- 根目录:
- drivers
- net
- wireless
- bcmdhd
- siutils.c
/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright (C) 1999-2011, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: siutils.c,v 1.813.2.36 2011-02-10 23:43:55 $
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include <sbpcmcia.h>
#include <sbsocram.h>
#include <bcmsdh.h>
#include <sdio.h>
#include <sbsdio.h>
#include <sbhnddma.h>
#include <sbsdpcmdev.h>
#include <bcmsdpcm.h>
#include <hndpmu.h>
#include "siutils_priv.h"
/* local prototypes */
static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz);
static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh);
static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
uint *origidx, void *regs);
/* global variable to indicate reservation/release of gpio's */
static uint32 si_gpioreservation = 0;
/* global flag to prevent shared resources from being initialized multiple times in si_attach() */
/*
* Allocate a si handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
* bustype - pci/pcmcia/sb/sdio/etc
* vars - pointer to a pointer area for "environment" variables
* varsz - pointer to int to return the size of the vars
*/
si_t *
si_attach(uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz)
{
si_info_t *sii;
/* alloc si_info_t */
if ((sii = MALLOC(osh, sizeof (si_info_t))) == NULL) {
SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
return (NULL);
}
if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) == NULL) {
MFREE(osh, sii, sizeof(si_info_t));
return (NULL);
}
sii->vars = vars ? *vars : NULL;
sii->varsz = varsz ? *varsz : 0;
return (si_t *)sii;
}
/* global kernel resource */
static si_info_t ksii;
static uint32 wd_msticks; /* watchdog timer ticks normalized to ms */
/* generic kernel variant of si_attach() */
si_t *
si_kattach(osl_t *osh)
{
static bool ksii_attached = FALSE;
if (!ksii_attached) {
void *regs;
regs = REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
if (si_doattach(&ksii, BCM4710_DEVICE_ID, osh, regs,
SI_BUS, NULL,
osh != SI_OSH ? &ksii.vars : NULL,
osh != SI_OSH ? &ksii.varsz : NULL) == NULL) {
SI_ERROR(("si_kattach: si_doattach failed\n"));
REG_UNMAP(regs);
return NULL;
}
REG_UNMAP(regs);
/* save ticks normalized to ms for si_watchdog_ms() */
if (PMUCTL_ENAB(&ksii.pub)) {
/* based on 32KHz ILP clock */
wd_msticks = 32;
} else {
wd_msticks = ALP_CLOCK / 1000;
}
ksii_attached = TRUE;
SI_MSG(("si_kattach done. ccrev = %d, wd_msticks = %d\n",
ksii.pub.ccrev, wd_msticks));
}
return &ksii.pub;
}
static bool
si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh)
{
/* need to set memseg flag for CF card first before any sb registers access */
if (BUSTYPE(bustype) == PCMCIA_BUS)
sii->memseg = TRUE;
if (BUSTYPE(bustype) == SDIO_BUS) {
int err;
uint8 clkset;
/* Try forcing SDIO core to do ALPAvail request only */
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
if (!err) {
uint8 clkval;
/* If register supported, wait for ALPAvail and then force ALP */
clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL);
if ((clkval & ~SBSDIO_AVBITS) == clkset) {
SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)),
PMU_MAX_TRANSITION_DLY);
if (!SBSDIO_ALPAV(clkval)) {
SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n",
clkval));
return FALSE;
}
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
clkset, &err);
OSL_DELAY(65);
}
}
/* Also, disable the extra SDIO pull-ups */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
}
return TRUE;
}
static bool
si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
uint *origidx, void *regs)
{
bool pci, pcie;
uint i;
uint pciidx, pcieidx, pcirev, pcierev;
cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
ASSERT((uintptr)cc);
/* get chipcommon rev */
sii->pub.ccrev = (int)si_corerev(&sii->pub);
/* get chipcommon chipstatus */
if (sii->pub.ccrev >= 11)
sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);
/* get chipcommon capabilites */
sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
/* get chipcommon extended capabilities */
if (sii->pub.ccrev >= 35)
sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext);
/* get pmu rev and caps */
if (sii->pub.cccaps & CC_CAP_PMU) {
sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
}
SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
sii->pub.pmucaps));
/* figure out bus/orignal core idx */
sii->pub.buscoretype = NODEV_CORE_ID;
sii->pub.buscorerev = (uint)NOREV;
sii->pub.buscoreidx = BADIDX;
pci = pcie = FALSE;
pcirev = pcierev = (uint)NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < sii->numcores; i++) {
uint cid, crev;
si_setcoreidx(&sii->pub, i);
cid = si_coreid(&sii->pub);
crev = si_corerev(&sii->pub);
/* Display cores found */
SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
i, cid, crev, sii->coresba[i], sii->regs[i]));
if (BUSTYPE(bustype) == PCI_BUS) {
if (cid == PCI_CORE_ID) {
pciidx = i;
pcirev = crev;
pci = TRUE;
} else if (cid == PCIE_CORE_ID) {
pcieidx = i;
pcierev = crev;
pcie = TRUE;
}
} else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
(cid == PCMCIA_CORE_ID)) {
sii->pub.buscorerev = crev;
sii->pub.buscoretype = cid;
sii->pub.buscoreidx = i;
}
else if (((BUSTYPE(bustype) == SDIO_BUS) ||
(BUSTYPE(bustype) == SPI_BUS)) &&
((cid == PCMCIA_CORE_ID) ||
(cid == SDIOD_CORE_ID))) {
sii->pub.buscorerev = crev;
sii->pub.buscoretype = cid;
sii->pub.buscoreidx = i;
}
/* find the core idx before entering this func. */
if ((savewin && (savewin == sii->coresba[i])) ||
(regs == sii->regs[i]))
*origidx = i;
}
if (pci) {
sii->pub.buscoretype = PCI_CORE_ID;
sii->pub.buscorerev = pcirev;
sii->pub.buscoreidx = pciidx;
} else if (pcie) {
sii->pub.buscoretype = PCIE_CORE_ID;
sii->pub.buscorerev = pcierev;
sii->pub.buscoreidx = pcieidx;
}
SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype,
sii->pub.buscorerev));
if (BUSTYPE(sii->pub.bustype) == SI_BUS && (CHIPID(sii->pub.chip) == BCM4712_CHIP_ID) &&
(sii->pub.chippkg != BCM4712LARGE_PKG_ID) && (CHIPREV(sii->pub.chiprev) <= 3))
OR_REG(sii->osh, &cc->slow_clk_ctl, SCC_SS_XTAL);
/* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was
* already running.
*/
if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) {
if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) ||
si_setcore(&sii->pub, ARMCM3_CORE_ID, 0))
si_core_disable(&sii->pub, 0);
}
/* return to the original core */
si_setcoreidx(&sii->pub, *origidx);
return TRUE;
}
static si_info_t *
si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
uint bustype, void *sdh, char **vars, uint *varsz)
{
struct si_pub *sih = &sii->pub;
uint32 w, savewin;
chipcregs_t *cc;
char *pvars = NULL;
uint origidx;
ASSERT(GOODREGS(regs));
bzero((uchar*)sii, sizeof(si_info_t));
savewin = 0;
sih->buscoreidx = BADIDX;
sii->curmap = regs;
sii->sdh = sdh;
sii->osh = osh;
/* find Chipcommon address */
if (bustype == PCI_BUS) {
savewin = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
savewin = SI_ENUM_BASE;
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE);
cc = (chipcregs_t *)regs;
} else if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) {
cc = (chipcregs_t *)sii->curmap;
} else {
cc = (chipcregs_t *)REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
}
sih->bustype = bustype;
if (bustype != BUSTYPE(bustype)) {
SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n",
bustype, BUSTYPE(bustype)));
return NULL;
}
/* bus/core/clk setup for register access */
if (!si_buscore_prep(sii, bustype, devid, sdh)) {
SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype));
return NULL;
}
/* ChipID recognition.
* We assume we can read chipid at offset 0 from the regs arg.
* If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
* some way of recognizing them needs to be added here.
