- 根目录:
- drivers
- net
- wireless
- rtlwifi
- pci.c
/******************************************************************************
*
* Copyright(c) 2009-2010 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "core.h"
#include "wifi.h"
#include "pci.h"
#include "base.h"
#include "ps.h"
static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = {
INTEL_VENDOR_ID,
ATI_VENDOR_ID,
AMD_VENDOR_ID,
SIS_VENDOR_ID
};
/* Update PCI dependent default settings*/
static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
ppsc->reg_rfps_level = 0;
ppsc->support_aspm = 0;
/*Update PCI ASPM setting */
ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm;
switch (rtlpci->const_pci_aspm) {
case 0:
/*No ASPM */
break;
case 1:
/*ASPM dynamically enabled/disable. */
ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM;
break;
case 2:
/*ASPM with Clock Req dynamically enabled/disable. */
ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
break;
case 3:
/*
* Always enable ASPM and Clock Req
* from initialization to halt.
* */
ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM);
ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
break;
case 4:
/*
* Always enable ASPM without Clock Req
* from initialization to halt.
* */
ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM;
break;
}
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
/*Update Radio OFF setting */
switch (rtlpci->const_hwsw_rfoff_d3) {
case 1:
if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
break;
case 2:
if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
break;
case 3:
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3;
break;
}
/*Set HW definition to determine if it supports ASPM. */
switch (rtlpci->const_support_pciaspm) {
case 0:{
/*Not support ASPM. */
bool support_aspm = false;
ppsc->support_aspm = support_aspm;
break;
}
case 1:{
/*Support ASPM. */
bool support_aspm = true;
bool support_backdoor = true;
ppsc->support_aspm = support_aspm;
/*if(priv->oem_id == RT_CID_TOSHIBA &&
!priv->ndis_adapter.amd_l1_patch)
support_backdoor = false; */
ppsc->support_backdoor = support_backdoor;
break;
}
case 2:
/*ASPM value set by chipset. */
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) {
bool support_aspm = true;
ppsc->support_aspm = support_aspm;
}
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("switch case not process\n"));
break;
}
}
static bool _rtl_pci_platform_switch_device_pci_aspm(
struct ieee80211_hw *hw,
u8 value)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
bool bresult = false;
value |= 0x40;
pci_write_config_byte(rtlpci->pdev, 0x80, value);
return bresult;
}
/*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/
static bool _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 buffer;
bool bresult = false;
buffer = value;
pci_write_config_byte(rtlpci->pdev, 0x81, value);
bresult = true;
return bresult;
}
/*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/
static void rtl_pci_disable_aspm(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
/*Retrieve original configuration settings. */
u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg;
u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter.
pcibridge_linkctrlreg;
u16 aspmlevel = 0;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE,
("PCI(Bridge) UNKNOWN.\n"));
return;
}
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
_rtl_pci_switch_clk_req(hw, 0x0);
}
if (1) {
/*for promising device will in L0 state after an I/O. */
u8 tmp_u1b;
pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b);
}
/*Set corresponding value. */
aspmlevel |= BIT(0) | BIT(1);
linkctrl_reg &= ~aspmlevel;
pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1));
_rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg);
udelay(50);
/*4 Disable Pci Bridge ASPM */
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + (num4bytes << 2));
rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, pcibridge_linkctrlreg);
udelay(50);
}
/*
*Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for
*power saving We should follow the sequence to enable
*RTL8192SE first then enable Pci Bridge ASPM
*or the system will show bluescreen.
*/
static void rtl_pci_enable_aspm(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_busnum = pcipriv->ndis_adapter.pcibridge_busnum;
u8 pcibridge_devnum = pcipriv->ndis_adapter.pcibridge_devnum;
u8 pcibridge_funcnum = pcipriv->ndis_adapter.pcibridge_funcnum;
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
u16 aspmlevel;
u8 u_pcibridge_aspmsetting;
u8 u_device_aspmsetting;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE,
("PCI(Bridge) UNKNOWN.\n"));
return;
}
/*4 Enable Pci Bridge ASPM */
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + (num4bytes << 2));
u_pcibridge_aspmsetting =
pcipriv->ndis_adapter.pcibridge_linkctrlreg |
rtlpci->const_hostpci_aspm_setting;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
u_pcibridge_aspmsetting &= ~BIT(0);
rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, u_pcibridge_aspmsetting);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
("PlatformEnableASPM():PciBridge busnumber[%x], "
"DevNumbe[%x], funcnumber[%x], Write reg[%x] = %x\n",
pcibridge_busnum, pcibridge_devnum, pcibridge_funcnum,
(pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10),
u_pcibridge_aspmsetting));
udelay(50);
/*Get ASPM level (with/without Clock Req) */
aspmlevel = rtlpci->const_devicepci_aspm_setting;
u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg;
/*_rtl_pci_platform_switch_device_pci_aspm(dev,*/
/*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */
u_device_aspmsetting |= aspmlevel;
_rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting);
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
_rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level &
RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
}
udelay(200);
}
static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
bool status = false;
u8 offset_e0;
unsigned offset_e4;
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + 0xE0);
rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, 0xA0);
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + 0xE0);
rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &offset_e0);
if (offset_e0 == 0xA0) {
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + 0xE4);
rtl_pci_raw_read_port_ulong(PCI_CONF_DATA, &offset_e4);
if (offset_e4 & BIT(23))
status = true;
}
return status;
}
static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset;
u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
u8 linkctrl_reg;
u8 num4bBytes;
num4bBytes = (capabilityoffset + 0x10) / 4;
/*Read Link Control Register */
rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
pcicfg_addrport + (num4bBytes << 2));
rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &linkctrl_reg);
pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg;
}
static void rtl_pci_parse_configuration(struct pci_dev *pdev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
u8 tmp;
int pos;
u8 linkctrl_reg;
/*Link Control Register */
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_read_config_byte(pdev, pos + PCI_EXP_LNKCTL, &linkctrl_reg);
pcipriv->ndis_adapter.linkctrl_reg = linkctrl_reg;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Link Control Register =%x\n",
pcipriv->ndis_adapter.linkctrl_reg));
pci_read_config_byte(pdev, 0x98, &tmp);
tmp |= BIT(4);
pci_write_config_byte(pdev, 0x98, tmp);
tmp = 0x17;
pci_write_config_byte(pdev, 0x70f, tmp);
}
static void _rtl_pci_initialize_adapter_common(struct ieee80211_hw *hw)
{
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
_rtl_pci_update_default_setting(hw);
if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) {
/*Always enable ASPM & Clock Req. */
rtl_pci_enable_aspm(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM);
}
}
static void rtl_pci_init_aspm(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
/*close ASPM for AMD defaultly */
rtlpci->const_amdpci_aspm = 0;
/*
* ASPM PS mode.
