/****************************************************************************** * * Copyright(c) 2009-2010 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae <wlanfae@realtek.com> * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger <Larry.Finger@lwfinger.net> * *****************************************************************************/ #include "core.h" #include "wifi.h" #include "pci.h" #include "base.h" #include "ps.h" static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = { INTEL_VENDOR_ID, ATI_VENDOR_ID, AMD_VENDOR_ID, SIS_VENDOR_ID }; /* Update PCI dependent default settings*/ static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; ppsc->reg_rfps_level = 0; ppsc->support_aspm = 0; /*Update PCI ASPM setting */ ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm; switch (rtlpci->const_pci_aspm) { case 0: /*No ASPM */ break; case 1: /*ASPM dynamically enabled/disable. */ ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM; break; case 2: /*ASPM with Clock Req dynamically enabled/disable. */ ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 3: /* * Always enable ASPM and Clock Req * from initialization to halt. * */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM); ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 4: /* * Always enable ASPM without Clock Req * from initialization to halt. * */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM; break; } ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; /*Update Radio OFF setting */ switch (rtlpci->const_hwsw_rfoff_d3) { case 1: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; break; case 2: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; break; case 3: ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3; break; } /*Set HW definition to determine if it supports ASPM. */ switch (rtlpci->const_support_pciaspm) { case 0:{ /*Not support ASPM. */ bool support_aspm = false; ppsc->support_aspm = support_aspm; break; } case 1:{ /*Support ASPM. */ bool support_aspm = true; bool support_backdoor = true; ppsc->support_aspm = support_aspm; /*if(priv->oem_id == RT_CID_TOSHIBA && !priv->ndis_adapter.amd_l1_patch) support_backdoor = false; */ ppsc->support_backdoor = support_backdoor; break; } case 2: /*ASPM value set by chipset. */ if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) { bool support_aspm = true; ppsc->support_aspm = support_aspm; } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case not process\n")); break; } } static bool _rtl_pci_platform_switch_device_pci_aspm( struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); bool bresult = false; value |= 0x40; pci_write_config_byte(rtlpci->pdev, 0x80, value); return bresult; } /*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/ static bool _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 buffer; bool bresult = false; buffer = value; pci_write_config_byte(rtlpci->pdev, 0x81, value); bresult = true; return bresult; } /*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/ static void rtl_pci_disable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; /*Retrieve original configuration settings. */ u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg; u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter. pcibridge_linkctrlreg; u16 aspmlevel = 0; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE, ("PCI(Bridge) UNKNOWN.\n")); return; } if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); _rtl_pci_switch_clk_req(hw, 0x0); } if (1) { /*for promising device will in L0 state after an I/O. */ u8 tmp_u1b; pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b); } /*Set corresponding value. */ aspmlevel |= BIT(0) | BIT(1); linkctrl_reg &= ~aspmlevel; pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1)); _rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg); udelay(50); /*4 Disable Pci Bridge ASPM */ rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + (num4bytes << 2)); rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, pcibridge_linkctrlreg); udelay(50); } /* *Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for *power saving We should follow the sequence to enable *RTL8192SE first then enable Pci Bridge ASPM *or the system will show bluescreen. */ static void rtl_pci_enable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_busnum = pcipriv->ndis_adapter.pcibridge_busnum; u8 pcibridge_devnum = pcipriv->ndis_adapter.pcibridge_devnum; u8 pcibridge_funcnum = pcipriv->ndis_adapter.pcibridge_funcnum; u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; u16 aspmlevel; u8 u_pcibridge_aspmsetting; u8 u_device_aspmsetting; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE, ("PCI(Bridge) UNKNOWN.