/* * Misc utility routines for accessing chip-specific features * of the SiliconBackplane-based Broadcom chips. * * Copyright (C) 1999-2011, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: siutils.c,v 1.813.2.36 2011-02-10 23:43:55 $ */ #include <typedefs.h> #include <bcmdefs.h> #include <osl.h> #include <bcmutils.h> #include <siutils.h> #include <bcmdevs.h> #include <hndsoc.h> #include <sbchipc.h> #include <pcicfg.h> #include <sbpcmcia.h> #include <sbsocram.h> #include <bcmsdh.h> #include <sdio.h> #include <sbsdio.h> #include <sbhnddma.h> #include <sbsdpcmdev.h> #include <bcmsdpcm.h> #include <hndpmu.h> #include "siutils_priv.h" /* local prototypes */ static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs, uint bustype, void *sdh, char **vars, uint *varsz); static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh); static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin, uint *origidx, void *regs); /* global variable to indicate reservation/release of gpio's */ static uint32 si_gpioreservation = 0; /* global flag to prevent shared resources from being initialized multiple times in si_attach() */ /* * Allocate a si handle. * devid - pci device id (used to determine chip#) * osh - opaque OS handle * regs - virtual address of initial core registers * bustype - pci/pcmcia/sb/sdio/etc * vars - pointer to a pointer area for "environment" variables * varsz - pointer to int to return the size of the vars */ si_t * si_attach(uint devid, osl_t *osh, void *regs, uint bustype, void *sdh, char **vars, uint *varsz) { si_info_t *sii; /* alloc si_info_t */ if ((sii = MALLOC(osh, sizeof (si_info_t))) == NULL) { SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh))); return (NULL); } if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) == NULL) { MFREE(osh, sii, sizeof(si_info_t)); return (NULL); } sii->vars = vars ? *vars : NULL; sii->varsz = varsz ? *varsz : 0; return (si_t *)sii; } /* global kernel resource */ static si_info_t ksii; static uint32 wd_msticks; /* watchdog timer ticks normalized to ms */ /* generic kernel variant of si_attach() */ si_t * si_kattach(osl_t *osh) { static bool ksii_attached = FALSE; if (!ksii_attached) { void *regs; regs = REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE); if (si_doattach(&ksii, BCM4710_DEVICE_ID, osh, regs, SI_BUS, NULL, osh != SI_OSH ? &ksii.vars : NULL, osh != SI_OSH ? &ksii.varsz : NULL) == NULL) { SI_ERROR(("si_kattach: si_doattach failed\n")); REG_UNMAP(regs); return NULL; } REG_UNMAP(regs); /* save ticks normalized to ms for si_watchdog_ms() */ if (PMUCTL_ENAB(&ksii.pub)) { /* based on 32KHz ILP clock */ wd_msticks = 32; } else { wd_msticks = ALP_CLOCK / 1000; } ksii_attached = TRUE; SI_MSG(("si_kattach done. ccrev = %d, wd_msticks = %d\n", ksii.pub.ccrev, wd_msticks)); } return &ksii.pub; } static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh) { /* need to set memseg flag for CF card first before any sb registers access */ if (BUSTYPE(bustype) == PCMCIA_BUS) sii->memseg = TRUE; if (BUSTYPE(bustype) == SDIO_BUS) { int err; uint8 clkset; /* Try forcing SDIO core to do ALPAvail request only */ clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); if (!err) { uint8 clkval; /* If register supported, wait for ALPAvail and then force ALP */ clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL); if ((clkval & ~SBSDIO_AVBITS) == clkset) { SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)), PMU_MAX_TRANSITION_DLY); if (!SBSDIO_ALPAV(clkval)) { SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n", clkval)); return FALSE; } clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); OSL_DELAY(65); } } /* Also, disable the extra SDIO pull-ups */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL); } return TRUE; } static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin, uint *origidx, void *regs) { bool pci, pcie; uint i; uint pciidx, pcieidx, pcirev, pcierev; cc = si_setcoreidx(&sii->pub, SI_CC_IDX); ASSERT((uintptr)cc); /* get chipcommon rev */ sii->pub.ccrev = (int)si_corerev(&sii->pub); /* get chipcommon chipstatus */ if (sii->pub.ccrev >= 11) sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus); /* get