* 0 - Disable ASPM,
* 1 - Enable ASPM without Clock Req,
* 2 - Enable ASPM with Clock Req,
* 3 - Always Enable ASPM with Clock Req,
* 4 - Always Enable ASPM without Clock Req.
* set defult to RTL8192CE:3 RTL8192E:2
* */
rtlpci->const_pci_aspm = 3;
/*Setting for PCI-E device */
rtlpci->const_devicepci_aspm_setting = 0x03;
/*Setting for PCI-E bridge */
rtlpci->const_hostpci_aspm_setting = 0x02;
/*
* In Hw/Sw Radio Off situation.
* 0 - Default,
* 1 - From ASPM setting without low Mac Pwr,
* 2 - From ASPM setting with low Mac Pwr,
* 3 - Bus D3
* set default to RTL8192CE:0 RTL8192SE:2
*/
rtlpci->const_hwsw_rfoff_d3 = 0;
/*
* This setting works for those device with
* backdoor ASPM setting such as EPHY setting.
* 0 - Not support ASPM,
* 1 - Support ASPM,
* 2 - According to chipset.
*/
rtlpci->const_support_pciaspm = 1;
_rtl_pci_initialize_adapter_common(hw);
}
static void _rtl_pci_io_handler_init(struct device *dev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->io.dev = dev;
rtlpriv->io.write8_async = pci_write8_async;
rtlpriv->io.write16_async = pci_write16_async;
rtlpriv->io.write32_async = pci_write32_async;
rtlpriv->io.read8_sync = pci_read8_sync;
rtlpriv->io.read16_sync = pci_read16_sync;
rtlpriv->io.read32_sync = pci_read32_sync;
}
static void _rtl_pci_io_handler_release(struct ieee80211_hw *hw)
{
}
static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u8 own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) entry, true,
HW_DESC_OWN);
/*
*beacon packet will only use the first
*descriptor defautly,and the own may not
*be cleared by the hardware
*/
if (own)
return;
ring->idx = (ring->idx + 1) % ring->entries;
skb = __skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->ops->
get_desc((u8 *) entry, true,
HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
RT_TRACE(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE,
("new ring->idx:%d, "
"free: skb_queue_len:%d, free: seq:%x\n",
ring->idx,
skb_queue_len(&ring->queue),
*(u16 *) (skb->data + 22)));
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
info->flags |= IEEE80211_TX_STAT_ACK;
/*info->status.rates[0].count = 1; */
ieee80211_tx_status_irqsafe(hw, skb);
if ((ring->entries - skb_queue_len(&ring->queue))
== 2) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
("more desc left, wake"
"skb_queue@%d,ring->idx = %d,"
"skb_queue_len = 0x%d\n",
prio, ring->idx,
skb_queue_len(&ring->queue)));
ieee80211_wake_queue(hw,
skb_get_queue_mapping
(skb));
}
skb = NULL;
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
(rtlpriv->link_info.num_rx_inperiod > 2)) {
rtl_lps_leave(hw);
}
}
static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int rx_queue_idx = RTL_PCI_RX_MPDU_QUEUE;
struct ieee80211_rx_status rx_status = { 0 };
unsigned int count = rtlpci->rxringcount;
u8 own;
u8 tmp_one;
u32 bufferaddress;
bool unicast = false;
struct rtl_stats stats = {
.signal = 0,
.noise = -98,
.rate = 0,
};
/*RX NORMAL PKT */
while (count--) {
/*rx descriptor */
struct rtl_rx_desc *pdesc = &rtlpci->rx_ring[rx_queue_idx].desc[
rtlpci->rx_ring[rx_queue_idx].idx];
/*rx pkt */
struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[
rtlpci->rx_ring[rx_queue_idx].idx];
own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
false, HW_DESC_OWN);
if (own) {
/*wait data to be filled by hardware */
return;
} else {
struct ieee80211_hdr *hdr;
__le16 fc;
struct sk_buff *new_skb = NULL;
rtlpriv->cfg->ops->query_rx_desc(hw, &stats,
&rx_status,
(u8 *) pdesc, skb);
pci_unmap_single(rtlpci->pdev,
*((dma_addr_t *) skb->cb),
rtlpci->rxbuffersize,
PCI_DMA_FROMDEVICE);
skb_put(skb, rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
false,
HW_DESC_RXPKT_LEN));
skb_reserve(skb,
stats.rx_drvinfo_size + stats.rx_bufshift);
/*
*NOTICE This can not be use for mac80211,
*this is done in mac80211 code,
*if you done here sec DHCP will fail
*skb_trim(skb, skb->len - 4);
*/
hdr = (struct ieee80211_hdr *)(skb->data);
fc = hdr->frame_control;
if (!stats.crc) {
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status,
sizeof(rx_status));
if (is_broadcast_ether_addr(hdr->addr1))
;/*TODO*/
else {
if (is_multicast_ether_addr(hdr->addr1))
;/*TODO*/
else {
unicast = true;
rtlpriv->stats.rxbytesunicast +=
skb->len;
}
}
rtl_is_special_data(hw, skb, false);
if (ieee80211_is_data(fc)) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_RX);
if (unicast)
rtlpriv->link_info.