\n")); return; } /*4 Enable Pci Bridge ASPM */ rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + (num4bytes << 2)); u_pcibridge_aspmsetting = pcipriv->ndis_adapter.pcibridge_linkctrlreg | rtlpci->const_hostpci_aspm_setting; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) u_pcibridge_aspmsetting &= ~BIT(0); rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, u_pcibridge_aspmsetting); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("PlatformEnableASPM():PciBridge busnumber[%x], " "DevNumbe[%x], funcnumber[%x], Write reg[%x] = %x\n", pcibridge_busnum, pcibridge_devnum, pcibridge_funcnum, (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10), u_pcibridge_aspmsetting)); udelay(50); /*Get ASPM level (with/without Clock Req) */ aspmlevel = rtlpci->const_devicepci_aspm_setting; u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg; /*_rtl_pci_platform_switch_device_pci_aspm(dev,*/ /*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */ u_device_aspmsetting |= aspmlevel; _rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting); if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { _rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); } udelay(200); } static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport; bool status = false; u8 offset_e0; unsigned offset_e4; rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + 0xE0); rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, 0xA0); rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + 0xE0); rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &offset_e0); if (offset_e0 == 0xA0) { rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + 0xE4); rtl_pci_raw_read_port_ulong(PCI_CONF_DATA, &offset_e4); if (offset_e4 & BIT(23)) status = true; } return status; } static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset; u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport; u8 linkctrl_reg; u8 num4bBytes; num4bBytes = (capabilityoffset + 0x10) / 4; /*Read Link Control Register */ rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS, pcicfg_addrport + (num4bBytes << 2)); rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &linkctrl_reg); pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg; } static void rtl_pci_parse_configuration(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); u8 tmp; int pos; u8 linkctrl_reg; /*Link Control Register */ pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); pci_read_config_byte(pdev, pos + PCI_EXP_LNKCTL, &linkctrl_reg); pcipriv->ndis_adapter.linkctrl_reg = linkctrl_reg; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, ("Link Control Register =%x\n", pcipriv->ndis_adapter.linkctrl_reg)); pci_read_config_byte(pdev, 0x98, &tmp); tmp |= BIT(4); pci_write_config_byte(pdev, 0x98, tmp); tmp = 0x17; pci_write_config_byte(pdev, 0x70f, tmp); } static void _rtl_pci_initialize_adapter_common(struct ieee80211_hw *hw) { struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); _rtl_pci_update_default_setting(hw); if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) { /*Always enable ASPM & Clock Req. */ rtl_pci_enable_aspm(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM); } } static void rtl_pci_init_aspm(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); /*close ASPM for AMD defaultly */ rtlpci->const_amdpci_aspm = 0; /* * ASPM PS mode. * 0 - Disable ASPM, * 1 - Enable ASPM without Clock Req, * 2 - Enable ASPM with Clock Req, * 3 - Always Enable ASPM with Clock Req, * 4 - Always Enable ASPM without Clock Req. * set defult to RTL8192CE:3 RTL8192E:2 * */ rtlpci->const_pci_aspm = 3; /*Setting for PCI-E device */ rtlpci->const_devicepci_aspm_setting = 0x03; /*Setting for PCI-E bridge */ rtlpci->const_hostpci_aspm_setting = 0x02; /* * In Hw/Sw Radio Off situation. * 0 - Default, * 1 - From ASPM setting without low Mac Pwr, * 2 - From ASPM setting with low Mac Pwr, * 3 - Bus D3 * set default to RTL8192CE:0 RTL8192SE:2 */ rtlpci->const_hwsw_rfoff_d3 = 0; /* * This setting works for those device with * backdoor ASPM setting such as EPHY setting. * 0 - Not support ASPM, * 1 - Support ASPM, * 2 - According to chipset. */ rtlpci->const_support_pciaspm = 1; _rtl_pci_initialize_adapter_common(hw); } static void _rtl_pci_io_handler_init(struct device *dev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->io.dev = dev; rtlpriv->io.write8_async = pci_write8_async; rtlpriv->io.write16_async = pci_write16_async; rtlpriv->io.write32_async = pci_write32_async; rtlpriv->io.read8_sync = pci_read8_sync; rtlpriv->io.read16_sync = pci_read16_sync; rtlpriv->io.read32_sync = pci_read32_sync; } static void _rtl_pci_io_handler_release(struct ieee80211_hw *hw) { } static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb; struct ieee80211_tx_info *info; u8 own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) entry, true, HW_DESC_OWN); /* *beacon packet will only use the first *descriptor defautly,and the own may not *be cleared by the hardware */ if (own) return; ring->idx = (ring->idx + 