*/
w = R_REG(osh, &cc->chipid);
sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
/* Might as wll fill in chip id rev & pkg */
sih->chip = w & CID_ID_MASK;
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
if (CHIPID(sih->chip) == BCM4322_CHIP_ID && (((sih->chipst & CST4322_SPROM_OTP_SEL_MASK)
>> CST4322_SPROM_OTP_SEL_SHIFT) == (CST4322_OTP_PRESENT |
CST4322_SPROM_PRESENT))) {
SI_ERROR(("%s: Invalid setting: both SPROM and OTP strapped.\n", __FUNCTION__));
return NULL;
}
#if defined(HW_OOB)
if (CHIPID(sih->chip) == BCM43362_CHIP_ID) {
uint32 gpiocontrol, addr;
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, gpiocontrol);
gpiocontrol = bcmsdh_reg_read(sdh, addr, 4);
gpiocontrol |= 0x2;
bcmsdh_reg_write(sdh, addr, 4, gpiocontrol);
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10005, 0xf, NULL);
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10006, 0x0, NULL);
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10007, 0x2, NULL);
}
#endif
if ((CHIPID(sih->chip) == BCM4329_CHIP_ID) && (sih->chiprev == 0) &&
(sih->chippkg != BCM4329_289PIN_PKG_ID)) {
sih->chippkg = BCM4329_182PIN_PKG_ID;
}
sih->issim = IS_SIM(sih->chippkg);
/* scan for cores */
if (CHIPTYPE(sii->pub.socitype) == SOCI_SB) {
SI_MSG(("Found chip type SB (0x%08x)\n", w));
sb_scan(&sii->pub, regs, devid);
} else if (CHIPTYPE(sii->pub.socitype) == SOCI_AI) {
SI_MSG(("Found chip type AI (0x%08x)\n", w));
/* pass chipc address instead of original core base */
ai_scan(&sii->pub, (void *)(uintptr)cc, devid);
} else if (CHIPTYPE(sii->pub.socitype) == SOCI_UBUS) {
SI_MSG(("Found chip type UBUS (0x%08x), chip id = 0x%4x\n", w, sih->chip));
/* pass chipc address instead of original core base */
ub_scan(&sii->pub, (void *)(uintptr)cc, devid);
} else {
SI_ERROR(("Found chip of unknown type (0x%08x)\n", w));
return NULL;
}
/* no cores found, bail out */
if (sii->numcores == 0) {
SI_ERROR(("si_doattach: could not find any cores\n"));
return NULL;
}
/* bus/core/clk setup */
origidx = SI_CC_IDX;
if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
goto exit;
}
/* assume current core is CC */
if ((sii->pub.ccrev == 0x25) && ((CHIPID(sih->chip) == BCM43234_CHIP_ID ||
CHIPID(sih->chip) == BCM43235_CHIP_ID ||
CHIPID(sih->chip) == BCM43236_CHIP_ID ||
CHIPID(sih->chip) == BCM43238_CHIP_ID) &&
(CHIPREV(sii->pub.chiprev) == 0))) {
if ((cc->chipstatus & CST43236_BP_CLK) != 0) {
uint clkdiv;
clkdiv = R_REG(osh, &cc->clkdiv);
/* otp_clk_div is even number, 120/14 < 9mhz */
clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT);
W_REG(osh, &cc->clkdiv, clkdiv);
SI_ERROR(("%s: set clkdiv to %x\n", __FUNCTION__, clkdiv));
}
OSL_DELAY(10);
}
pvars = NULL;
if (sii->pub.ccrev >= 20) {
cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
ASSERT(cc != NULL);
W_REG(osh, &cc->gpiopullup, 0);
W_REG(osh, &cc->gpiopulldown, 0);
si_setcoreidx(sih, origidx);
}
return (sii);
exit:
return NULL;
}
/* may be called with core in reset */
void
si_detach(si_t *sih)
{
si_info_t *sii;
uint idx;
sii = SI_INFO(sih);
if (sii == NULL)
return;
if (BUSTYPE(sih->bustype) == SI_BUS)
for (idx = 0; idx < SI_MAXCORES; idx++)
if (sii->regs[idx]) {
REG_UNMAP(sii->regs[idx]);
sii->regs[idx] = NULL;
}
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
if (sii != &ksii)
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
MFREE(sii->osh, sii, sizeof(si_info_t));
}
void *
si_osh(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->osh;
}
void
si_setosh(si_t *sih, osl_t *osh)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sii->osh != NULL) {
SI_ERROR(("osh is already set....\n"));
ASSERT(!sii->osh);
}
sii->osh = osh;
}
/* register driver interrupt disabling and restoring callback functions */
void
si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intr_arg = intr_arg;
sii->intrsoff_fn = (si_intrsoff_t)intrsoff_fn;
sii->intrsrestore_fn = (si_intrsrestore_t)intrsrestore_fn;
sii->intrsenabled_fn = (si_intrsenabled_t)intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
sii->dev_coreid = sii->coreid[sii->curidx];
}
void
si_deregister_intr_callback(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
sii->intrsoff_fn = NULL;
}
uint
si_intflag(si_t *sih)
{
si_info_t *sii = SI_INFO(sih);
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_intflag(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return R_REG(sii->osh, ((uint32 *)(uintptr)
(sii->oob_router + OOB_STATUSA)));
else {
ASSERT(0);
return 0;
}
}
uint
si_flag(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_flag(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_flag(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_flag(sih);
else {
ASSERT(0);
return 0;
}
}
void
si_setint(si_t *sih, int siflag)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
sb_setint(sih, siflag);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_setint(sih, siflag);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