num_rx_inperiod++;
}
if (unlikely(!rtl_action_proc(hw, skb,
false))) {
dev_kfree_skb_any(skb);
} else {
struct sk_buff *uskb = NULL;
u8 *pdata;
uskb = dev_alloc_skb(skb->len + 128);
if (!uskb) {
RT_TRACE(rtlpriv,
(COMP_INTR | COMP_RECV),
DBG_EMERG,
("can't alloc rx skb\n"));
goto done;
}
memcpy(IEEE80211_SKB_RXCB(uskb),
&rx_status,
sizeof(rx_status));
pdata = (u8 *)skb_put(uskb, skb->len);
memcpy(pdata, skb->data, skb->len);
dev_kfree_skb_any(skb);
ieee80211_rx_irqsafe(hw, uskb);
}
} else {
dev_kfree_skb_any(skb);
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
(rtlpriv->link_info.num_rx_inperiod > 2)) {
rtl_lps_leave(hw);
}
new_skb = dev_alloc_skb(rtlpci->rxbuffersize);
if (unlikely(!new_skb)) {
RT_TRACE(rtlpriv, (COMP_INTR | COMP_RECV),
DBG_EMERG,
("can't alloc skb for rx\n"));
goto done;
}
skb = new_skb;
/*skb->dev = dev; */
rtlpci->rx_ring[rx_queue_idx].rx_buf[rtlpci->
rx_ring
[rx_queue_idx].
idx] = skb;
*((dma_addr_t *) skb->cb) =
pci_map_single(rtlpci->pdev, skb_tail_pointer(skb),
rtlpci->rxbuffersize,
PCI_DMA_FROMDEVICE);
}
done:
bufferaddress = (u32)(*((dma_addr_t *) skb->cb));
tmp_one = 1;
rtlpriv->cfg->ops->set_desc((u8 *) pdesc, false,
HW_DESC_RXBUFF_ADDR,
(u8 *)&bufferaddress);
rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXOWN,
(u8 *)&tmp_one);
rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false,
HW_DESC_RXPKT_LEN,
(u8 *)&rtlpci->rxbuffersize);
if (rtlpci->rx_ring[rx_queue_idx].idx ==
rtlpci->rxringcount - 1)
rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false,
HW_DESC_RXERO,
(u8 *)&tmp_one);
rtlpci->rx_ring[rx_queue_idx].idx =
(rtlpci->rx_ring[rx_queue_idx].idx + 1) %
rtlpci->rxringcount;
}
}
static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *hw = dev_id;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
unsigned long flags;
u32 inta = 0;
u32 intb = 0;
if (rtlpci->irq_enabled == 0)
return IRQ_HANDLED;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
/*read ISR: 4/8bytes */
rtlpriv->cfg->ops->interrupt_recognized(hw, &inta, &intb);
/*Shared IRQ or HW disappared */
if (!inta || inta == 0xffff)
goto done;
/*<1> beacon related */
if (inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("beacon ok interrupt!\n"));
}
if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TBDER])) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("beacon err interrupt!\n"));
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_BDOK]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("beacon interrupt!\n"));
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_BcnInt]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("prepare beacon for interrupt!\n"));
tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet);
}
/*<3> Tx related */
if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TXFOVW]))
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("IMR_TXFOVW!\n"));
if (inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("Manage ok interrupt!\n"));
_rtl_pci_tx_isr(hw, MGNT_QUEUE);
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("HIGH_QUEUE ok interrupt!\n"));
_rtl_pci_tx_isr(hw, HIGH_QUEUE);
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("BK Tx OK interrupt!\n"));
_rtl_pci_tx_isr(hw, BK_QUEUE);
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("BE TX OK interrupt!\n"));
_rtl_pci_tx_isr(hw, BE_QUEUE);
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("VI TX OK interrupt!\n"));
_rtl_pci_tx_isr(hw, VI_QUEUE);
}
if (inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) {
rtlpriv->link_info.num_tx_inperiod++;
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
("Vo TX OK interrupt!\n"));
_rtl_pci_tx_isr(hw, VO_QUEUE);
}
/*<2> Rx related */
if (inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) {
RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("Rx ok interrupt!\n"));
tasklet_schedule(&rtlpriv->works.irq_tasklet);
}
if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("rx descriptor unavailable!\n"));
tasklet_schedule(&rtlpriv->works.irq_tasklet);
}
if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("rx overflow !\n"));
tasklet_schedule(&rtlpriv->works.irq_tasklet);
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return IRQ_HANDLED;
done:
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return IRQ_HANDLED;
}
static void _rtl_pci_irq_tasklet(struct ieee80211_hw *hw)
{
_rtl_pci_rx_interrupt(hw);
}
static void _rtl_pci_prepare_bcn_tasklet(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
struct ieee80211_hdr *hdr = NULL;
struct ieee80211_tx_info *info = NULL;
struct sk_buff *pskb = NULL;
struct rtl_tx_desc *pdesc = NULL;
unsigned int queue_index;
u8 temp_one = 1;
ring = &rtlpci->tx_ring[BEACON_QUEUE];
pskb = __skb_dequeue(&ring->queue);
if (pskb)
kfree_skb(pskb);
/*NB: the beacon data buffer must be 32-bit aligned. */
pskb = ieee80211_beacon_get(hw, mac->vif);
if (pskb == NULL)
return;
hdr = (struct ieee80211_hdr *)(pskb->data);
info = IEEE80211_SKB_CB(pskb);
queue_index = BEACON_QUEUE;
pdesc = &ring->desc[0];
rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc,
info, pskb, queue_index);
__skb_queue_tail(&ring->queue, pskb);
rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true, HW_DESC_OWN,
(u8 *)&temp_one);
return;
}
static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 i;
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
rtlpci->txringcount[i] = RT_TXDESC_NUM;
/*
*we just alloc 2 desc for beacon queue,
*because we just need first desc in hw beacon.