chipcommon capabilites */ sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities); /* get chipcommon extended capabilities */ if (sii->pub.ccrev >= 35) sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext); /* get pmu rev and caps */ if (sii->pub.cccaps & CC_CAP_PMU) { sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities); sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK; } SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n", sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev, sii->pub.pmucaps)); /* figure out bus/orignal core idx */ sii->pub.buscoretype = NODEV_CORE_ID; sii->pub.buscorerev = (uint)NOREV; sii->pub.buscoreidx = BADIDX; pci = pcie = FALSE; pcirev = pcierev = (uint)NOREV; pciidx = pcieidx = BADIDX; for (i = 0; i < sii->numcores; i++) { uint cid, crev; si_setcoreidx(&sii->pub, i); cid = si_coreid(&sii->pub); crev = si_corerev(&sii->pub); /* Display cores found */ SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n", i, cid, crev, sii->coresba[i], sii->regs[i])); if (BUSTYPE(bustype) == PCI_BUS) { if (cid == PCI_CORE_ID) { pciidx = i; pcirev = crev; pci = TRUE; } else if (cid == PCIE_CORE_ID) { pcieidx = i; pcierev = crev; pcie = TRUE; } } else if ((BUSTYPE(bustype) == PCMCIA_BUS) && (cid == PCMCIA_CORE_ID)) { sii->pub.buscorerev = crev; sii->pub.buscoretype = cid; sii->pub.buscoreidx = i; } else if (((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) && ((cid == PCMCIA_CORE_ID) || (cid == SDIOD_CORE_ID))) { sii->pub.buscorerev = crev; sii->pub.buscoretype = cid; sii->pub.buscoreidx = i; } /* find the core idx before entering this func. */ if ((savewin && (savewin == sii->coresba[i])) || (regs == sii->regs[i])) *origidx = i; } if (pci) { sii->pub.buscoretype = PCI_CORE_ID; sii->pub.buscorerev = pcirev; sii->pub.buscoreidx = pciidx; } else if (pcie) { sii->pub.buscoretype = PCIE_CORE_ID; sii->pub.buscorerev = pcierev; sii->pub.buscoreidx = pcieidx; } SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype, sii->pub.buscorerev)); if (BUSTYPE(sii->pub.bustype) == SI_BUS && (CHIPID(sii->pub.chip) == BCM4712_CHIP_ID) && (sii->pub.chippkg != BCM4712LARGE_PKG_ID) && (CHIPREV(sii->pub.chiprev) <= 3)) OR_REG(sii->osh, &cc->slow_clk_ctl, SCC_SS_XTAL); /* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was * already running. */ if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) { if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) || si_setcore(&sii->pub, ARMCM3_CORE_ID, 0)) si_core_disable(&sii->pub, 0); } /* return to the original core */ si_setcoreidx(&sii->pub, *origidx); return TRUE; } static si_info_t * si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs, uint bustype, void *sdh, char **vars, uint *varsz) { struct si_pub *sih = &sii->pub; uint32 w, savewin; chipcregs_t *cc; char *pvars = NULL; uint origidx; ASSERT(GOODREGS(regs)); bzero((uchar*)sii, sizeof(si_info_t)); savewin = 0; sih->buscoreidx = BADIDX; sii->curmap = regs; sii->sdh = sdh; sii->osh = osh; /* find Chipcommon address */ if (bustype == PCI_BUS) { savewin = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); if (!GOODCOREADDR(savewin, SI_ENUM_BASE)) savewin = SI_ENUM_BASE; OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE); cc = (chipcregs_t *)regs; } else if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) { cc = (chipcregs_t *)sii->curmap; } else { cc = (chipcregs_t *)REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE); } sih->bustype = bustype; if (bustype != BUSTYPE(bustype)) { SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n", bustype, BUSTYPE(bustype))); return NULL; } /* bus/core/clk setup for register access */ if (!si_buscore_prep(sii, bustype, devid, sdh)) { SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype)); return NULL; } /* ChipID recognition. * We assume we can read chipid at offset 0 from the regs arg. * If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon), * some way of recognizing them needs to be added here. */ w = R_REG(osh, &cc->chipid); sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT; /* Might as wll fill in chip id rev & pkg */ sih->chip = w & CID_ID_MASK; sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT; sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT; if (CHIPID(sih->chip) == BCM4322_CHIP_ID && (((sih->chipst & CST4322_SPROM_OTP_SEL_MASK) >> CST4322_SPROM_OTP_SEL_SHIFT) == (CST4322_OTP_PRESENT | CST4322_SPROM_PRESENT))) { SI_ERROR(("%s: Invalid setting: both SPROM and OTP strapped.