1) % ring->entries; skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops-> get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); RT_TRACE(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE, ("new ring->idx:%d, " "free: skb_queue_len:%d, free: seq:%x\n", ring->idx, skb_queue_len(&ring->queue), *(u16 *) (skb->data + 22))); info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); info->flags |= IEEE80211_TX_STAT_ACK; /*info->status.rates[0].count = 1; */ ieee80211_tx_status_irqsafe(hw, skb); if ((ring->entries - skb_queue_len(&ring->queue)) == 2) { RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, ("more desc left, wake" "skb_queue@%d,ring->idx = %d," "skb_queue_len = 0x%d\n", prio, ring->idx, skb_queue_len(&ring->queue))); ieee80211_wake_queue(hw, skb_get_queue_mapping (skb)); } skb = NULL; } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) { rtl_lps_leave(hw); } } static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int rx_queue_idx = RTL_PCI_RX_MPDU_QUEUE; struct ieee80211_rx_status rx_status = { 0 }; unsigned int count = rtlpci->rxringcount; u8 own; u8 tmp_one; u32 bufferaddress; bool unicast = false; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; /*RX NORMAL PKT */ while (count--) { /*rx descriptor */ struct rtl_rx_desc *pdesc = &rtlpci->rx_ring[rx_queue_idx].desc[ rtlpci->rx_ring[rx_queue_idx].idx]; /*rx pkt */ struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[ rtlpci->rx_ring[rx_queue_idx].idx]; own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc, false, HW_DESC_OWN); if (own) { /*wait data to be filled by hardware */ return; } else { struct ieee80211_hdr *hdr; __le16 fc; struct sk_buff *new_skb = NULL; rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, (u8 *) pdesc, skb); pci_unmap_single(rtlpci->pdev, *((dma_addr_t *) skb->cb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); skb_put(skb, rtlpriv->cfg->ops->get_desc((u8 *) pdesc, false, HW_DESC_RXPKT_LEN)); skb_reserve(skb, stats.rx_drvinfo_size + stats.rx_bufshift); /* *NOTICE This can not be use for mac80211, *this is done in mac80211 code, *if you done here sec DHCP will fail *skb_trim(skb, skb->len - 4); */ hdr = (struct ieee80211_hdr *)(skb->data); fc = hdr->frame_control; if (!stats.crc) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) ;/*TODO*/ else { if (is_multicast_ether_addr(hdr->addr1)) ;/*TODO*/ else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info. num_rx_inperiod++; } if (unlikely(!rtl_action_proc(hw, skb, false))) { dev_kfree_skb_any(skb); } else { struct sk_buff *uskb = NULL; u8 *pdata; uskb = dev_alloc_skb(skb->len + 128); if (!uskb) { RT_TRACE(rtlpriv, (COMP_INTR | COMP_RECV), DBG_EMERG, ("can't alloc rx skb\n")); goto done; } memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status, sizeof(rx_status)); pdata = (u8 *)skb_put(uskb, skb->len); memcpy(pdata, skb->data, skb->len); dev_kfree_skb_any(skb); ieee80211_rx_irqsafe(hw, uskb); } } else { dev_kfree_skb_any(skb); } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) { rtl_lps_leave(hw); } new_skb = dev_alloc_skb(rtlpci->rxbuffersize); if (unlikely(!new_skb)) { RT_TRACE(rtlpriv, (COMP_INTR | COMP_RECV), DBG_EMERG, ("can't alloc skb for rx\n")); goto done; } skb = new_skb; /*skb->dev = dev; */ rtlpci->rx_ring[rx_queue_idx].rx_buf[rtlpci-> rx_ring [rx_queue_idx]. idx] = skb; *((dma_addr_t *) skb->cb) = pci_map_single(rtlpci->pdev, skb_tail_pointer(skb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); } done: bufferaddress = (u32)(*((dma_addr_t *) skb->cb)); tmp_one = 1; rtlpriv->cfg->ops->set_desc((u8 *) pdesc, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXOWN, (u8 *)&tmp_one); rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci->rxbuffersize); if (rtlpci->rx_ring[rx_queue_idx].idx == rtlpci->rxringcount - 1) rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXERO, (u8 *)&tmp_one); rtlpci->rx_ring[rx_queue_idx].idx = (rtlpci->rx_ring[rx_queue_idx].idx + 1) % rtlpci->rxringcount; } } static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id) { struct ieee80211_hw *hw = dev_id; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); unsigned long flags; u32 inta = 0; u32 intb = 0; if (rtlpci->irq_enabled == 0) return IRQ_HANDLED; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); /*read ISR: 4/8bytes */ rtlpriv->cfg->ops->interrupt_recognized(hw, &inta, &intb); /*Shared IRQ or HW disappared */ if (!inta || inta == 0xffff) goto done; /*<1> beacon related */ if (inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("beacon ok interrupt!\n")); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TBDER])) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("beacon err interrupt!\n")); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("beacon interrupt!\n")); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BcnInt]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("prepare beacon for interrupt!