*/
rtlpci->txringcount[BEACON_QUEUE] = 2;
/*
*BE queue need more descriptor for performance
*consideration or, No more tx desc will happen,
*and may cause mac80211 mem leakage.
*/
rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE;
rtlpci->rxbuffersize = 9100; /*2048/1024; */
rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */
}
static void _rtl_pci_init_struct(struct ieee80211_hw *hw,
struct pci_dev *pdev)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
rtlpci->up_first_time = true;
rtlpci->being_init_adapter = false;
rtlhal->hw = hw;
rtlpci->pdev = pdev;
ppsc->inactiveps = false;
ppsc->leisure_ps = true;
ppsc->fwctrl_lps = true;
ppsc->reg_fwctrl_lps = 3;
ppsc->reg_max_lps_awakeintvl = 5;
if (ppsc->reg_fwctrl_lps == 1)
ppsc->fwctrl_psmode = FW_PS_MIN_MODE;
else if (ppsc->reg_fwctrl_lps == 2)
ppsc->fwctrl_psmode = FW_PS_MAX_MODE;
else if (ppsc->reg_fwctrl_lps == 3)
ppsc->fwctrl_psmode = FW_PS_DTIM_MODE;
/*Tx/Rx related var */
_rtl_pci_init_trx_var(hw);
/*IBSS*/ mac->beacon_interval = 100;
/*AMPDU*/ mac->min_space_cfg = 0;
mac->max_mss_density = 0;
/*set sane AMPDU defaults */
mac->current_ampdu_density = 7;
mac->current_ampdu_factor = 3;
/*QOS*/ rtlpci->acm_method = eAcmWay2_SW;
/*task */
tasklet_init(&rtlpriv->works.irq_tasklet,
(void (*)(unsigned long))_rtl_pci_irq_tasklet,
(unsigned long)hw);
tasklet_init(&rtlpriv->works.irq_prepare_bcn_tasklet,
(void (*)(unsigned long))_rtl_pci_prepare_bcn_tasklet,
(unsigned long)hw);
}
static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw,
unsigned int prio, unsigned int entries)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tx_desc *ring;
dma_addr_t dma;
u32 nextdescaddress;
int i;
ring = pci_alloc_consistent(rtlpci->pdev,
sizeof(*ring) * entries, &dma);
if (!ring || (unsigned long)ring & 0xFF) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Cannot allocate TX ring (prio = %d)\n", prio));
return -ENOMEM;
}
memset(ring, 0, sizeof(*ring) * entries);
rtlpci->tx_ring[prio].desc = ring;
rtlpci->tx_ring[prio].dma = dma;
rtlpci->tx_ring[prio].idx = 0;
rtlpci->tx_ring[prio].entries = entries;
skb_queue_head_init(&rtlpci->tx_ring[prio].queue);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
("queue:%d, ring_addr:%p\n", prio, ring));
for (i = 0; i < entries; i++) {
nextdescaddress = (u32) dma + ((i + 1) % entries) *
sizeof(*ring);
rtlpriv->cfg->ops->set_desc((u8 *)&(ring[i]),
true, HW_DESC_TX_NEXTDESC_ADDR,
(u8 *)&nextdescaddress);
}
return 0;
}
static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_rx_desc *entry = NULL;
int i, rx_queue_idx;
u8 tmp_one = 1;
/*
*rx_queue_idx 0:RX_MPDU_QUEUE
*rx_queue_idx 1:RX_CMD_QUEUE
*/
for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
rx_queue_idx++) {
rtlpci->rx_ring[rx_queue_idx].desc =
pci_alloc_consistent(rtlpci->pdev,
sizeof(*rtlpci->rx_ring[rx_queue_idx].