ub_setint(sih, siflag);
else
ASSERT(0);
}
uint
si_coreid(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->coreid[sii->curidx];
}
uint
si_coreidx(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
return sii->curidx;
}
/* return the core-type instantiation # of the current core */
uint
si_coreunit(si_t *sih)
{
si_info_t *sii;
uint idx;
uint coreid;
uint coreunit;
uint i;
sii = SI_INFO(sih);
coreunit = 0;
idx = sii->curidx;
ASSERT(GOODREGS(sii->curmap));
coreid = si_coreid(sih);
/* count the cores of our type */
for (i = 0; i < idx; i++)
if (sii->coreid[i] == coreid)
coreunit++;
return (coreunit);
}
uint
si_corevendor(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_corevendor(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corevendor(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_corevendor(sih);
else {
ASSERT(0);
return 0;
}
}
bool
si_backplane64(si_t *sih)
{
return ((sih->cccaps & CC_CAP_BKPLN64) != 0);
}
uint
si_corerev(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_corerev(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corerev(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_corerev(sih);
else {
ASSERT(0);
return 0;
}
}
/* return index of coreid or BADIDX if not found */
uint
si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
{
si_info_t *sii;
uint found;
uint i;
sii = SI_INFO(sih);
found = 0;
for (i = 0; i < sii->numcores; i++)
if (sii->coreid[i] == coreid) {
if (found == coreunit)
return (i);
found++;
}
return (BADIDX);
}
/* return list of found cores */
uint
si_corelist(si_t *sih, uint coreid[])
{
si_info_t *sii;
sii = SI_INFO(sih);
bcopy((uchar*)sii->coreid, (uchar*)coreid, (sii->numcores * sizeof(uint)));
return (sii->numcores);
}
/* return current register mapping */
void *
si_coreregs(si_t *sih)
{
si_info_t *sii;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curmap));
return (sii->curmap);
}
/*
* This function changes logical "focus" to the indicated core;
* must be called with interrupts off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void *
si_setcore(si_t *sih, uint coreid, uint coreunit)
{
uint idx;
idx = si_findcoreidx(sih, coreid, coreunit);
if (!GOODIDX(idx))
return (NULL);
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_setcoreidx(sih, idx);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_setcoreidx(sih, idx);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_setcoreidx(sih, idx);
else {
ASSERT(0);
return NULL;
}
}
void *
si_setcoreidx(si_t *sih, uint coreidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_setcoreidx(sih, coreidx);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_setcoreidx(sih, coreidx);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_setcoreidx(sih, coreidx);
else {
ASSERT(0);
return NULL;
}
}
/* Turn off interrupt as required by sb_setcore, before switch core */
void *
si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
{
void *cc;
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii)) {
/* Overloading the origidx variable to remember the coreid,
* this works because the core ids cannot be confused with
* core indices.
*/
*origidx = coreid;
if (coreid == CC_CORE_ID)
return (void *)CCREGS_FAST(sii);
else if (coreid == sih->buscoretype)
return (void *)PCIEREGS(sii);
}
INTR_OFF(sii, *intr_val);
*origidx = sii->curidx;
cc = si_setcore(sih, coreid, 0);
ASSERT(cc != NULL);
return cc;
}
/* restore coreidx and restore interrupt */
void
si_restore_core(si_t *sih, uint coreid, uint intr_val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype)))
return;
si_setcoreidx(sih, coreid);
INTR_RESTORE(sii, intr_val);
}
int
si_numaddrspaces(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_numaddrspaces(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_numaddrspaces(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_numaddrspaces(sih);
else {
ASSERT(0);
return 0;
}
}
uint32
si_addrspace(si_t *sih, uint asidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_addrspace(sih, asidx);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_addrspace(sih, asidx);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_addrspace(sih, asidx);
else {
ASSERT(0);
return 0;
}
}
uint32
si_addrspacesize(si_t *sih, uint asidx)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_addrspacesize(sih, asidx);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_addrspacesize(sih, asidx);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_addrspacesize(sih, asidx);
else {
ASSERT(0);
return 0;
}
}
uint32
si_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_core_cflags(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_core_cflags(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_core_cflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
void
si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
