- 根目录:
- drivers
- net
- ethernet
- 8390
- mcf8390.c
/*
* Support for ColdFire CPU based boards using a NS8390 Ethernet device.
*
* Derived from the many other 8390 drivers.
*
* (C) Copyright 2012, Greg Ungerer <gerg@uclinux.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <asm/mcf8390.h>
static const char version[] =
"mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>";
#define NE_CMD 0x00
#define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */
#define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */
#define NE_EN0_ISR 0x07
#define NE_EN0_DCFG 0x0e
#define NE_EN0_RSARLO 0x08
#define NE_EN0_RSARHI 0x09
#define NE_EN0_RCNTLO 0x0a
#define NE_EN0_RXCR 0x0c
#define NE_EN0_TXCR 0x0d
#define NE_EN0_RCNTHI 0x0b
#define NE_EN0_IMR 0x0f
#define NESM_START_PG 0x40 /* First page of TX buffer */
#define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
static u32 mcf8390_msg_enable;
#ifdef NE2000_ODDOFFSET
/*
* A lot of the ColdFire boards use a separate address region for odd offset
* register addresses. The following functions convert and map as required.
* Note that the data port accesses are treated a little differently, and
* always accessed via the insX/outsX functions.
*/
static inline u32 NE_PTR(u32 addr)
{
if (addr & 1)
return addr - 1 + NE2000_ODDOFFSET;
return addr;
}
static inline u32 NE_DATA_PTR(u32 addr)
{
return addr;
}
void ei_outb(u32 val, u32 addr)
{
NE2000_BYTE *rp;
rp = (NE2000_BYTE *) NE_PTR(addr);
*rp = RSWAP(val);
}
#define ei_inb ei_inb
u8 ei_inb(u32 addr)
{
NE2000_BYTE *rp, val;
rp = (NE2000_BYTE *) NE_PTR(addr);
val = *rp;
return (u8) (RSWAP(val) & 0xff);
}
void ei_insb(u32 addr, void *vbuf, int len)
{
NE2000_BYTE *rp, val;
u8 *buf;
buf = (u8 *) vbuf;
rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
val = *rp;
*buf++ = RSWAP(val);
}
}
void ei_insw(u32 addr, void *vbuf, int len)
{
volatile u16 *rp;
u16 w, *buf;
buf = (u16 *) vbuf;
rp = (volatile u16 *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
w = *rp;
*buf++ = BSWAP(w);
}
}
void ei_outsb(u32 addr, const void *vbuf, int len)
{
NE2000_BYTE *rp, val;
u8 *buf;
buf = (u8 *) vbuf;
rp = (NE2000_BYTE *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
val = *buf++;
*rp = RSWAP(val);
}
}
void ei_outsw(u32 addr, const void *vbuf, int len)
{
volatile u16 *rp;
u16 w, *buf;
buf = (u16 *) vbuf;
rp = (volatile u16 *) NE_DATA_PTR(addr);
for (; (len > 0); len--) {
w = *buf++;
*rp = BSWAP(w);
}
}
#else /* !NE2000_ODDOFFSET */
#define ei_inb inb
#define ei_outb outb
#define ei_insb insb
#define ei_insw insw
#define ei_outsb outsb
#define ei_outsw outsw
#endif /* !NE2000_ODDOFFSET */
#define ei_inb_p ei_inb
#define ei_outb_p ei_outb
#include "lib8390.c"
/*
* Hard reset the card. This used to pause for the same period that a
* 8390 reset command required, but that shouldn't be necessary.
*/
static void mcf8390_reset_8390(struct net_device *dev)
{
unsigned long reset_start_time = jiffies;
u32 addr = dev->base_addr;
struct ei_device *ei_local = netdev_priv(dev);
netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies);
ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
ei_status.txing = 0;
ei_status.dmaing = 0;
/* This check _should_not_ be necessary, omit eventually. */
while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) {
if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) {
netdev_warn(dev, "%s: did not complete\n", __func__);
break;
}
}
ei_outb(ENISR_RESET, addr + NE_EN0_ISR);
}
/*
* This *shouldn't* happen.
* If it does, it's the last thing you'll see
*/
static void mcf8390_dmaing_err(const char *func, struct net_device *dev,
struct ei_device *ei_local)
{
netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n",
func, ei_local->dmaing, ei_local->irqlock);
}
/*
* Grab the 8390 specific header. Similar to the block_input routine, but
* we don't need to be concerned with ring wrap as the header will be at
* the start of a page, so we optimize accordingly.
*/
static void mcf8390_get_8390_hdr(struct net_device *dev,
struct e8390_pkt_hdr *hdr, int ring_page)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO);
ei_outb(0, addr + NE_EN0_RCNTHI);
ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */
ei_outb(ring_page, addr + NE_EN0_RSARHI);
ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1);
outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
hdr->count = cpu_to_le16(hdr->count);
}
/*
* Block input and output, similar to the Crynwr packet driver.
* If you are porting to a new ethercard, look at the packet driver source
* for hints. The NEx000 doesn't share the on-board packet memory --
* you have to put the packet out through the "remote DMA" dataport
* using z_writeb.