desc) * rtlpci->rxringcount,
&rtlpci->rx_ring[rx_queue_idx].dma);
if (!rtlpci->rx_ring[rx_queue_idx].desc ||
(unsigned long)rtlpci->rx_ring[rx_queue_idx].desc & 0xFF) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Cannot allocate RX ring\n"));
return -ENOMEM;
}
memset(rtlpci->rx_ring[rx_queue_idx].desc, 0,
sizeof(*rtlpci->rx_ring[rx_queue_idx].desc) *
rtlpci->rxringcount);
rtlpci->rx_ring[rx_queue_idx].idx = 0;
for (i = 0; i < rtlpci->rxringcount; i++) {
struct sk_buff *skb =
dev_alloc_skb(rtlpci->rxbuffersize);
u32 bufferaddress;
if (!skb)
return 0;
entry = &rtlpci->rx_ring[rx_queue_idx].desc[i];
/*skb->dev = dev; */
rtlpci->rx_ring[rx_queue_idx].rx_buf[i] = skb;
/*
*just set skb->cb to mapping addr
*for pci_unmap_single use
*/
*((dma_addr_t *) skb->cb) =
pci_map_single(rtlpci->pdev, skb_tail_pointer(skb),
rtlpci->rxbuffersize,
PCI_DMA_FROMDEVICE);
bufferaddress = (u32)(*((dma_addr_t *)skb->cb));
rtlpriv->cfg->ops->set_desc((u8 *)entry, false,
HW_DESC_RXBUFF_ADDR,
(u8 *)&bufferaddress);
rtlpriv->cfg->ops->set_desc((u8 *)entry, false,
HW_DESC_RXPKT_LEN,
(u8 *)&rtlpci->
rxbuffersize);
rtlpriv->cfg->ops->set_desc((u8 *) entry, false,
HW_DESC_RXOWN,
(u8 *)&tmp_one);
}
rtlpriv->cfg->ops->set_desc((u8 *) entry, false,
HW_DESC_RXERO, (u8 *)&tmp_one);
}
return 0;
}
static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw,
unsigned int prio)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->
ops->get_desc((u8 *) entry, true,
HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
pci_free_consistent(rtlpci->pdev,
sizeof(*ring->desc) * ring->entries,
ring->desc, ring->dma);
ring->desc = NULL;
}
static void _rtl_pci_free_rx_ring(struct rtl_pci *rtlpci)
{
int i, rx_queue_idx;
/*rx_queue_idx 0:RX_MPDU_QUEUE */
/*rx_queue_idx 1:RX_CMD_QUEUE */
for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
rx_queue_idx++) {
for (i = 0; i < rtlpci->rxringcount; i++) {
struct sk_buff *skb =
rtlpci->rx_ring[rx_queue_idx].rx_buf[i];
if (!skb)
continue;
pci_unmap_single(rtlpci->pdev,
*((dma_addr_t *) skb->cb),
rtlpci->rxbuffersize,
PCI_DMA_FROMDEVICE);
kfree_skb(skb);
}
pci_free_consistent(rtlpci->pdev,
sizeof(*rtlpci->rx_ring[rx_queue_idx].
desc) * rtlpci->rxringcount,
rtlpci->rx_ring[rx_queue_idx].desc,
rtlpci->rx_ring[rx_queue_idx].dma);
rtlpci->rx_ring[rx_queue_idx].desc = NULL;
}
}
static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int ret;
int i;
ret = _rtl_pci_init_rx_ring(hw);
if (ret)
return ret;
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
ret = _rtl_pci_init_tx_ring(hw, i,
rtlpci->txringcount[i]);
if (ret)
goto err_free_rings;
}
return 0;
err_free_rings:
_rtl_pci_free_rx_ring(rtlpci);
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
if (rtlpci->tx_ring[i].desc)
_rtl_pci_free_tx_ring(hw, i);
return 1;
}
static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 i;
/*free rx rings */
_rtl_pci_free_rx_ring(rtlpci);
/*free tx rings */
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
_rtl_pci_free_tx_ring(hw, i);
return 0;
}
int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int i, rx_queue_idx;
unsigned long flags;
u8 tmp_one = 1;
/*rx_queue_idx 0:RX_MPDU_QUEUE */
/*rx_queue_idx 1:RX_CMD_QUEUE */
for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
rx_queue_idx++) {
/*
*force the rx_ring[RX_MPDU_QUEUE/
*RX_CMD_QUEUE].idx to the first one
*/
if (rtlpci->rx_ring[rx_queue_idx].desc) {
struct rtl_rx_desc *entry = NULL;
for (i = 0; i < rtlpci->rxringcount; i++) {
entry = &rtlpci->rx_ring[rx_queue_idx].desc[i];
rtlpriv->cfg->ops->set_desc((u8 *) entry,
false,
HW_DESC_RXOWN,
(u8 *)&tmp_one);
}
rtlpci->rx_ring[rx_queue_idx].idx = 0;
}
}
/*
*after reset, release previous pending packet,
*and force the tx idx to the first one
*/
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
if (rtlpci->tx_ring[i].desc) {
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i];
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry =
&ring->desc[ring->idx];
struct sk_buff *skb =
__skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->ops->
get_desc((u8 *)
entry,
true,
HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
ring->idx = 0;
}
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return 0;
}
static unsigned int _rtl_mac_to_hwqueue(__le16 fc,
unsigned int mac80211_queue_index)
{
unsigned int hw_queue_index;
if (unlikely(ieee80211_is_beacon(fc))) {
hw_queue_index = BEACON_QUEUE;
goto out;
}
if (ieee80211_is_mgmt(fc)) {