\n")); tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet); } /*<3> Tx related */ if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TXFOVW])) RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("IMR_TXFOVW!\n")); if (inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("Manage ok interrupt!\n")); _rtl_pci_tx_isr(hw, MGNT_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("HIGH_QUEUE ok interrupt!\n")); _rtl_pci_tx_isr(hw, HIGH_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("BK Tx OK interrupt!\n")); _rtl_pci_tx_isr(hw, BK_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("BE TX OK interrupt!\n")); _rtl_pci_tx_isr(hw, BE_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("VI TX OK interrupt!\n")); _rtl_pci_tx_isr(hw, VI_QUEUE); } if (inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) { rtlpriv->link_info.num_tx_inperiod++; RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("Vo TX OK interrupt!\n")); _rtl_pci_tx_isr(hw, VO_QUEUE); } /*<2> Rx related */ if (inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) { RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("Rx ok interrupt!\n")); tasklet_schedule(&rtlpriv->works.irq_tasklet); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("rx descriptor unavailable!\n")); tasklet_schedule(&rtlpriv->works.irq_tasklet); } if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("rx overflow !\n")); tasklet_schedule(&rtlpriv->works.irq_tasklet); } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return IRQ_HANDLED; done: spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return IRQ_HANDLED; } static void _rtl_pci_irq_tasklet(struct ieee80211_hw *hw) { _rtl_pci_rx_interrupt(hw); } static void _rtl_pci_prepare_bcn_tasklet(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE]; struct ieee80211_hdr *hdr = NULL; struct ieee80211_tx_info *info = NULL; struct sk_buff *pskb = NULL; struct rtl_tx_desc *pdesc = NULL; unsigned int queue_index; u8 temp_one = 1; ring = &rtlpci->tx_ring[BEACON_QUEUE]; pskb = __skb_dequeue(&ring->queue); if (pskb) kfree_skb(pskb); /*NB: the beacon data buffer must be 32-bit aligned. */ pskb = ieee80211_beacon_get(hw, mac->vif); if (pskb == NULL) return; hdr = (struct ieee80211_hdr *)(pskb->data); info = IEEE80211_SKB_CB(pskb); queue_index = BEACON_QUEUE; pdesc = &ring->desc[0]; rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc, info, pskb, queue_index); __skb_queue_tail(&ring->queue, pskb); rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true, HW_DESC_OWN, (u8 *)&temp_one); return; } static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 i; for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) rtlpci->txringcount[i] = RT_TXDESC_NUM; /* *we just alloc 2 desc for beacon queue, *because we just need first desc in hw beacon. */ rtlpci->txringcount[BEACON_QUEUE] = 2; /* *BE queue need more descriptor for performance *consideration or, No more tx desc will happen, *and may cause mac80211 mem leakage. */ rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE; rtlpci->rxbuffersize = 9100; /*2048/1024; */ rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */ } static void _rtl_pci_init_struct(struct ieee80211_hw *hw, struct pci_dev *pdev) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); rtlpci->up_first_time = true; rtlpci->being_init_adapter = false; rtlhal->hw = hw; rtlpci->pdev = pdev; ppsc->inactiveps = false; ppsc->leisure_ps = true; ppsc->fwctrl_lps = true; ppsc->reg_fwctrl_lps = 3; ppsc->reg_max_lps_awakeintvl = 5; if (ppsc->reg_fwctrl_lps == 1) ppsc->fwctrl_psmode = FW_PS_MIN_MODE; else if (ppsc->reg_fwctrl_lps == 2) ppsc->fwctrl_psmode = FW_PS_MAX_MODE; else if (ppsc->reg_fwctrl_lps == 3) ppsc->fwctrl_psmode = FW_PS_DTIM_MODE; /*Tx/Rx related var */ _rtl_pci_init_trx_var(hw); /*IBSS*/ mac->beacon_interval = 100; /*AMPDU*/ mac->min_space_cfg = 0; mac->max_mss_density = 0; /*set sane AMPDU defaults */ mac->current_ampdu_density = 7; mac->current_ampdu_factor = 3; /*QOS*/ rtlpci->acm_method = eAcmWay2_SW; /*task */ tasklet_init(&rtlpriv->works.irq_tasklet, (void (*)(unsigned long))_rtl_pci_irq_tasklet, (unsigned long)hw); tasklet_init(&rtlpriv->works.irq_prepare_bcn_tasklet, (void (*)(unsigned long))_rtl_pci_prepare_bcn_tasklet, (unsigned long)hw); } static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw, unsigned int prio, unsigned int entries) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_desc *ring; dma_addr_t dma; u32 nextdescaddress; int i; ring = pci_alloc_consistent(rtlpci->pdev, sizeof(*ring) * entries, &dma); if (!ring || (unsigned long)ring & 0xFF) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Cannot allocate TX ring (prio = %d)\n", prio)); return -ENOMEM; } memset(ring, 0, sizeof(*ring) * entries); rtlpci->tx_ring[prio].desc = ring; rtlpci->tx_ring[prio].dma = dma; rtlpci->tx_ring[prio].idx = 0; rtlpci->tx_ring[prio].entries = entries; skb_queue_head_init(&rtlpci->tx_ring[prio].queue); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("queue:%d, ring_addr:%p\n", prio, ring)); for (i = 0; i < entries; i++) { nextdescaddress = (u32) dma + ((i + 1) % entries) * sizeof(*ring); rtlpriv->cfg->ops->set_desc((u8 *)&(ring[i]), true, HW_DESC_TX_NEXTDESC_ADDR, (u8 *)&nextdescaddress); } return 0; } static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_rx_desc *entry = NULL; int i, rx_queue_idx; u8 tmp_one = 1; /* *rx_queue_idx 0:RX_MPDU_QUEUE *rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { rtlpci->rx_ring[rx_queue_idx].desc = pci_alloc_consistent(rtlpci->pdev, sizeof(*rtlpci->rx_ring[rx_queue_idx]. desc) * rtlpci->rxringcount, &rtlpci->rx_ring[rx_queue_idx].dma); if (!rtlpci->rx_ring[rx_queue_idx].desc || (unsigned long)rtlpci->rx_ring[rx_queue_idx].desc & 0xFF) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Cannot allocate RX ring\n")); return -ENOMEM; } memset(rtlpci->rx_ring[rx_queue_idx].desc, 0, sizeof(*rtlpci->rx_ring[rx_queue_idx].desc) * rtlpci->rxringcount); rtlpci->rx_ring[rx_queue_idx].idx = 0; for (i = 0; i < rtlpci->rxringcount; i++) { struct sk_buff *skb = dev_alloc_skb(rtlpci->rxbuffersize); u32 bufferaddress; if (!skb) return 0; entry = &rtlpci->rx_ring[rx_queue_idx].desc[i]; /*skb->dev = dev; */ rtlpci->rx_ring[rx_queue_idx].rx_buf[i] = skb; /* *just set skb->cb to mapping addr *for pci_unmap_single use */ *((dma_addr_t *) skb->cb) = pci_map_single(rtlpci->pdev, skb_tail_pointer(skb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); bufferaddress = (u32)(*((dma_addr_t *)skb->cb)); rtlpriv->cfg->ops->set_desc((u8 *)entry, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc((u8 *)entry, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci-> rxbuffersize); rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXOWN, (u8 *)&tmp_one); } rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXERO, (u8 *)&tmp_one); } return 0; } static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw, unsigned int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg-> ops->get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } pci_free_consistent(rtlpci->pdev, sizeof(*ring->desc) * ring->entries, ring->desc, ring->dma); ring->desc = NULL; } static void _rtl_pci_free_rx_ring(struct rtl_pci *rtlpci) { int i, rx_queue_idx; /*rx_queue_idx 0:RX_MPDU_QUEUE */ /*rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { for (i = 0; i < rtlpci->rxringcount; i++) { struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[i]; if (!skb) continue; pci_unmap_single(rtlpci->pdev, *((dma_addr_t *) skb->cb), rtlpci->rxbuffersize, PCI_DMA_FROMDEVICE); kfree_skb(skb); } pci_free_consistent(rtlpci->pdev, sizeof(*rtlpci->rx_ring[rx_queue_idx]. desc) * rtlpci->rxringcount, rtlpci->rx_ring[rx_queue_idx].desc, rtlpci->rx_ring[rx_queue_idx].dma); rtlpci->rx_ring[rx_queue_idx].desc = NULL; } } static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int ret; int i; ret = _rtl_pci_init_rx_ring(hw); if (ret) return ret; for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { ret = _rtl_pci_init_tx_ring(hw, i, rtlpci->txringcount[i]); if (ret) goto err_free_rings; } return 0; err_free_rings: _rtl_pci_free_rx_ring(rtlpci); for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) if (rtlpci->tx_ring[i].desc) _rtl_pci_free_tx_ring(hw, i); return 1; } static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 i; /*free rx rings */ _rtl_pci_free_rx_ring(rtlpci); /*free tx rings */ for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) _rtl_pci_free_tx_ring(hw, i); return 0; } int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int i, rx_queue_idx; unsigned long flags; u8 tmp_one = 1; /*rx_queue_idx 0:RX_MPDU_QUEUE */ /*rx_queue_idx 1:RX_CMD_QUEUE */ for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE; rx_queue_idx++) { /* *force the rx_ring[RX_MPDU_QUEUE/ *RX_CMD_QUEUE].idx to the first one */ if (rtlpci->rx_ring[rx_queue_idx].desc) { struct rtl_rx_desc *entry = NULL; for (i = 0; i < rtlpci->rxringcount; i++) { entry = &rtlpci->rx_ring[rx_queue_idx].desc[i]; rtlpriv->cfg->ops->set_desc((u8 *) entry, false, HW_DESC_RXOWN, (u8 *)&tmp_one); } rtlpci->rx_ring[rx_queue_idx].idx = 0; } } /* *after reset, release previous pending packet, *and force the tx idx to the first one */ spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { if (rtlpci->tx_ring[i].desc) { struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops-> get_desc((u8 *) entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } ring->idx = 0; } } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return 0; } static unsigned int _rtl_mac_to_hwqueue(__le16 fc, unsigned int mac80211_queue_index) { unsigned int hw_queue_index; if (unlikely(ieee80211_is_beacon(fc))) { hw_queue_index = BEACON_QUEUE; goto out; } if (ieee80211_is_mgmt(fc)) { hw_queue_index = MGNT_QUEUE; goto out; } switch (mac80211_queue_index) { case 0: hw_queue_index = VO_QUEUE; break; case 1: hw_queue_index = VI_QUEUE; break; case 2: hw_queue_index = BE_QUEUE;; break; case 3: hw_queue_index = BK_QUEUE; break; default: hw_queue_index = BE_QUEUE; RT_ASSERT(false, ("QSLT_BE queue, skb_queue:%d\n", mac80211_queue_index)); break; } out: return hw_queue_index; } static int rtl_pci_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl8192_tx_ring *ring; struct rtl_tx_desc *pdesc; u8 idx; unsigned int queue_index, hw_queue; unsigned long flags; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data); __le16 fc = hdr->frame_control; u8 *pda_addr = hdr->addr1; struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); /*ssn */ u8 *qc = NULL; u8 tid = 0; u16 seq_number = 0; u8 own; u8 temp_one = 1; if (ieee80211_is_mgmt(fc)) rtl_tx_mgmt_proc(hw, skb); rtl_action_proc(hw, skb, true); queue_index = skb_get_queue_mapping(skb); hw_queue = _rtl_mac_to_hwqueue(fc, queue_index); if (is_multicast_ether_addr(pda_addr)) rtlpriv->stats.txbytesmulticast += skb->len; else if (is_broadcast_ether_addr(pda_addr)) rtlpriv->stats.txbytesbroadcast += skb->len; else rtlpriv->stats.txbytesunicast += skb->len; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); ring = &rtlpci->tx_ring[hw_queue]; if (hw_queue != BEACON_QUEUE) idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries; else idx = 0; pdesc = &ring->desc[idx]; own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc, true, HW_DESC_OWN); if ((own == 1) && (hw_queue != BEACON_QUEUE)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("No more TX desc@%d, ring->idx = %d," "idx = %d, skb_queue_len = 0x%d\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue))); spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return skb->len; } /* *if(ieee80211_is_nullfunc(fc)) { * spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); * return 1; *} */ if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; seq_number = mac->tids[tid].seq_number; seq_number &= IEEE80211_SCTL_SEQ; /* *hdr->seq_ctrl = hdr->seq_ctrl & *cpu_to_le16(IEEE80211_SCTL_FRAG); *hdr->seq_ctrl |= cpu_to_le16(seq_number); */ seq_number += 1; } if (ieee80211_is_data(fc)) rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX); rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc, info, skb, hw_queue); __skb_queue_tail(&ring->queue, skb); rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true, HW_DESC_OWN, (u8 *)&temp_one); if (!ieee80211_has_morefrags(hdr->frame_control)) { if (qc) mac->tids[tid].seq_number = seq_number; } if ((ring->entries - skb_queue_len(&ring->queue)) < 2 && hw_queue != BEACON_QUEUE) { RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, ("less desc left, stop skb_queue@%d, " "ring->idx = %d," "idx = %d, skb_queue_len = 0x%d\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue))); ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); rtlpriv->cfg->ops->tx_polling(hw, hw_queue); return 0; } static void rtl_pci_deinit(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); _rtl_pci_deinit_trx_ring(hw); synchronize_irq(rtlpci->pdev->irq); tasklet_kill(&rtlpriv->works.irq_tasklet); flush_workqueue(rtlpriv->works.rtl_wq); destroy_workqueue(rtlpriv->works.rtl_wq); } static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev) { struct rtl_priv *rtlpriv = rtl_priv(hw); int err; _rtl_pci_init_struct(hw, pdev); err = _rtl_pci_init_trx_ring(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("tx ring initialization failed")); return err; } return 1; } static int rtl_pci_start(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); int err; rtl_pci_reset_trx_ring(hw); rtlpci->driver_is_goingto_unload = false; err = rtlpriv->cfg->ops->hw_init(hw); if (err) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Failed to config hardware!\n")); return err; } rtlpriv->cfg->ops->enable_interrupt(hw); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("enable_interrupt OK\n")); rtl_init_rx_config(hw); /*should after adapter start and interrupt enable. */ set_hal_start(rtlhal); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); rtlpci->up_first_time = false; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("OK\n")); return 0; } static void rtl_pci_stop(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; u8 RFInProgressTimeOut = 0; /* *should before disable interrrupt&adapter *and will do it immediately. */ set_hal_stop(rtlhal); rtlpriv->cfg->ops->disable_interrupt(hw); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); while (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); if (RFInProgressTimeOut > 100) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); break; } mdelay(1); RFInProgressTimeOut++; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); } ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtlpci->driver_is_goingto_unload = true; rtlpriv->cfg->ops->hw_disable(hw); rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtl_pci_enable_aspm(hw); } static bool _rtl_pci_find_adapter(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct pci_dev *bridge_pdev = pdev->bus->self; u16 venderid; u16 deviceid; u16 irqline; u8 tmp; venderid = pdev->vendor; deviceid = pdev->device; pci_read_config_word(pdev, 0x3C, &irqline); if (deviceid == RTL_PCI_8192_DID || deviceid == RTL_PCI_0044_DID || deviceid == RTL_PCI_0047_DID || deviceid == RTL_PCI_8192SE_DID || deviceid == RTL_PCI_8174_DID || deviceid == RTL_PCI_8173_DID || deviceid == RTL_PCI_8172_DID || deviceid == RTL_PCI_8171_DID) { switch (pdev->revision) { case RTL_PCI_REVISION_ID_8192PCIE: RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("8192 PCI-E is found - " "vid/did=%x/%x\n", venderid, deviceid)); rtlhal->hw_type = HARDWARE_TYPE_RTL8192E; break; case RTL_PCI_REVISION_ID_8192SE: RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("8192SE is found - " "vid/did=%x/%x\n", venderid, deviceid)); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Err: Unknown device - " "vid/did=%x/%x\n", venderid, deviceid)); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; } } else if (deviceid == RTL_PCI_8192CET_DID || deviceid == RTL_PCI_8192CE_DID || deviceid == RTL_PCI_8191CE_DID || deviceid == RTL_PCI_8188CE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("8192C PCI-E is found - " "vid/did=%x/%x\n", venderid, deviceid)); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Err: Unknown device -" " vid/did=%x/%x\n", venderid, deviceid)); rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE; } /*find bus info */ pcipriv->ndis_adapter.busnumber = pdev->bus->number; pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn); pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn); /*find bridge info */ pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor; for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) { if (bridge_pdev->vendor == pcibridge_vendors[tmp]) { pcipriv->ndis_adapter.pcibridge_vendor = tmp; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Pci Bridge Vendor is found index: %d\n", tmp)); break; } } if (pcipriv->ndis_adapter.pcibridge_vendor != PCI_BRIDGE_VENDOR_UNKNOWN) { pcipriv->ndis_adapter.pcibridge_busnum = bridge_pdev->bus->number; pcipriv->ndis_adapter.pcibridge_devnum = PCI_SLOT(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_funcnum = PCI_FUNC(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_pciehdr_offset = pci_pcie_cap(bridge_pdev); pcipriv->ndis_adapter.pcicfg_addrport = (pcipriv->ndis_adapter.pcibridge_busnum << 16) | (pcipriv->ndis_adapter.pcibridge_devnum << 11) | (pcipriv->ndis_adapter.pcibridge_funcnum << 8) | (1 << 31); pcipriv->ndis_adapter.num4bytes = (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4; rtl_pci_get_linkcontrol_field(hw); if (pcipriv->ndis_adapter.pcibridge_vendor == PCI_BRIDGE_VENDOR_AMD) { pcipriv->ndis_adapter.amd_l1_patch = rtl_pci_get_amd_l1_patch(hw); } } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("pcidev busnumber:devnumber:funcnumber:" "vendor:link_ctl %d:%d:%d:%x:%x\n", pcipriv->ndis_adapter.busnumber, pcipriv->ndis_adapter.devnumber, pcipriv->ndis_adapter.funcnumber, pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg)); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("pci_bridge busnumber:devnumber:funcnumber:vendor:" "pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n", pcipriv->ndis_adapter.pcibridge_busnum, pcipriv->ndis_adapter.pcibridge_devnum, pcipriv->ndis_adapter.pcibridge_funcnum, pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor], pcipriv->ndis_adapter.pcibridge_pciehdr_offset, pcipriv->ndis_adapter.pcibridge_linkctrlreg, pcipriv->ndis_adapter.amd_l1_patch)); rtl_pci_parse_configuration(pdev, hw); return true; } int __devinit rtl_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ieee80211_hw *hw = NULL; struct rtl_priv *rtlpriv = NULL; struct rtl_pci_priv *pcipriv = NULL; struct rtl_pci *rtlpci; unsigned long pmem_start, pmem_len, pmem_flags; int err; err = pci_enable_device(pdev); if (err) { RT_ASSERT(false, ("%s : Cannot enable new PCI device\n", pci_name(pdev))); return err; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { RT_ASSERT(false, ("Unable to obtain 32bit DMA " "for consistent allocations\n")); pci_disable_device(pdev); return -ENOMEM; } } pci_set_master(pdev); hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) + sizeof(struct rtl_priv), &rtl_ops); if (!hw) { RT_ASSERT(false, ("%s : ieee80211 alloc failed\n", pci_name(pdev))); err = -ENOMEM; goto fail1; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); rtlpriv = hw->priv; pcipriv = (void *)rtlpriv->priv; pcipriv->dev.pdev = pdev; /* *init dbgp flags before all *other functions, because we will *use it in other funtions like *RT_TRACE/RT_PRINT/RTL_PRINT_DATA *you can not use these macro *before this */ rtl_dbgp_flag_init(hw); /* MEM map */ err = pci_request_regions(pdev, KBUILD_MODNAME); if (err) { RT_ASSERT(false, ("Can't obtain PCI resources\n")); return err; } pmem_start = pci_resource_start(pdev, 2); pmem_len = pci_resource_len(pdev, 2); pmem_flags = pci_resource_flags(pdev, 2); /*shared mem start */ rtlpriv->io.pci_mem_start = (unsigned long)pci_iomap(pdev, 2, pmem_len); if (rtlpriv->io.pci_mem_start == 0) { RT_ASSERT(false, ("Can't map PCI mem\n")); goto fail2; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("mem mapped space: start: 0x%08lx len:%08lx " "flags:%08lx, after map:0x%08lx\n", pmem_start, pmem_len, pmem_flags, rtlpriv->io.pci_mem_start)); /* Disable Clk Request */ pci_write_config_byte(pdev, 0x81, 0); /* leave D3 mode */ pci_write_config_byte(pdev, 0x44, 0); pci_write_config_byte(pdev, 0x04, 0x06); pci_write_config_byte(pdev, 0x04, 0x07); /* init cfg & intf_ops */ rtlpriv->rtlhal.interface = INTF_PCI; rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data); rtlpriv->intf_ops = &rtl_pci_ops; /* find adapter */ _rtl_pci_find_adapter(pdev, hw); /* Init IO handler */ _rtl_pci_io_handler_init(&pdev->dev, hw); /*like read eeprom and so on */ rtlpriv->cfg->ops->read_eeprom_info(hw); if (rtlpriv->cfg->ops->init_sw_vars(hw)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't init_sw_vars.\n")); goto fail3; } rtlpriv->cfg->ops->init_sw_leds(hw); /*aspm */ rtl_pci_init_aspm(hw); /* Init mac80211 sw */ err = rtl_init_core(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't allocate sw for mac80211.\n")); goto fail3; } /* Init PCI sw */ err = !rtl_pci_init(hw, pdev); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Failed to init PCI.\n")); goto fail3; } err = ieee80211_register_hw(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Can't register mac80211 hw.\n")); goto fail3; } else { rtlpriv->mac80211.mac80211_registered = 1; } err = sysfs_create_group(&pdev->dev.kobj, &rtl_attribute_group); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("failed to create sysfs device attributes\n")); goto fail3; } /*init rfkill */ rtl_init_rfkill(hw); rtlpci = rtl_pcidev(pcipriv); err = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt, IRQF_SHARED, KBUILD_MODNAME, hw); if (err) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("%s: failed to register IRQ handler\n", wiphy_name(hw->wiphy))); goto fail3; } else { rtlpci->irq_alloc = 1; } set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); return 0; fail3: pci_set_drvdata(pdev, NULL); rtl_deinit_core(hw); _rtl_pci_io_handler_release(hw); ieee80211_free_hw(hw); if (rtlpriv->io.pci_mem_start != 0) pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); fail2: pci_release_regions(pdev); fail1: pci_disable_device(pdev); return -ENODEV; } EXPORT_SYMBOL(rtl_pci_probe); void rtl_pci_disconnect(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); struct rtl_mac *rtlmac = rtl_mac(rtlpriv); clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); sysfs_remove_group(&pdev->dev.kobj, &rtl_attribute_group); /*ieee80211_unregister_hw will call ops_stop */ if (rtlmac->mac80211_registered == 1) { ieee80211_unregister_hw(hw); rtlmac->mac80211_registered = 0; } else { rtl_deinit_deferred_work(hw); rtlpriv->intf_ops->adapter_stop(hw); } /*deinit rfkill */ rtl_deinit_rfkill(hw); rtl_pci_deinit(hw); rtl_deinit_core(hw); rtlpriv->cfg->ops->deinit_sw_leds(hw); _rtl_pci_io_handler_release(hw); rtlpriv->cfg->ops->deinit_sw_vars(hw); if (rtlpci->irq_alloc) { free_irq(rtlpci->pdev->irq, hw); rtlpci->irq_alloc = 0; } if (rtlpriv->io.pci_mem_start != 0) { pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); pci_release_regions(pdev); } pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtl_pci_disconnect); /*************************************** kernel pci power state define: PCI_D0 ((pci_power_t __force) 0) PCI_D1 ((pci_power_t __force) 1) PCI_D2 ((pci_power_t __force) 2) PCI_D3hot ((pci_power_t __force) 3) PCI_D3cold ((pci_power_t __force) 4) PCI_UNKNOWN ((pci_power_t __force) 5) This function is called when system goes into suspend state mac80211 will call rtl_mac_stop() from the mac80211 suspend function first, So there is no need to call hw_disable here. ****************************************/ int rtl_pci_suspend(struct pci_dev *pdev, pm_message_t state) { pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } EXPORT_SYMBOL(rtl_pci_suspend); int rtl_pci_resume(struct pci_dev *pdev) { int ret; pci_set_power_state(pdev, PCI_D0); ret = pci_enable_device(pdev); if (ret) { RT_ASSERT(false, ("ERR: <======\n")); return ret; } pci_restore_state(pdev); return 0; } EXPORT_SYMBOL(rtl_pci_resume); struct rtl_intf_ops rtl_pci_ops = { .adapter_start = rtl_pci_start, .adapter_stop = rtl_pci_stop, .adapter_tx = rtl_pci_tx, .reset_trx_ring = rtl_pci_reset_trx_ring, .disable_aspm = rtl_pci_disable_aspm, .enable_aspm = rtl_pci_enable_aspm, };