/* * Support for ColdFire CPU based boards using a NS8390 Ethernet device. * * Derived from the many other 8390 drivers. * * (C) Copyright 2012, Greg Ungerer <gerg@uclinux.org> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/platform_device.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/jiffies.h> #include <linux/io.h> #include <asm/mcf8390.h> static const char version[] = "mcf8390.c: (15-06-2012) Greg Ungerer <gerg@uclinux.org>"; #define NE_CMD 0x00 #define NE_DATAPORT 0x10 /* NatSemi-defined port window offset */ #define NE_RESET 0x1f /* Issue a read to reset ,a write to clear */ #define NE_EN0_ISR 0x07 #define NE_EN0_DCFG 0x0e #define NE_EN0_RSARLO 0x08 #define NE_EN0_RSARHI 0x09 #define NE_EN0_RCNTLO 0x0a #define NE_EN0_RXCR 0x0c #define NE_EN0_TXCR 0x0d #define NE_EN0_RCNTHI 0x0b #define NE_EN0_IMR 0x0f #define NESM_START_PG 0x40 /* First page of TX buffer */ #define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */ static u32 mcf8390_msg_enable; #ifdef NE2000_ODDOFFSET /* * A lot of the ColdFire boards use a separate address region for odd offset * register addresses. The following functions convert and map as required. * Note that the data port accesses are treated a little differently, and * always accessed via the insX/outsX functions. */ static inline u32 NE_PTR(u32 addr) { if (addr & 1) return addr - 1 + NE2000_ODDOFFSET; return addr; } static inline u32 NE_DATA_PTR(u32 addr) { return addr; } void ei_outb(u32 val, u32 addr) { NE2000_BYTE *rp; rp = (NE2000_BYTE *) NE_PTR(addr); *rp = RSWAP(val); } #define ei_inb ei_inb u8 ei_inb(u32 addr) { NE2000_BYTE *rp, val; rp = (NE2000_BYTE *) NE_PTR(addr); val = *rp; return (u8) (RSWAP(val) & 0xff); } void ei_insb(u32 addr, void *vbuf, int len) { NE2000_BYTE *rp, val; u8 *buf; buf = (u8 *) vbuf; rp = (NE2000_BYTE *) NE_DATA_PTR(addr); for (; (len > 0); len--) { val = *rp; *buf++ = RSWAP(val); } } void ei_insw(u32 addr, void *vbuf, int len) { volatile u16 *rp; u16 w, *buf; buf = (u16 *) vbuf; rp = (volatile u16 *) NE_DATA_PTR(addr); for (; (len > 0); len--) { w = *rp; *buf++ = BSWAP(w); } } void ei_outsb(u32 addr, const void *vbuf, int len) { NE2000_BYTE *rp, val; u8 *buf; buf = (u8 *) vbuf; rp = (NE2000_BYTE *) NE_DATA_PTR(addr); for (; (len > 0); len--) { val = *buf++; *rp = RSWAP(val); } } void ei_outsw(u32 addr, const void *vbuf, int len) { volatile u16 *rp; u16 w, *buf; buf = (u16 *) vbuf; rp = (volatile u16 *) NE_DATA_PTR(addr); for (; (len > 0); len--) { w = *buf++; *rp = BSWAP(w); } } #else /* !NE2000_ODDOFFSET */ #define ei_inb inb #define ei_outb outb #define ei_insb insb #define ei_insw insw #define ei_outsb outsb #define ei_outsw outsw #endif /* !NE2000_ODDOFFSET */ #define ei_inb_p ei_inb #define ei_outb_p ei_outb #include "lib8390.c" /* * Hard reset the card. This used to pause for the same period that a * 8390 reset command required, but that shouldn't be necessary. */ static void mcf8390_reset_8390(struct net_device *dev) { unsigned long reset_start_time = jiffies; u32 addr = dev->base_addr; struct ei_device *ei_local = netdev_priv(dev); netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n", jiffies); ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET); ei_status.txing = 0; ei_status.dmaing = 0; /* This check _should_not_ be necessary, omit eventually. */ while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RESET) == 0) { if (time_after(jiffies, reset_start_time + 2 * HZ / 100)) { netdev_warn(dev, "%s: did not complete\n", __func__); break; } } ei_outb(ENISR_RESET, addr + NE_EN0_ISR); } /* * This *shouldn't* happen. * If it does, it's the last thing you'll see */ static void mcf8390_dmaing_err(const char *func, struct net_device *dev, struct ei_device *ei_local) { netdev_err(dev, "%s: DMAing conflict [DMAstat:%d][irqlock:%d]\n", func, ei_local->dmaing, ei_local->irqlock); } /* * Grab