hw_queue_index = MGNT_QUEUE;
goto out;
}
switch (mac80211_queue_index) {
case 0:
hw_queue_index = VO_QUEUE;
break;
case 1:
hw_queue_index = VI_QUEUE;
break;
case 2:
hw_queue_index = BE_QUEUE;;
break;
case 3:
hw_queue_index = BK_QUEUE;
break;
default:
hw_queue_index = BE_QUEUE;
RT_ASSERT(false, ("QSLT_BE queue, skb_queue:%d\n",
mac80211_queue_index));
break;
}
out:
return hw_queue_index;
}
static int rtl_pci_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl8192_tx_ring *ring;
struct rtl_tx_desc *pdesc;
u8 idx;
unsigned int queue_index, hw_queue;
unsigned long flags;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
__le16 fc = hdr->frame_control;
u8 *pda_addr = hdr->addr1;
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
/*ssn */
u8 *qc = NULL;
u8 tid = 0;
u16 seq_number = 0;
u8 own;
u8 temp_one = 1;
if (ieee80211_is_mgmt(fc))
rtl_tx_mgmt_proc(hw, skb);
rtl_action_proc(hw, skb, true);
queue_index = skb_get_queue_mapping(skb);
hw_queue = _rtl_mac_to_hwqueue(fc, queue_index);
if (is_multicast_ether_addr(pda_addr))
rtlpriv->stats.txbytesmulticast += skb->len;
else if (is_broadcast_ether_addr(pda_addr))
rtlpriv->stats.txbytesbroadcast += skb->len;
else
rtlpriv->stats.txbytesunicast += skb->len;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
ring = &rtlpci->tx_ring[hw_queue];
if (hw_queue != BEACON_QUEUE)
idx = (ring->idx + skb_queue_len(&ring->queue)) %
ring->entries;
else
idx = 0;
pdesc = &ring->desc[idx];
own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
true, HW_DESC_OWN);
if ((own == 1) && (hw_queue != BEACON_QUEUE)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("No more TX desc@%d, ring->idx = %d,"
"idx = %d, skb_queue_len = 0x%d\n",
hw_queue, ring->idx, idx,
skb_queue_len(&ring->queue)));
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return skb->len;
}
/*
*if(ieee80211_is_nullfunc(fc)) {
* spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
* return 1;
*}
*/
if (ieee80211_is_data_qos(fc)) {
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
seq_number = mac->tids[tid].seq_number;
seq_number &= IEEE80211_SCTL_SEQ;
/*
*hdr->seq_ctrl = hdr->seq_ctrl &
*cpu_to_le16(IEEE80211_SCTL_FRAG);
*hdr->seq_ctrl |= cpu_to_le16(seq_number);
*/
seq_number += 1;
}
if (ieee80211_is_data(fc))
rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX);
rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc,
info, skb, hw_queue);
__skb_queue_tail(&ring->queue, skb);
rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true,
HW_DESC_OWN, (u8 *)&temp_one);
if (!ieee80211_has_morefrags(hdr->frame_control)) {
if (qc)
mac->tids[tid].seq_number = seq_number;
}
if ((ring->entries - skb_queue_len(&ring->queue)) < 2 &&
hw_queue != BEACON_QUEUE) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
("less desc left, stop skb_queue@%d, "
"ring->idx = %d,"
"idx = %d, skb_queue_len = 0x%d\n",
hw_queue, ring->idx, idx,
skb_queue_len(&ring->queue)));
ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
rtlpriv->cfg->ops->tx_polling(hw, hw_queue);
return 0;
}
static void rtl_pci_deinit(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
_rtl_pci_deinit_trx_ring(hw);
synchronize_irq(rtlpci->pdev->irq);
tasklet_kill(&rtlpriv->works.irq_tasklet);
flush_workqueue(rtlpriv->works.rtl_wq);
destroy_workqueue(rtlpriv->works.rtl_wq);
}
static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int err;
_rtl_pci_init_struct(hw, pdev);
err = _rtl_pci_init_trx_ring(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("tx ring initialization failed"));
return err;
}
return 1;
}
static int rtl_pci_start(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
int err;
rtl_pci_reset_trx_ring(hw);
rtlpci->driver_is_goingto_unload = false;
err = rtlpriv->cfg->ops->hw_init(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("Failed to config hardware!\n"));
return err;
}
rtlpriv->cfg->ops->enable_interrupt(hw);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("enable_interrupt OK\n"));
rtl_init_rx_config(hw);
/*should after adapter start and interrupt enable. */
set_hal_start(rtlhal);
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
rtlpci->up_first_time = false;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("OK\n"));
return 0;
}
static void rtl_pci_stop(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
unsigned long flags;
u8 RFInProgressTimeOut = 0;
/*
*should before disable interrrupt&adapter
*and will do it immediately.