\n", __FUNCTION__)); return NULL; } #if defined(HW_OOB) if (CHIPID(sih->chip) == BCM43362_CHIP_ID) { uint32 gpiocontrol, addr; addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, gpiocontrol); gpiocontrol = bcmsdh_reg_read(sdh, addr, 4); gpiocontrol |= 0x2; bcmsdh_reg_write(sdh, addr, 4, gpiocontrol); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10005, 0xf, NULL); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10006, 0x0, NULL); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, 0x10007, 0x2, NULL); } #endif if ((CHIPID(sih->chip) == BCM4329_CHIP_ID) && (sih->chiprev == 0) && (sih->chippkg != BCM4329_289PIN_PKG_ID)) { sih->chippkg = BCM4329_182PIN_PKG_ID; } sih->issim = IS_SIM(sih->chippkg); /* scan for cores */ if (CHIPTYPE(sii->pub.socitype) == SOCI_SB) { SI_MSG(("Found chip type SB (0x%08x)\n", w)); sb_scan(&sii->pub, regs, devid); } else if (CHIPTYPE(sii->pub.socitype) == SOCI_AI) { SI_MSG(("Found chip type AI (0x%08x)\n", w)); /* pass chipc address instead of original core base */ ai_scan(&sii->pub, (void *)(uintptr)cc, devid); } else if (CHIPTYPE(sii->pub.socitype) == SOCI_UBUS) { SI_MSG(("Found chip type UBUS (0x%08x), chip id = 0x%4x\n", w, sih->chip)); /* pass chipc address instead of original core base */ ub_scan(&sii->pub, (void *)(uintptr)cc, devid); } else { SI_ERROR(("Found chip of unknown type (0x%08x)\n", w)); return NULL; } /* no cores found, bail out */ if (sii->numcores == 0) { SI_ERROR(("si_doattach: could not find any cores\n")); return NULL; } /* bus/core/clk setup */ origidx = SI_CC_IDX; if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) { SI_ERROR(("si_doattach: si_buscore_setup failed\n")); goto exit; } /* assume current core is CC */ if ((sii->pub.ccrev == 0x25) && ((CHIPID(sih->chip) == BCM43234_CHIP_ID || CHIPID(sih->chip) == BCM43235_CHIP_ID || CHIPID(sih->chip) == BCM43236_CHIP_ID || CHIPID(sih->chip) == BCM43238_CHIP_ID) && (CHIPREV(sii->pub.chiprev) == 0))) { if ((cc->chipstatus & CST43236_BP_CLK) != 0) { uint clkdiv; clkdiv = R_REG(osh, &cc->clkdiv); /* otp_clk_div is even number, 120/14 < 9mhz */ clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT); W_REG(osh, &cc->clkdiv, clkdiv); SI_ERROR(("%s: set clkdiv to %x\n", __FUNCTION__, clkdiv)); } OSL_DELAY(10); } pvars = NULL; if (sii->pub.ccrev >= 20) { cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); ASSERT(cc != NULL); W_REG(osh, &cc->gpiopullup, 0); W_REG(osh, &cc->gpiopulldown, 0); si_setcoreidx(sih, origidx); } return (sii); exit: return NULL; } /* may be called with core in reset */ void si_detach(si_t *sih) { si_info_t *sii; uint idx; sii = SI_INFO(sih); if (sii == NULL) return; if (BUSTYPE(sih->bustype) == SI_BUS) for (idx = 0; idx < SI_MAXCORES; idx++) if (sii->regs[idx]) { REG_UNMAP(sii->regs[idx]); sii->regs[idx] = NULL; } #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS) if (sii != &ksii) #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */ MFREE(sii->osh, sii, sizeof(si_info_t)); } void * si_osh(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->osh; } void si_setosh(si_t *sih, osl_t *osh) { si_info_t *sii; sii = SI_INFO(sih); if (sii->osh != NULL) { SI_ERROR(("osh is already set....