sb_core_cflags_wo(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_cflags_wo(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
ub_core_cflags_wo(sih, mask, val);
else
ASSERT(0);
}
uint32
si_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_core_sflags(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_core_sflags(sih, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_core_sflags(sih, mask, val);
else {
ASSERT(0);
return 0;
}
}
bool
si_iscoreup(si_t *sih)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_iscoreup(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_iscoreup(sih);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_iscoreup(sih);
else {
ASSERT(0);
return FALSE;
}
}
uint
si_wrapperreg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
{
/* only for AI back plane chips */
if (CHIPTYPE(sih->socitype) == SOCI_AI)
return (ai_wrap_reg(sih, offset, mask, val));
return 0;
}
uint
si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
return sb_corereg(sih, coreidx, regoff, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
return ai_corereg(sih, coreidx, regoff, mask, val);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
return ub_corereg(sih, coreidx, regoff, mask, val);
else {
ASSERT(0);
return 0;
}
}
void
si_core_disable(si_t *sih, uint32 bits)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
sb_core_disable(sih, bits);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_disable(sih, bits);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
ub_core_disable(sih, bits);
}
void
si_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
if (CHIPTYPE(sih->socitype) == SOCI_SB)
sb_core_reset(sih, bits, resetbits);
else if (CHIPTYPE(sih->socitype) == SOCI_AI)
ai_core_reset(sih, bits, resetbits);
else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
ub_core_reset(sih, bits, resetbits);
}
/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
int
si_corebist(si_t *sih)
{
uint32 cflags;
int result = 0;
/* Read core control flags */
cflags = si_core_cflags(sih, 0, 0);
/* Set bist & fgc */
si_core_cflags(sih, ~0, (SICF_BIST_EN | SICF_FGC));
/* Wait for bist done */
SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000);
if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR)
result = BCME_ERROR;
/* Reset core control flags */
si_core_cflags(sih, 0xffff, cflags);
return result;
}
static uint32
factor6(uint32 x)
{
switch (x) {
case CC_F6_2: return 2;
case CC_F6_3: return 3;
case CC_F6_4: return 4;
case CC_F6_5: return 5;
case CC_F6_6: return 6;
case CC_F6_7: return 7;
default: return 0;
}
}
/* calculate the speed the SI would run at given a set of clockcontrol values */
uint32
si_clock_rate(uint32 pll_type, uint32 n, uint32 m)
{
uint32 n1, n2, clock, m1, m2, m3, mc;
n1 = n & CN_N1_MASK;
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
if (pll_type == PLL_TYPE6) {
if (m & CC_T6_MMASK)
return CC_T6_M1;
else
return CC_T6_M0;
} else if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE7)) {
n1 = factor6(n1);
n2 += CC_F5_BIAS;
} else if (pll_type == PLL_TYPE2) {
n1 += CC_T2_BIAS;
n2 += CC_T2_BIAS;
ASSERT((n1 >= 2) && (n1 <= 7));
ASSERT((n2 >= 5) && (n2 <= 23));
} else if (pll_type == PLL_TYPE5) {
return (100000000);
} else
ASSERT(0);
/* PLL types 3 and 7 use BASE2 (25Mhz) */
if ((pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE7)) {
clock = CC_CLOCK_BASE2 * n1 * n2;
} else
clock = CC_CLOCK_BASE1 * n1 * n2;
if (clock == 0)
return 0;
m1 = m & CC_M1_MASK;
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
if ((pll_type == PLL_TYPE1) ||
(pll_type == PLL_TYPE3) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE7)) {
m1 = factor6(m1);
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
m2 += CC_F5_BIAS;
else
m2 = factor6(m2);
m3 = factor6(m3);
switch (mc) {
case CC_MC_BYPASS: return (clock);
case CC_MC_M1: return (clock / m1);
case CC_MC_M1M2: return (clock / (m1 * m2));
case CC_MC_M1M2M3: return (clock / (m1 * m2 * m3));
case CC_MC_M1M3: return (clock / (m1 * m3));
default: return (0);
}
} else {
ASSERT(pll_type == PLL_TYPE2);
m1 += CC_T2_BIAS;
m2 += CC_T2M2_BIAS;
m3 += CC_T2_BIAS;
ASSERT((m1 >= 2) && (m1 <= 7));
ASSERT((m2 >= 3) && (m2 <= 10));
ASSERT((m3 >= 2) && (m3 <= 7));
if ((mc & CC_T2MC_M1BYP) == 0)
clock /= m1;
if ((mc & CC_T2MC_M2BYP) == 0)
clock /= m2;
if ((mc & CC_T2MC_M3BYP) == 0)
clock /= m3;
return (clock);
}
}
/* set chip watchdog reset timer to fire in 'ticks' */
void
si_watchdog(si_t *sih, uint ticks)
{
uint nb, maxt;
if (PMUCTL_ENAB(sih)) {
if ((CHIPID(sih->chip) == BCM4319_CHIP_ID) &&
(CHIPREV(sih->chiprev) == 0) && (ticks != 0)) {
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, clk_ctl_st), ~0, 0x2);
si_setcore(sih, USB20D_CORE_ID, 0);
si_core_disable(sih, 1);
si_setcore(sih, CC_CORE_ID, 0);
}
nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24);
/* The mips compiler uses the sllv instruction,
* so we specially handle the 32-bit case.