*/
set_hal_stop(rtlhal);
rtlpriv->cfg->ops->disable_interrupt(hw);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
while (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
if (RFInProgressTimeOut > 100) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
break;
}
mdelay(1);
RFInProgressTimeOut++;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
}
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
rtlpci->driver_is_goingto_unload = true;
rtlpriv->cfg->ops->hw_disable(hw);
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
rtl_pci_enable_aspm(hw);
}
static bool _rtl_pci_find_adapter(struct pci_dev *pdev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct pci_dev *bridge_pdev = pdev->bus->self;
u16 venderid;
u16 deviceid;
u16 irqline;
u8 tmp;
venderid = pdev->vendor;
deviceid = pdev->device;
pci_read_config_word(pdev, 0x3C, &irqline);
if (deviceid == RTL_PCI_8192_DID ||
deviceid == RTL_PCI_0044_DID ||
deviceid == RTL_PCI_0047_DID ||
deviceid == RTL_PCI_8192SE_DID ||
deviceid == RTL_PCI_8174_DID ||
deviceid == RTL_PCI_8173_DID ||
deviceid == RTL_PCI_8172_DID ||
deviceid == RTL_PCI_8171_DID) {
switch (pdev->revision) {
case RTL_PCI_REVISION_ID_8192PCIE:
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("8192 PCI-E is found - "
"vid/did=%x/%x\n", venderid, deviceid));
rtlhal->hw_type = HARDWARE_TYPE_RTL8192E;
break;
case RTL_PCI_REVISION_ID_8192SE:
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("8192SE is found - "
"vid/did=%x/%x\n", venderid, deviceid));
rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("Err: Unknown device - "
"vid/did=%x/%x\n", venderid, deviceid));
rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
break;
}
} else if (deviceid == RTL_PCI_8192CET_DID ||
deviceid == RTL_PCI_8192CE_DID ||
deviceid == RTL_PCI_8191CE_DID ||
deviceid == RTL_PCI_8188CE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("8192C PCI-E is found - "
"vid/did=%x/%x\n", venderid, deviceid));
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("Err: Unknown device -"
" vid/did=%x/%x\n", venderid, deviceid));
rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE;
}
/*find bus info */
pcipriv->ndis_adapter.busnumber = pdev->bus->number;
pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn);
pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn);
/*find bridge info */
pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor;
for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) {
if (bridge_pdev->vendor == pcibridge_vendors[tmp]) {
pcipriv->ndis_adapter.pcibridge_vendor = tmp;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("Pci Bridge Vendor is found index: %d\n",
tmp));
break;
}
}
if (pcipriv->ndis_adapter.pcibridge_vendor !=
PCI_BRIDGE_VENDOR_UNKNOWN) {
pcipriv->ndis_adapter.pcibridge_busnum =
bridge_pdev->bus->number;
pcipriv->ndis_adapter.pcibridge_devnum =
PCI_SLOT(bridge_pdev->devfn);
pcipriv->ndis_adapter.pcibridge_funcnum =
PCI_FUNC(bridge_pdev->devfn);
pcipriv->ndis_adapter.pcibridge_pciehdr_offset =
pci_pcie_cap(bridge_pdev);
pcipriv->ndis_adapter.pcicfg_addrport =
(pcipriv->ndis_adapter.pcibridge_busnum << 16) |
(pcipriv->ndis_adapter.pcibridge_devnum << 11) |
(pcipriv->ndis_adapter.pcibridge_funcnum << 8) | (1 << 31);
pcipriv->ndis_adapter.num4bytes =
(pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4;
rtl_pci_get_linkcontrol_field(hw);
if (pcipriv->ndis_adapter.pcibridge_vendor ==
PCI_BRIDGE_VENDOR_AMD) {
pcipriv->ndis_adapter.amd_l1_patch =
rtl_pci_get_amd_l1_patch(hw);
}
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("pcidev busnumber:devnumber:funcnumber:"
"vendor:link_ctl %d:%d:%d:%x:%x\n",
pcipriv->ndis_adapter.busnumber,
pcipriv->ndis_adapter.devnumber,
pcipriv->ndis_adapter.funcnumber,
pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg));
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("pci_bridge busnumber:devnumber:funcnumber:vendor:"
"pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n",
pcipriv->ndis_adapter.pcibridge_busnum,
pcipriv->ndis_adapter.pcibridge_devnum,
pcipriv->ndis_adapter.pcibridge_funcnum,
pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor],
pcipriv->ndis_adapter.pcibridge_pciehdr_offset,
pcipriv->ndis_adapter.pcibridge_linkctrlreg,
pcipriv->ndis_adapter.amd_l1_patch));
rtl_pci_parse_configuration(pdev, hw);
return true;
}
int __devinit rtl_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *hw = NULL;
struct rtl_priv *rtlpriv = NULL;
struct rtl_pci_priv *pcipriv = NULL;
struct rtl_pci *rtlpci;
unsigned long pmem_start, pmem_len, pmem_flags;
int err;
err = pci_enable_device(pdev);
if (err) {
RT_ASSERT(false,
("%s : Cannot enable new PCI device\n",
pci_name(pdev)));
return err;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
RT_ASSERT(false, ("Unable to obtain 32bit DMA "
"for consistent allocations\n"));
pci_disable_device(pdev);
return -ENOMEM;
}
}
pci_set_master(pdev);
hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) +
sizeof(struct rtl_priv), &rtl_ops);
if (!hw) {
RT_ASSERT(false,
("%s : ieee80211 alloc failed\n", pci_name(pdev)));
err = -ENOMEM;
goto fail1;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
