_reset_phy(pdev); if (fep->bufdesc_ex) fec_ptp_init(pdev); ret = fec_enet_init(ndev); if (ret) goto failed_init; for (i = 0; i < FEC_IRQ_NUM; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) { if (i) break; ret = irq; goto failed_irq; } ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 0, pdev->name, ndev); if (ret) goto failed_irq; } ret = fec_enet_mii_init(pdev); if (ret) goto failed_mii_init; /* Carrier starts down, phylib will bring it up */ netif_carrier_off(ndev); ret = register_netdev(ndev); if (ret) goto failed_register; if (fep->bufdesc_ex && fep->ptp_clock) netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work); return 0; failed_register: fec_enet_mii_remove(fep); failed_mii_init: failed_irq: failed_init: if (fep->reg_phy) regulator_disable(fep->reg_phy); failed_regulator: if (fep->clk_ptp) clk_disable_unprepare(fep->clk_ptp); failed_clk_ptp: if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); failed_clk_enet_out: clk_disable_unprepare(fep->clk_ipg); failed_clk_ipg: clk_disable_unprepare(fep->clk_ahb); failed_clk: failed_ioremap: free_netdev(ndev); return ret; } static int fec_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); cancel_delayed_work_sync(&(fep->delay_work.delay_work)); unregister_netdev(ndev); fec_enet_mii_remove(fep); del_timer_sync(&fep->time_keep); if (fep->reg_phy) regulator_disable(fep->reg_phy); if (fep->clk_ptp) clk_disable_unprepare(fep->clk_ptp); if (fep->ptp_clock) ptp_clock_unregister(fep->ptp_clock); if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); clk_disable_unprepare(fep->clk_ipg); clk_disable_unprepare(fep->clk_ahb); free_netdev(ndev); return 0; } #ifdef CONFIG_PM_SLEEP static int fec_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); if (netif_running(ndev)) { fec_stop(ndev); netif_device_detach(ndev); } if (fep->clk_ptp) clk_disable_unprepare(fep->clk_ptp); if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); clk_disable_unprepare(fep->clk_ipg); clk_disable_unprepare(fep->clk_ahb); if (fep->reg_phy) regulator_disable(fep->reg_phy); return 0; } static int fec_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); int ret; if (fep->reg_phy) { ret = regulator_enable(fep->reg_phy); if (ret) return ret; } ret = clk_prepare_enable(fep->clk_ahb); if (ret) goto failed_clk_ahb; ret = clk_prepare_enable(fep->clk_ipg); if (ret) goto failed_clk_ipg; if (fep->clk_enet_out) { ret = clk_prepare_enable(fep->clk_enet_out); if (ret) goto failed_clk_enet_out; } if (fep->clk_ptp) { ret = clk_prepare_enable(fep->clk_ptp); if (ret) goto failed_clk_ptp; } if (netif_running(ndev)) { fec_restart(ndev, fep->full_duplex); netif_device_attach(ndev); } return 0; failed_clk_ptp: if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); failed_clk_enet_out: clk_disable_unprepare(fep->clk_ipg); failed_clk_ipg: clk_disable_unprepare(fep->clk_ahb); failed_clk_ahb: if (fep->reg_phy) regulator_disable(fep->reg_phy); return ret; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume); static struct platform_driver fec_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .pm = &fec_pm_ops, .of_match_table = fec_dt_ids, }, .id_table = fec_devtype, .probe = fec_probe, .remove = fec_drv_remove, }; module_platform_driver(fec_driver); MODULE_ALIAS("platform:"DRIVER_NAME); MODULE_LICENSE("GPL");