\n")); ASSERT(!sii->osh); } sii->osh = osh; } /* register driver interrupt disabling and restoring callback functions */ void si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn, void *intrsenabled_fn, void *intr_arg) { si_info_t *sii; sii = SI_INFO(sih); sii->intr_arg = intr_arg; sii->intrsoff_fn = (si_intrsoff_t)intrsoff_fn; sii->intrsrestore_fn = (si_intrsrestore_t)intrsrestore_fn; sii->intrsenabled_fn = (si_intrsenabled_t)intrsenabled_fn; /* save current core id. when this function called, the current core * must be the core which provides driver functions(il, et, wl, etc.) */ sii->dev_coreid = sii->coreid[sii->curidx]; } void si_deregister_intr_callback(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); sii->intrsoff_fn = NULL; } uint si_intflag(si_t *sih) { si_info_t *sii = SI_INFO(sih); if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_intflag(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return R_REG(sii->osh, ((uint32 *)(uintptr) (sii->oob_router + OOB_STATUSA))); else { ASSERT(0); return 0; } } uint si_flag(si_t *sih) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_flag(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_flag(sih); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_flag(sih); else { ASSERT(0); return 0; } } void si_setint(si_t *sih, int siflag) { if (CHIPTYPE(sih->socitype) == SOCI_SB) sb_setint(sih, siflag); else if (CHIPTYPE(sih->socitype) == SOCI_AI) ai_setint(sih, siflag); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) ub_setint(sih, siflag); else ASSERT(0); } uint si_coreid(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->coreid[sii->curidx]; } uint si_coreidx(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->curidx; } /* return the core-type instantiation # of the current core */ uint si_coreunit(si_t *sih) { si_info_t *sii; uint idx; uint coreid; uint coreunit; uint i; sii = SI_INFO(sih); coreunit = 0; idx = sii->curidx; ASSERT(GOODREGS(sii->curmap)); coreid = si_coreid(sih); /* count the cores of our type */ for (i = 0; i < idx; i++) if (sii->coreid[i] == coreid) coreunit++; return (coreunit); } uint si_corevendor(si_t *sih) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_corevendor(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_corevendor(sih); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_corevendor(sih); else { ASSERT(0); return 0; } } bool si_backplane64(si_t *sih) { return ((sih->cccaps & CC_CAP_BKPLN64) != 0); } uint si_corerev(si_t *sih) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_corerev(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_corerev(sih); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_corerev(sih); else { ASSERT(0); return 0; } } /* return index of coreid or BADIDX if not found */ uint si_findcoreidx(si_t *sih, uint coreid, uint coreunit) { si_info_t *sii; uint found; uint i; sii = SI_INFO(sih); found = 0; for (i = 0; i < sii->numcores; i++) if (sii->coreid[i] == coreid) { if (found == coreunit) return (i); found++; } return (BADIDX); } /* return list of found cores */ uint si_corelist(si_t *sih, uint coreid[]) { si_info_t *sii; sii = SI_INFO(sih); bcopy((uchar*)sii->coreid, (uchar*)coreid, (sii->numcores * sizeof(uint))); return (sii->numcores); } /* return current register mapping */ void * si_coreregs(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); ASSERT(GOODREGS(sii->curmap)); return (sii->curmap); } /* * This function changes logical "focus" to the indicated core; * must be called with interrupts off. * Moreover, callers should keep interrupts off during switching out of and back to d11 core */ void * si_setcore(si_t *sih, uint coreid, uint coreunit) { uint idx; idx = si_findcoreidx(sih, coreid, coreunit); if (!GOODIDX(idx)) return (NULL); if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_setcoreidx(sih, idx); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_setcoreidx(sih, idx); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_setcoreidx(sih, idx); else { ASSERT(0); return NULL; } } void * si_setcoreidx(si_t *sih, uint coreidx) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_setcoreidx(sih, coreidx); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_setcoreidx(sih, coreidx); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_setcoreidx(sih, coreidx); else { ASSERT(0); return NULL; } } /* Turn off interrupt as required by sb_setcore, before switch core */ void * si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val) { void *cc; si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii)) { /* Overloading the origidx variable to remember the coreid, * this works because the core ids cannot be confused with * core indices. */ *origidx = coreid; if (coreid == CC_CORE_ID) return (void *)CCREGS_FAST(sii); else if (coreid == sih->buscoretype) return (void *)PCIEREGS(sii); } INTR_OFF(sii, *intr_val); *origidx = sii->curidx; cc = si_setcore(sih, coreid, 0); ASSERT(cc != NULL); return cc; } /* restore coreidx and restore interrupt */ void si_restore_core(si_t *sih, uint coreid, uint intr_val) { si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype))) return; si_setcoreidx(sih, coreid); INTR_RESTORE(sii, intr_val); } int si_numaddrspaces(si_t *sih) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_numaddrspaces(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_numaddrspaces(sih); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_numaddrspaces(sih); else { ASSERT(0); return 0; } } uint32 si_addrspace(si_t *sih, uint asidx) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_addrspace(sih, asidx); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_addrspace(sih, asidx); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_addrspace(sih, asidx); else { ASSERT(0); return 0; } } uint32 si_addrspacesize(si_t *sih, uint asidx) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_addrspacesize(sih, asidx); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_addrspacesize(sih, asidx); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_addrspacesize(sih, asidx); else { ASSERT(0); return 0; } } uint32 si_core_cflags(si_t *sih, uint32 mask, uint32 val) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_core_cflags(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_core_cflags(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_core_cflags(sih, mask, val); else { ASSERT(0); return 0; } } void si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) { if (CHIPTYPE(sih->socitype) == SOCI_SB) sb_core_cflags_wo(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_AI) ai_core_cflags_wo(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) ub_core_cflags_wo(sih, mask, val); else ASSERT(0); } uint32 si_core_sflags(si_t *sih, uint32 mask, uint32 val) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_core_sflags(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_core_sflags(sih, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_core_sflags(sih, mask, val); else { ASSERT(0); return 0; } } bool si_iscoreup(si_t *sih) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_iscoreup(sih); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_iscoreup(sih); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_iscoreup(sih); else { ASSERT(0); return FALSE; } } uint si_wrapperreg(si_t *sih, uint32 offset, uint32 mask, uint32 val) { /* only for AI back plane chips */ if (CHIPTYPE(sih->socitype) == SOCI_AI) return (ai_wrap_reg(sih, offset, mask, val)); return 0; } uint si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) { if (CHIPTYPE(sih->socitype) == SOCI_SB) return sb_corereg(sih, coreidx, regoff, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_AI) return ai_corereg(sih, coreidx, regoff, mask, val); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) return ub_corereg(sih, coreidx, regoff, mask, val); else { ASSERT(0); return 0; } } void si_core_disable(si_t *sih, uint32 bits) { if (CHIPTYPE(sih->socitype) == SOCI_SB) sb_core_disable(sih, bits); else if (CHIPTYPE(sih->socitype) == SOCI_AI) ai_core_disable(sih, bits); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) ub_core_disable(sih, bits); } void si_core_reset(si_t *sih, uint32 bits, uint32 resetbits) { if (CHIPTYPE(sih->socitype) == SOCI_SB) sb_core_reset(sih, bits, resetbits); else if (CHIPTYPE(sih->socitype) == SOCI_AI) ai_core_reset(sih, bits, resetbits); else if (CHIPTYPE(sih->socitype) == SOCI_UBUS) ub_core_reset(sih, bits, resetbits); } /* Run bist on current core. Caller needs to take care of core-specific bist hazards */ int si_corebist(si_t *sih) { uint32 cflags; int result = 0; /* Read core control flags */ cflags = si_core_cflags(sih, 0, 0); /* Set bist & fgc */ si_core_cflags(sih, ~0, (SICF_BIST_EN | SICF_FGC)); /* Wait for bist done */ SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000); if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR) result = BCME_ERROR; /* Reset core