the 8390 specific header. Similar to the block_input routine, but * we don't need to be concerned with ring wrap as the header will be at * the start of a page, so we optimize accordingly. */ static void mcf8390_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page) { struct ei_device *ei_local = netdev_priv(dev); u32 addr = dev->base_addr; if (ei_local->dmaing) { mcf8390_dmaing_err(__func__, dev, ei_local); return; } ei_local->dmaing |= 0x01; ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD); ei_outb(ENISR_RDC, addr + NE_EN0_ISR); ei_outb(sizeof(struct e8390_pkt_hdr), addr + NE_EN0_RCNTLO); ei_outb(0, addr + NE_EN0_RCNTHI); ei_outb(0, addr + NE_EN0_RSARLO); /* On page boundary */ ei_outb(ring_page, addr + NE_EN0_RSARHI); ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD); ei_insw(addr + NE_DATAPORT, hdr, sizeof(struct e8390_pkt_hdr) >> 1); outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */ ei_local->dmaing &= ~0x01; hdr->count = cpu_to_le16(hdr->count); } /* * Block input and output, similar to the Crynwr packet driver. * If you are porting to a new ethercard, look at the packet driver source * for hints. The NEx000 doesn't share the on-board packet memory -- * you have to put the packet out through the "remote DMA" dataport * using z_writeb. */ static void mcf8390_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset) { struct ei_device *ei_local = netdev_priv(dev); u32 addr = dev->base_addr; char *buf = skb->data; if (ei_local->dmaing) { mcf8390_dmaing_err(__func__, dev, ei_local); return; } ei_local->dmaing |= 0x01; ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, addr + NE_CMD); ei_outb(ENISR_RDC, addr + NE_EN0_ISR); ei_outb(count & 0xff, addr + NE_EN0_RCNTLO); ei_outb(count >> 8, addr + NE_EN0_RCNTHI); ei_outb(ring_offset & 0xff, addr + NE_EN0_RSARLO); ei_outb(ring_offset >> 8, addr + NE_EN0_RSARHI); ei_outb(E8390_RREAD + E8390_START, addr + NE_CMD); ei_insw(addr + NE_DATAPORT, buf, count >> 1); if (count & 1) buf[count - 1] = ei_inb(addr + NE_DATAPORT); ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */ ei_local->dmaing &= ~0x01; } static void mcf8390_block_output(struct net_device *dev, int count, const unsigned char *buf, const int start_page) { struct ei_device *ei_local = netdev_priv(dev); u32 addr = dev->base_addr; unsigned long dma_start; /* Make sure we transfer all bytes if 16bit IO writes */ if (count & 0x1) count++; if (ei_local->dmaing) { mcf8390_dmaing_err(__func__, dev, ei_local); return; } ei_local->dmaing |= 0x01; /* We should already be in page 0, but to be safe... */ ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, addr + NE_CMD); ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Now the normal output. */ ei_outb(count & 0xff, addr + NE_EN0_RCNTLO); ei_outb(count >> 8, addr + NE_EN0_RCNTHI); ei_outb(0x00, addr + NE_EN0_RSARLO); ei_outb(start_page, addr + NE_EN0_RSARHI); ei_outb(E8390_RWRITE + E8390_START, addr + NE_CMD); ei_outsw(addr + NE_DATAPORT, buf, count >> 1); dma_start = jiffies; while ((ei_inb(addr + NE_EN0_ISR) & ENISR_RDC) == 0) { if (time_after(jiffies, dma_start + 2 * HZ / 100)) { /* 20ms */ netdev_warn(dev, "timeout waiting for Tx RDC\n"); mcf8390_reset_8390(dev); __NS8390_init(dev, 1); break; } } ei_outb(ENISR_RDC, addr + NE_EN0_ISR); /* Ack intr */ ei_local->dmaing &= ~0x01; } static const struct net_device_ops mcf8390_netdev_ops = { .ndo_open = __ei_open, .ndo_stop = __ei_close, .ndo_start_xmit = __ei_start_xmit, .ndo_tx_timeout = __ei_tx_timeout, .ndo_get_stats = __ei_get_stats, .ndo_set_rx_mode = __ei_set_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_change_mtu = eth_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = __ei_poll, #endif }; static int mcf8390_init(struct net_device *dev) { static u32 