*/
static void mcf8390_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
char *buf = skb->data;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO);
ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI);
ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD);
ei_insw(addr + NE_DATAPORT, buf, count >> 1);
if (count & 1)
buf[count - 1] = ei_inb(addr + NE_DATAPORT);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
}
static void mcf8390_block_output(struct net_device *dev, int count,
const unsigned char *buf,
const int start_page)
{
struct ei_device *ei_local = netdev_priv(dev);
u32 addr = dev->base_addr;
unsigned long dma_start;
/* Make sure we transfer all bytes if 16bit IO writes */
if (count & 0x1)
count++;
if (ei_local->dmaing) {
mcf8390_dmaing_err(__func__, dev, ei_local);
return;
}
ei_local->dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD);
ei_outb(ENISR_RDC, addr + NE_EN0_ISR);
/* Now the normal output. */
ei_outb(count & 0xff, addr + NE_EN0_RCNTLO);
ei_outb(count >> 8, addr + NE_EN0_RCNTHI);
ei_outb(0x00, addr + NE_EN0_RSARLO);
ei_outb(start_page, addr + NE_EN0_RSARHI);
ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD);
ei_outsw(addr + NE_DATAPORT, buf, count >> 1);
dma_start = jiffies;
while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) {
if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */
netdev_warn(dev, "timeout waiting for Tx RDC\n");
mcf8390_reset_8390(dev);
__NS8390_init(dev, 1);
break;
}
}
ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */
ei_local->dmaing &= ~0x01;
}
static const struct net_device_ops mcf8390_netdev_ops = {
.ndo_open = __ei_open,
.ndo_stop = __ei_close,
.ndo_start_xmit = __ei_start_xmit,
.ndo_tx_timeout = __ei_tx_timeout,
.ndo_get_stats = __ei_get_stats,
.ndo_set_rx_mode = __ei_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = __ei_poll,
#endif
};
static int mcf8390_init(struct net_device *dev)
{
static u32 offsets[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
struct ei_device *ei_local = netdev_priv(dev);
unsigned char SA_prom[32];
u32 addr = dev->base_addr;
int start_page, stop_page;
int i, ret;
mcf8390_reset_8390(dev);
/*
* Read the 16 bytes of station address PROM.
* We must first initialize registers,
* similar to NS8390_init(eifdev, 0).
* We can't reliably read the SAPROM address without this.
* (I learned the hard way!).
*/
{
static const struct {
u32 value;
u32 offset;
} program_seq[] = {
{E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD},
/* Select page 0 */
{0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */
{0x00, NE_EN0_RCNTLO}, /* Clear the count regs */
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_IMR}, /* Mask completion irq */
{0xFF, NE_EN0_ISR},
{E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
{E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */
{32, NE_EN0_RCNTLO},
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */
{0x00, NE_EN0_RSARHI},
{E8390_RREAD + E8390_START, NE_CMD},
};
for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
ei_outb(program_seq[i].value,
addr + program_seq[i].offset);
}
}
for (i = 0; i < 16; i++) {
SA_prom[i] = ei_inb(addr + NE_DATAPORT);
ei_inb(addr + NE_DATAPORT);
}
/* We must set the 8390 for word mode. */
ei_outb(0x49, addr + NE_EN0_DCFG);
start_page = NESM_START_PG;
stop_page = NESM_STOP_PG;
/* Install the Interrupt handler */
ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev);
if (ret)
return ret;
for (i = 0; i < ETH_ALEN; i++)
dev->dev_addr[i] = SA_prom[i];
netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr);
ei_local->name = "mcf8390";
ei_local->tx_start_page = start_page;
ei_local->stop_page = stop_page;
ei_local->word16 = 1;
ei_local->rx_start_page = start_page + TX_PAGES;
ei_local->reset_8390 = mcf8390_reset_8390;
ei_local->block_input = mcf8390_block_input;
ei_local->block_output = mcf8390_block_output;
ei_local->get_8390_hdr = mcf8390_get_8390_hdr;
ei_local->reg_offset = offsets;
dev->netdev_ops = &mcf8390_netdev_ops;
__NS8390_init(dev, 0);
ret = register_netdev(dev);
if (ret) {
free_irq(dev->irq, dev);
return ret;
}
netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n",
addr, dev->irq, dev->dev_addr);
return 0;
}
static int mcf8390_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct ei_device *ei_local;
struct resource *mem, *irq;
resource_size_t msize;
int ret;
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (irq == NULL) {
dev_err(&pdev->dev, "no IRQ specified?\n");
return -ENXIO;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem == NULL) {
dev_err(&pdev->dev, "no memory address specified?\n");
return -ENXIO;
}
msize = resource_size(mem);
if (!request_mem_region(mem->start, msize, pdev->name))
return -EBUSY;
dev = ____alloc_ei_netdev(0);
if (dev == NULL) {
release_mem_region(mem->start, msize);
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
platform_set_drvdata(pdev, dev);
ei_local = netdev_priv(dev);
ei_local->msg_enable = mcf8390_msg_enable;
dev->irq = irq->start;
dev->base_addr = mem->start;
ret = mcf8390_init(dev);
if (ret) {
release_mem_region(mem->start, msize);
free_netdev(dev);
return ret;
}
return 0;
}
static int mcf8390_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct resource *mem;
unregister_netdev(dev);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem)
release_mem_region(mem->start, resource_size(mem));
free_netdev(dev);
return 0;
}
static struct platform_driver mcf8390_drv = {
.driver = {
.name = "mcf8390",
.owner = THIS_MODULE,
},
.probe = mcf8390_probe,
.remove = mcf8390_remove,
};
module_platform_driver(mcf8390_drv);
MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver");
MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mcf8390");