*/
if (nb == 32)
maxt = 0xffffffff;
else
maxt = ((1 << nb) - 1);
if (ticks == 1)
ticks = 2;
else if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, pmuwatchdog), ~0, ticks);
} else {
maxt = (1 << 28) - 1;
if (ticks > maxt)
ticks = maxt;
si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
}
}
/* trigger watchdog reset after ms milliseconds */
void
si_watchdog_ms(si_t *sih, uint32 ms)
{
si_watchdog(sih, wd_msticks * ms);
}
/* return the slow clock source - LPO, XTAL, or PCI */
static uint
si_slowclk_src(si_info_t *sii)
{
chipcregs_t *cc;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
if (sii->pub.ccrev < 6) {
if ((BUSTYPE(sii->pub.bustype) == PCI_BUS) &&
(OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32)) &
PCI_CFG_GPIO_SCS))
return (SCC_SS_PCI);
else
return (SCC_SS_XTAL);
} else if (sii->pub.ccrev < 10) {
cc = (chipcregs_t *)si_setcoreidx(&sii->pub, sii->curidx);
return (R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
} else /* Insta-clock */
return (SCC_SS_XTAL);
}
/* return the ILP (slowclock) min or max frequency */
static uint
si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc)
{
uint32 slowclk;
uint div;
ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
/* shouldn't be here unless we've established the chip has dynamic clk control */
ASSERT(R_REG(sii->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
slowclk = si_slowclk_src(sii);
if (sii->pub.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64));
else
return (max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32));
} else if (sii->pub.ccrev < 10) {
div = 4 *
(((R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1);
if (slowclk == SCC_SS_LPO)
return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
else if (slowclk == SCC_SS_XTAL)
return (max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div));
else if (slowclk == SCC_SS_PCI)
return (max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div));
else
ASSERT(0);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(sii->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
}
return (0);
}
static void
si_clkctl_setdelay(si_info_t *sii, void *chipcregs)
{
chipcregs_t *cc = (chipcregs_t *)chipcregs;
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
* since the xtal will also be powered down by dynamic clk control logic.
*/
slowclk = si_slowclk_src(sii);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq = si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? FALSE : TRUE, cc);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
W_REG(sii->osh, &cc->pll_on_delay, pll_on_delay);
W_REG(sii->osh, &cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void
si_clkctl_init(si_t *sih)
{
si_info_t *sii;
uint origidx = 0;
chipcregs_t *cc;
bool fast;
if (!CCCTL_ENAB(sih))
return;
sii = SI_INFO(sih);
fast = SI_FAST(sii);
if (!fast) {
origidx = sii->curidx;
if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL)
return;
} else if ((cc = (chipcregs_t *)CCREGS_FAST(sii)) == NULL)
return;
ASSERT(cc != NULL);
/* set all Instaclk chip ILP to 1 MHz */
if (sih->ccrev >= 10)
SET_REG(sii->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
si_clkctl_setdelay(sii, (void *)(uintptr)cc);
if (!fast)
si_setcoreidx(sih, origidx);
}
/* change logical "focus" to the gpio core for optimized access */
void *
si_gpiosetcore(si_t *sih)
{
return (si_setcoreidx(sih, SI_CC_IDX));
}
/* mask&set gpiocontrol bits */
uint32
si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio output enable bits */
uint32
si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpioouten);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio output bits */
uint32
si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
uint regoff;
regoff = 0;
/* gpios could be shared on router platforms
* ignore reservation if it's high priority (e.g., test apps)
*/
if ((priority != GPIO_HI_PRIORITY) &&
(BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpioout);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* reserve one gpio */
uint32
si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* only cores on SI_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
return 0xffffffff;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
return 0xffffffff;
}
/* already reserved */
if (si_gpioreservation & gpio_bitmask)
return 0xffffffff;
/* set reservation */
si_gpioreservation |= gpio_bitmask;
return si_gpioreservation;
}
/* release one gpio */
/*
* releasing the gpio doesn't change the current value on the GPIO last write value
* persists till some one overwrites it
*/
uint32
si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority)
{
si_info_t *sii;
sii = SI_INFO(sih);
/* only cores on SI_BUS share GPIO's and only applcation users need to
* reserve/release GPIO
*/
if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
return 0xffffffff;
}
/* make sure only one bit is set */
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