offsets[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, }; struct ei_device *ei_local = netdev_priv(dev); unsigned char SA_prom[32]; u32 addr = dev->base_addr; int start_page, stop_page; int i, ret; mcf8390_reset_8390(dev); /* * Read the 16 bytes of station address PROM. * We must first initialize registers, * similar to NS8390_init(eifdev, 0). * We can't reliably read the SAPROM address without this. * (I learned the hard way!). */ { static const struct { u32 value; u32 offset; } program_seq[] = { {E8390_NODMA + E8390_PAGE0 + E8390_STOP, NE_CMD}, /* Select page 0 */ {0x48, NE_EN0_DCFG}, /* 0x48: Set byte-wide access */ {0x00, NE_EN0_RCNTLO}, /* Clear the count regs */ {0x00, NE_EN0_RCNTHI}, {0x00, NE_EN0_IMR}, /* Mask completion irq */ {0xFF, NE_EN0_ISR}, {E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */ {E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode */ {32, NE_EN0_RCNTLO}, {0x00, NE_EN0_RCNTHI}, {0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000 */ {0x00, NE_EN0_RSARHI}, {E8390_RREAD + E8390_START, NE_CMD}, }; for (i = 0; i < ARRAY_SIZE(program_seq); i++) { ei_outb(program_seq[i].value, addr + program_seq[i].offset); } } for (i = 0; i < 16; i++) { SA_prom[i] = ei_inb(addr + NE_DATAPORT); ei_inb(addr + NE_DATAPORT); } /* We must set the 8390 for word mode. */ ei_outb(0x49, addr + NE_EN0_DCFG); start_page = NESM_START_PG; stop_page = NESM_STOP_PG; /* Install the Interrupt handler */ ret = request_irq(dev->irq, __ei_interrupt, 0, dev->name, dev); if (ret) return ret; for (i = 0; i < ETH_ALEN; i++) dev->dev_addr[i] = SA_prom[i]; netdev_dbg(dev, "Found ethernet address: %pM\n", dev->dev_addr); ei_local->name = "mcf8390"; ei_local->tx_start_page = start_page; ei_local->stop_page = stop_page; ei_local->word16 = 1; ei_local->rx_start_page = start_page + TX_PAGES; ei_local->reset_8390 = mcf8390_reset_8390; ei_local->block_input = mcf8390_block_input; ei_local->block_output = mcf8390_block_output; ei_local->get_8390_hdr = mcf8390_get_8390_hdr; ei_local->reg_offset = offsets; dev->netdev_ops = &mcf8390_netdev_ops; __NS8390_init(dev, 0); ret = register_netdev(dev); if (ret) { free_irq(dev->irq, dev); return ret; } netdev_info(dev, "addr=0x%08x irq=%d, Ethernet Address %pM\n", addr, dev->irq, dev->dev_addr); return 0; } static int mcf8390_probe(struct platform_device *pdev) { struct net_device *dev; struct ei_device *ei_local; struct resource *mem, *irq; resource_size_t msize; int ret; irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (irq == NULL) { dev_err(&pdev->dev, "no IRQ specified?\n"); return -ENXIO; } mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (mem == NULL) { dev_err(&pdev->dev, "no memory address specified?\n"); return -ENXIO; } msize = resource_size(mem); if (!request_mem_region(mem->start, msize, pdev->name)) return -EBUSY; dev = ____alloc_ei_netdev(0); if (dev == NULL) { release_mem_region(mem->start, msize); return -ENOMEM; } SET_NETDEV_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); ei_local = netdev_priv(dev); ei_local->msg_enable = mcf8390_msg_enable; dev->irq = irq->start; dev->base_addr = mem->start; ret = mcf8390_init(dev); if (ret) { release_mem_region(mem->start, msize); free_netdev(dev); return ret; } return 0; } static int mcf8390_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct resource *mem; unregister_netdev(dev); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (mem) release_mem_region(mem->start, resource_size(mem)); free_netdev(dev); return 0; } static struct platform_driver mcf8390_drv = { .driver = { .name = "mcf8390", .owner = THIS_MODULE, }, .probe = mcf8390_probe, .remove = mcf8390_remove, }; module_platform_driver(mcf8390_drv); MODULE_DESCRIPTION("MCF8390 ColdFire NS8390 driver"); MODULE_AUTHOR("Greg Ungerer <gerg@uclinux.org>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:mcf8390");