rtlpriv = hw->priv;
pcipriv = (void *)rtlpriv->priv;
pcipriv->dev.pdev = pdev;
/*
*init dbgp flags before all
*other functions, because we will
*use it in other funtions like
*RT_TRACE/RT_PRINT/RTL_PRINT_DATA
*you can not use these macro
*before this
*/
rtl_dbgp_flag_init(hw);
/* MEM map */
err = pci_request_regions(pdev, KBUILD_MODNAME);
if (err) {
RT_ASSERT(false, ("Can't obtain PCI resources\n"));
return err;
}
pmem_start = pci_resource_start(pdev, 2);
pmem_len = pci_resource_len(pdev, 2);
pmem_flags = pci_resource_flags(pdev, 2);
/*shared mem start */
rtlpriv->io.pci_mem_start =
(unsigned long)pci_iomap(pdev, 2, pmem_len);
if (rtlpriv->io.pci_mem_start == 0) {
RT_ASSERT(false, ("Can't map PCI mem\n"));
goto fail2;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("mem mapped space: start: 0x%08lx len:%08lx "
"flags:%08lx, after map:0x%08lx\n",
pmem_start, pmem_len, pmem_flags,
rtlpriv->io.pci_mem_start));
/* Disable Clk Request */
pci_write_config_byte(pdev, 0x81, 0);
/* leave D3 mode */
pci_write_config_byte(pdev, 0x44, 0);
pci_write_config_byte(pdev, 0x04, 0x06);
pci_write_config_byte(pdev, 0x04, 0x07);
/* init cfg & intf_ops */
rtlpriv->rtlhal.interface = INTF_PCI;
rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data);
rtlpriv->intf_ops = &rtl_pci_ops;
/* find adapter */
_rtl_pci_find_adapter(pdev, hw);
/* Init IO handler */
_rtl_pci_io_handler_init(&pdev->dev, hw);
/*like read eeprom and so on */
rtlpriv->cfg->ops->read_eeprom_info(hw);
if (rtlpriv->cfg->ops->init_sw_vars(hw)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Can't init_sw_vars.\n"));
goto fail3;
}
rtlpriv->cfg->ops->init_sw_leds(hw);
/*aspm */
rtl_pci_init_aspm(hw);
/* Init mac80211 sw */
err = rtl_init_core(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Can't allocate sw for mac80211.\n"));
goto fail3;
}
/* Init PCI sw */
err = !rtl_pci_init(hw, pdev);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Failed to init PCI.\n"));
goto fail3;
}
err = ieee80211_register_hw(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Can't register mac80211 hw.\n"));
goto fail3;
} else {
rtlpriv->mac80211.mac80211_registered = 1;
}
err = sysfs_create_group(&pdev->dev.kobj, &rtl_attribute_group);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("failed to create sysfs device attributes\n"));
goto fail3;
}
/*init rfkill */
rtl_init_rfkill(hw);
rtlpci = rtl_pcidev(pcipriv);
err = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
IRQF_SHARED, KBUILD_MODNAME, hw);
if (err) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("%s: failed to register IRQ handler\n",
wiphy_name(hw->wiphy)));
goto fail3;
} else {
rtlpci->irq_alloc = 1;
}
set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
return 0;
fail3:
pci_set_drvdata(pdev, NULL);
rtl_deinit_core(hw);
_rtl_pci_io_handler_release(hw);
ieee80211_free_hw(hw);
if (rtlpriv->io.pci_mem_start != 0)
pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
fail2:
pci_release_regions(pdev);
fail1:
pci_disable_device(pdev);
return -ENODEV;
}
EXPORT_SYMBOL(rtl_pci_probe);
void rtl_pci_disconnect(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
struct rtl_mac *rtlmac = rtl_mac(rtlpriv);
clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
sysfs_remove_group(&pdev->dev.kobj, &rtl_attribute_group);
/*ieee80211_unregister_hw will call ops_stop */
if (rtlmac->mac80211_registered == 1) {
ieee80211_unregister_hw(hw);
rtlmac->mac80211_registered = 0;
} else {
rtl_deinit_deferred_work(hw);
rtlpriv->intf_ops->adapter_stop(hw);
}
/*deinit rfkill */
rtl_deinit_rfkill(hw);
rtl_pci_deinit(hw);
rtl_deinit_core(hw);
rtlpriv->cfg->ops->deinit_sw_leds(hw);
_rtl_pci_io_handler_release(hw);
rtlpriv->cfg->ops->deinit_sw_vars(hw);
if (rtlpci->irq_alloc) {
free_irq(rtlpci->pdev->irq, hw);
rtlpci->irq_alloc = 0;
}
if (rtlpriv->io.pci_mem_start != 0) {
pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
pci_release_regions(pdev);
}
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtl_pci_disconnect);
/***************************************
kernel pci power state define:
PCI_D0 ((pci_power_t __force) 0)
PCI_D1 ((pci_power_t __force) 1)
PCI_D2 ((pci_power_t __force) 2)
PCI_D3hot ((pci_power_t __force) 3)
PCI_D3cold ((pci_power_t __force) 4)
PCI_UNKNOWN ((pci_power_t __force) 5)
This function is called when system
goes into suspend state mac80211 will
call rtl_mac_stop() from the mac80211
suspend function first, So there is
no need to call hw_disable here.
****************************************/
int rtl_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
EXPORT_SYMBOL(rtl_pci_suspend);
int rtl_pci_resume(struct pci_dev *pdev)
{
int ret;
pci_set_power_state(pdev, PCI_D0);
ret = pci_enable_device(pdev);
if (ret) {
RT_ASSERT(false, ("ERR: <======\n"));
return ret;
}
pci_restore_state(pdev);
return 0;
}
EXPORT_SYMBOL(rtl_pci_resume);
struct rtl_intf_ops rtl_pci_ops = {
.adapter_start = rtl_pci_start,
.adapter_stop = rtl_pci_stop,
.adapter_tx = rtl_pci_tx,
.reset_trx_ring = rtl_pci_reset_trx_ring,
.disable_aspm = rtl_pci_disable_aspm,
.enable_aspm = rtl_pci_enable_aspm,
};