return 0xffffffff;
}
/* already released */
if (!(si_gpioreservation & gpio_bitmask))
return 0xffffffff;
/* clear reservation */
si_gpioreservation &= ~gpio_bitmask;
return si_gpioreservation;
}
/* return the current gpioin register value */
uint32
si_gpioin(si_t *sih)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
regoff = OFFSETOF(chipcregs_t, gpioin);
return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0));
}
/* mask&set gpio interrupt polarity bits */
uint32
si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* mask&set gpio interrupt mask bits */
uint32
si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
{
si_info_t *sii;
uint regoff;
sii = SI_INFO(sih);
regoff = 0;
/* gpios could be shared on router platforms */
if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
mask = priority ? (si_gpioreservation & mask) :
((si_gpioreservation | mask) & ~(si_gpioreservation));
val &= mask;
}
regoff = OFFSETOF(chipcregs_t, gpiointmask);
return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
}
/* assign the gpio to an led */
uint32
si_gpioled(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sih->ccrev < 16)
return 0xffffffff;
/* gpio led powersave reg */
return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
}
/* mask&set gpio timer val */
uint32
si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (sih->ccrev < 16)
return 0xffffffff;
return (si_corereg(sih, SI_CC_IDX,
OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
}
uint32
si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 20)
return 0xffffffff;
offs = (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : OFFSETOF(chipcregs_t, gpiopullup));
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
}
uint32
si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return 0xffffffff;
if (regtype == GPIO_REGEVT)
offs = OFFSETOF(chipcregs_t, gpioevent);
else if (regtype == GPIO_REGEVT_INTMSK)
offs = OFFSETOF(chipcregs_t, gpioeventintmask);
else if (regtype == GPIO_REGEVT_INTPOL)
offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
else
return 0xffffffff;
return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
}
void *
si_gpio_handler_register(si_t *sih, uint32 event,
bool level, gpio_handler_t cb, void *arg)
{
si_info_t *sii;
gpioh_item_t *gi;
ASSERT(event);
ASSERT(cb != NULL);
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return NULL;
if ((gi = MALLOC(sii->osh, sizeof(gpioh_item_t))) == NULL)
return NULL;
bzero(gi, sizeof(gpioh_item_t));
gi->event = event;
gi->handler = cb;
gi->arg = arg;
gi->level = level;
gi->next = sii->gpioh_head;
sii->gpioh_head = gi;
return (void *)(gi);
}
void
si_gpio_handler_unregister(si_t *sih, void *gpioh)
{
si_info_t *sii;
gpioh_item_t *p, *n;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return;
ASSERT(sii->gpioh_head != NULL);
if ((void*)sii->gpioh_head == gpioh) {
sii->gpioh_head = sii->gpioh_head->next;
MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
return;
} else {
p = sii->gpioh_head;
n = p->next;
while (n) {
if ((void*)n == gpioh) {
p->next = n->next;
MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
return;
}
p = n;
n = n->next;
}
}
ASSERT(0); /* Not found in list */
}
void
si_gpio_handler_process(si_t *sih)
{
si_info_t *sii;
gpioh_item_t *h;
uint32 level = si_gpioin(sih);
uint32 levelp = si_gpiointpolarity(sih, 0, 0, 0);
uint32 edge = si_gpioevent(sih, GPIO_REGEVT, 0, 0);
uint32 edgep = si_gpioevent(sih, GPIO_REGEVT_INTPOL, 0, 0);
sii = SI_INFO(sih);
for (h = sii->gpioh_head; h != NULL; h = h->next) {
if (h->handler) {
uint32 status = (h->level ? level : edge) & h->event;
uint32 polarity = (h->level ? levelp : edgep) & h->event;
/* polarity bitval is opposite of status bitval */
if (status ^ polarity)
h->handler(status, h->arg);
}
}
si_gpioevent(sih, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
}
uint32
si_gpio_int_enable(si_t *sih, bool enable)
{
si_info_t *sii;
uint offs;
sii = SI_INFO(sih);
if (sih->ccrev < 11)
return 0xffffffff;
offs = OFFSETOF(chipcregs_t, intmask);
return (si_corereg(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
}
/* Return the size of the specified SOCRAM bank */
static uint
socram_banksize(si_info_t *sii, sbsocramregs_t *regs, uint8 index, uint8 mem_type)
{
uint banksize, bankinfo;
uint bankidx = index | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM);
W_REG(sii->osh, ®s->bankidx, bankidx);
bankinfo = R_REG(sii->osh, ®s->bankinfo);
banksize = SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1);
return banksize;
}
void
si_socdevram(si_t *sih, bool set, uint8 *enable, uint8 *protect)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
if (!set)
*enable = *protect = 0;
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
if (corerev >= 10) {
uint32 extcinfo;
uint8 nb;
uint8 i;
uint32 bankidx, bankinfo;
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT);
for (i = 0; i < nb; i++) {
bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
W_REG(sii->osh, ®s->bankidx, bankidx);
bankinfo = R_REG(sii->osh, ®s->bankinfo);
if (set) {
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMSEL_MASK;
bankinfo &= ~SOCRAM_BANKINFO_DEVRAMPRO_MASK;
if (*enable) {
bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMSEL_SHIFT);
if (*protect)
bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMPRO_SHIFT);
}
W_REG(sii->osh, ®s->bankinfo, bankinfo);
}
else if (i == 0) {
if (bankinfo & SOCRAM_BANKINFO_DEVRAMSEL_MASK) {
*enable = 1;
if (bankinfo & SOCRAM_BANKINFO_DEVRAMPRO_MASK)
*protect = 1;
}
}
}
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
}
bool
si_socdevram_pkg(si_t *sih)
{
if (si_socdevram_size(sih) > 0)
return TRUE;
else
return FALSE;
}
uint32
si_socdevram_size(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
uint32 memsize = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
if (corerev >= 10) {
uint32 extcinfo;
uint8 nb;
uint8 i;
extcinfo = R_REG(sii->osh, ®s->extracoreinfo);
nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT));
for (i = 0; i < nb; i++)
memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM);
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
return memsize;
}
/* Return the RAM size of the SOCRAM core */
uint32
si_socram_size(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
sbsocramregs_t *regs;
bool wasup;
uint corerev;
uint32 coreinfo;
uint memsize = 0;
sii = SI_INFO(sih);
/* Block ints and save current core */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
/* Switch to SOCRAM core */
if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
goto done;
/* Get info for determining size */
if (!(wasup = si_iscoreup(sih)))
si_core_reset(sih, 0, 0);
corerev = si_corerev(sih);
coreinfo = R_REG(sii->osh, ®s->coreinfo);
/* Calculate size from coreinfo based on rev */
if (corerev == 0)
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
else if (corerev < 3) {
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
} else if ((corerev <= 7) || (corerev == 12)) {
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
if (lss != 0)
nb --;
memsize = nb * (1 << (bsz + SR_BSZ_BASE));
if (lss != 0)
memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
} else {
uint8 i;
uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
for (i = 0; i < nb; i++)
memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
}
/* Return to previous state and core */
if (!wasup)
si_core_disable(sih, 0);
si_setcoreidx(sih, origidx);
done:
INTR_RESTORE(sii, intr_val);
return memsize;
}
void
si_btcgpiowar(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
chipcregs_t *cc;
sii = SI_INFO(sih);
/* Make sure that there is ChipCommon core present &&
* UART_TX is strapped to 1
*/
if (!(sih->cccaps & CC_CAP_UARTGPIO))
return;
/* si_corereg cannot be used as we have to guarantee 8-bit read/writes */
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
ASSERT(cc != NULL);
W_REG(sii->osh, &cc->uart0mcr, R_REG(sii->osh, &cc->uart0mcr) | 0x04);
/* restore the original index */
si_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
}
uint
si_pll_reset(si_t *sih)
{
uint err = 0;
return (err);
}
/* check if the device is removed */
bool
si_deviceremoved(si_t *sih)
{
uint32 w;
si_info_t *sii;
sii = SI_INFO(sih);
switch (BUSTYPE(sih->bustype)) {
case PCI_BUS:
ASSERT(sii->osh != NULL);
w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_VID, sizeof(uint32));
if ((w & 0xFFFF) != VENDOR_BROADCOM)
return TRUE;
break;
}
return FALSE;
}
bool
si_is_sprom_available(si_t *sih)
{
if (sih->ccrev >= 31) {
si_info_t *sii;
uint origidx;
chipcregs_t *cc;
uint32 sromctrl;
if ((sih->cccaps & CC_CAP_SROM) == 0)
return FALSE;
sii = SI_INFO(sih);
origidx = sii->curidx;
cc = si_setcoreidx(sih, SI_CC_IDX);
sromctrl = R_REG(sii->osh, &cc->sromcontrol);
si_setcoreidx(sih, origidx);
return (sromctrl & SRC_PRESENT);
}
switch (CHIPID(sih->chip)) {
case BCM4312_CHIP_ID:
return ((sih->chipst & CST4312_SPROM_OTP_SEL_MASK) != CST4312_OTP_SEL);
case BCM4325_CHIP_ID:
return (sih->chipst & CST4325_SPROM_SEL) != 0;
case BCM4322_CHIP_ID:
case BCM43221_CHIP_ID:
case BCM43231_CHIP_ID:
case BCM43222_CHIP_ID:
case BCM43111_CHIP_ID:
case BCM43112_CHIP_ID:
case BCM4342_CHIP_ID:
{
uint32 spromotp;
spromotp = (sih->chipst & CST4322_SPROM_OTP_SEL_MASK) >>
CST4322_SPROM_OTP_SEL_SHIFT;
return (spromotp & CST4322_SPROM_PRESENT) != 0;
}
case BCM4329_CHIP_ID:
return (sih->chipst & CST4329_SPROM_SEL) != 0;
case BCM4315_CHIP_ID:
return (sih->chipst & CST4315_SPROM_SEL) != 0;
case BCM4319_CHIP_ID:
return (sih->chipst & CST4319_SPROM_SEL) != 0;
case BCM4336_CHIP_ID:
case BCM43362_CHIP_ID:
return (sih->chipst & CST4336_SPROM_PRESENT) != 0;
case BCM4330_CHIP_ID:
return (sih->chipst & CST4330_SPROM_PRESENT) != 0;
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
case BCM43239_CHIP_ID:
return ((sih->chipst & CST43239_SPROM_MASK) &&
!(sih->chipst & CST43239_SFLASH_MASK));
default:
return TRUE;
}
}