control flags */ si_core_cflags(sih, 0xffff, cflags); return result; } static uint32 factor6(uint32 x) { switch (x) { case CC_F6_2: return 2; case CC_F6_3: return 3; case CC_F6_4: return 4; case CC_F6_5: return 5; case CC_F6_6: return 6; case CC_F6_7: return 7; default: return 0; } } /* calculate the speed the SI would run at given a set of clockcontrol values */ uint32 si_clock_rate(uint32 pll_type, uint32 n, uint32 m) { uint32 n1, n2, clock, m1, m2, m3, mc; n1 = n & CN_N1_MASK; n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT; if (pll_type == PLL_TYPE6) { if (m & CC_T6_MMASK) return CC_T6_M1; else return CC_T6_M0; } else if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) { n1 = factor6(n1); n2 += CC_F5_BIAS; } else if (pll_type == PLL_TYPE2) { n1 += CC_T2_BIAS; n2 += CC_T2_BIAS; ASSERT((n1 >= 2) && (n1 <= 7)); ASSERT((n2 >= 5) && (n2 <= 23)); } else if (pll_type == PLL_TYPE5) { return (100000000); } else ASSERT(0); /* PLL types 3 and 7 use BASE2 (25Mhz) */ if ((pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE7)) { clock = CC_CLOCK_BASE2 * n1 * n2; } else clock = CC_CLOCK_BASE1 * n1 * n2; if (clock == 0) return 0; m1 = m & CC_M1_MASK; m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT; m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT; mc = (m & CC_MC_MASK) >> CC_MC_SHIFT; if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3) || (pll_type == PLL_TYPE4) || (pll_type == PLL_TYPE7)) { m1 = factor6(m1); if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3)) m2 += CC_F5_BIAS; else m2 = factor6(m2); m3 = factor6(m3); switch (mc) { case CC_MC_BYPASS: return (clock); case CC_MC_M1: return (clock / m1); case CC_MC_M1M2: return (clock / (m1 * m2)); case CC_MC_M1M2M3: return (clock / (m1 * m2 * m3)); case CC_MC_M1M3: return (clock / (m1 * m3)); default: return (0); } } else { ASSERT(pll_type == PLL_TYPE2); m1 += CC_T2_BIAS; m2 += CC_T2M2_BIAS; m3 += CC_T2_BIAS; ASSERT((m1 >= 2) && (m1 <= 7)); ASSERT((m2 >= 3) && (m2 <= 10)); ASSERT((m3 >= 2) && (m3 <= 7)); if ((mc & CC_T2MC_M1BYP) == 0) clock /= m1; if ((mc & CC_T2MC_M2BYP) == 0) clock /= m2; if ((mc & CC_T2MC_M3BYP) == 0) clock /= m3; return (clock); } } /* set chip watchdog reset timer to fire in 'ticks' */ void si_watchdog(si_t *sih, uint ticks) { uint nb, maxt; if (PMUCTL_ENAB(sih)) { if ((CHIPID(sih->chip) == BCM4319_CHIP_ID) && (CHIPREV(sih->chiprev) == 0) && (ticks != 0)) { si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, clk_ctl_st), ~0, 0x2); si_setcore(sih, USB20D_CORE_ID, 0); si_core_disable(sih, 1); si_setcore(sih, CC_CORE_ID, 0); } nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24); /* The mips compiler uses the sllv instruction, * so we specially handle the 32-bit case. */ if (nb == 32) maxt = 0xffffffff; else maxt = ((1 << nb) - 1); if (ticks == 1) ticks = 2; else if (ticks > maxt) ticks = maxt; si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, pmuwatchdog), ~0, ticks); } else { maxt = (1 << 28) - 1; if (ticks > maxt) ticks = maxt; si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, ticks); } } /* trigger watchdog reset after ms milliseconds */ void si_watchdog_ms(si_t *sih, uint32 ms) { si_watchdog(sih, wd_msticks * ms); } /* return the slow clock source - LPO, XTAL, or PCI */ static uint si_slowclk_src(si_info_t *sii) { chipcregs_t *cc; ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID); if (sii->pub.ccrev < 6) { if ((BUSTYPE(sii->pub.bustype) == PCI_BUS) && (OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32)) & PCI_CFG_GPIO_SCS)) return (SCC_SS_PCI); else return (SCC_SS_XTAL); } else if (sii->pub.ccrev < 10) { cc = (chipcregs_t *)si_setcoreidx(&sii->pub, sii->curidx); return (R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_SS_MASK); } else /* Insta-clock */ return (SCC_SS_XTAL); } /* return the ILP (slowclock) min or max frequency */ static uint si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc) { uint32 slowclk; uint div; ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID); /* shouldn't be here unless we've established the chip has dynamic clk control */ ASSERT(R_REG(sii->osh, &cc->capabilities) & CC_CAP_PWR_CTL); slowclk = si_slowclk_src(sii); if (sii->pub.ccrev < 6) { if (slowclk == SCC_SS_PCI) return (max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64)); else return (max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32)); } else if (sii->pub.ccrev < 10) { div = 4 * (((R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1); if (slowclk == SCC_SS_LPO) return (max_freq ? LPOMAXFREQ : LPOMINFREQ); else if (slowclk == SCC_SS_XTAL) return (max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div)); else if (slowclk == SCC_SS_PCI) return (max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div)); else ASSERT(0); } else { /* Chipc rev 10 is InstaClock */ div = R_REG(sii->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT; div = 4 * (div + 1); return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div)); } return (0); } static void si_clkctl_setdelay(si_info_t *sii, void *chipcregs) { chipcregs_t *cc = (chipcregs_t *)chipcregs; uint slowmaxfreq, pll_delay, slowclk; uint pll_on_delay, fref_sel_delay; pll_delay = PLL_DELAY; /* If the slow clock is not sourced by the xtal then add the xtal_on_delay * since the xtal will also be powered down by dynamic clk control logic. */ slowclk = si_slowclk_src(sii); if (slowclk != SCC_SS_XTAL) pll_delay += XTAL_ON_DELAY; /* Starting with 4318 it is ILP that is used for the delays */ slowmaxfreq = si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? FALSE : TRUE, cc); pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000; fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000; W_REG(sii->osh, &cc->pll_on_delay, pll_on_delay); W_REG(sii->osh, &cc->fref_sel_delay, fref_sel_delay); } /* initialize power control delay registers */ void si_clkctl_init(si_t *sih) { si_info_t *sii; uint origidx = 0; chipcregs_t *cc; bool fast; if (!CCCTL_ENAB(sih)) return; sii = SI_INFO(sih); fast = SI_FAST(sii); if (!fast) { origidx = sii->curidx; if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL) return; } else if ((cc = (chipcregs_t *)CCREGS_FAST(sii)) == NULL) return; ASSERT(cc != NULL); /* set all Instaclk chip ILP to 1 MHz */ if (sih->ccrev >= 10) SET_REG(sii->osh, &cc->system_clk_ctl, SYCC_CD_MASK, (ILP_DIV_1MHZ << SYCC_CD_SHIFT)); si_clkctl_setdelay(sii, (void *)(uintptr)cc); if (!fast) si_setcoreidx(sih, origidx); } /* change logical "focus" to the gpio core for optimized access */ void * si_gpiosetcore(si_t *sih) { return (si_setcoreidx(sih, SI_CC_IDX)); } /* mask&set gpiocontrol bits */ uint32 si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority) { uint regoff; regoff = 0; /* gpios could be shared on router platforms * ignore reservation if it's high priority (e.g., test apps) */ if ((priority != GPIO_HI_PRIORITY) && (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = OFFSETOF(chipcregs_t, gpiocontrol); return (si_corereg(sih, SI_CC_IDX, regoff, mask, val)); } /* mask&set gpio output enable bits */ uint32 si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority) { uint regoff; regoff = 0; /* gpios could be shared on router platforms * ignore reservation if it's high priority (e.g., test apps) */ if ((priority != GPIO_HI_PRIORITY) && (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = OFFSETOF(chipcregs_t, gpioouten); return (si_corereg(sih, SI_CC_IDX, regoff, mask, val)); } /* mask&set gpio output bits */ uint32 si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority) { uint regoff; regoff = 0; /* gpios could be shared on router platforms * ignore reservation if it's high priority (e.g., test apps) */ if ((priority != GPIO_HI_PRIORITY) && (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = OFFSETOF(chipcregs_t, gpioout); return (si_corereg(sih, SI_CC_IDX, regoff, mask, val)); } /* reserve one gpio */ uint32 si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority) { si_info_t *sii; sii = SI_INFO(sih); /* only cores on SI_BUS share GPIO's and only applcation users need to * reserve/release GPIO */ if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) { ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority)); return 0xffffffff; } /* make sure only one bit is set */ if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) { ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1))); return 0xffffffff; } /* already reserved */ if (si_gpioreservation & gpio_bitmask) return 0xffffffff; /* set reservation */ si_gpioreservation |= gpio_bitmask; return si_gpioreservation; } /* release one gpio */ /* * releasing the gpio doesn't change the current value on the GPIO last write value * persists till some one overwrites it */ uint32 si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority) { si_info_t *sii; sii = SI_INFO(sih); /* only cores on SI_BUS share GPIO's and only applcation users need to * reserve/release GPIO */ if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) { ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority)); return 0xffffffff; } /* make sure only one bit is set */ if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) { ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1))); return 0xffffffff; } /* already released */ if (!(si_gpioreservation & gpio_bitmask)) return 0xffffffff; /* clear reservation */ si_gpioreservation &= ~gpio_bitmask; return si_gpioreservation; } /* return the current gpioin register value */ uint32 si_gpioin(si_t *sih) { si_info_t *sii; uint regoff; sii = SI_INFO(sih); regoff = 0; regoff = OFFSETOF(chipcregs_t, gpioin); return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0)); } /* mask&set gpio interrupt polarity bits */ uint32 si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority) { si_info_t *sii; uint regoff; sii = SI_INFO(sih); regoff = 0; /* gpios could be shared on router platforms */ if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = OFFSETOF(chipcregs_t, gpiointpolarity); return (si_corereg(sih, SI_CC_IDX, regoff, mask, val)); } /* mask&set gpio interrupt mask bits */ uint32 si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority) { si_info_t *sii; uint regoff; sii = SI_INFO(sih); regoff = 0; /* gpios could be shared on router platforms */ if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = OFFSETOF(chipcregs_t, gpiointmask); return (si_corereg(sih, SI_CC_IDX, regoff, mask, val)); } /* assign the gpio to an led */ uint32 si_gpioled(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii; sii = SI_INFO(sih); if (sih->ccrev < 16) return 0xffffffff; /* gpio led powersave reg */ return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val)); } /* mask&set gpio timer val */ uint32 si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval) { si_info_t *sii; sii = SI_INFO(sih); if (sih->ccrev < 16) return 0xffffffff; return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval)); } uint32 si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val) { si_info_t *sii; uint offs; sii = SI_INFO(sih); if (sih->ccrev < 20) return 0xffffffff; offs = (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : OFFSETOF(chipcregs_t, gpiopullup)); return (si_corereg(sih, SI_CC_IDX, offs, mask, val)); } uint32 si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val) { si_info_t *sii; uint offs; sii = SI_INFO(sih); if (sih->ccrev < 11) return 0xffffffff; if (regtype == GPIO_REGEVT) offs = OFFSETOF(chipcregs_t, gpioevent); else if (regtype == GPIO_REGEVT_INTMSK) offs = OFFSETOF(chipcregs_t, gpioeventintmask); else if (regtype == GPIO_REGEVT_INTPOL) offs = OFFSETOF(chipcregs_t, gpioeventintpolarity); else return 0xffffffff; return (si_corereg(sih, SI_CC_IDX, offs, mask, val)); } void * si_gpio_handler_register(si_t *sih, uint32 event, bool level, gpio_handler_t cb, void *arg) { si_info_t *sii; gpioh_item_t *gi; ASSERT(event); ASSERT(cb != NULL); sii = SI_INFO(sih); if (sih->ccrev < 11) return NULL; if ((gi = MALLOC(sii->osh, sizeof(gpioh_item_t))) == NULL) return NULL; bzero(gi, sizeof(gpioh_item_t)); gi->event = event; gi->handler = cb; gi->arg = arg; gi->level = level; gi->next = sii->gpioh_head; sii->gpioh_head = gi; return (void *)(gi); } void si_gpio_handler_unregister(si_t *sih, void *gpioh) { si_info_t *sii; gpioh_item_t *p, *n; sii = SI_INFO(sih); if (sih->ccrev < 11) return; ASSERT(sii->gpioh_head != NULL); if ((void*)sii->gpioh_head == gpioh) { sii->gpioh_head = sii->gpioh_head->next; MFREE(sii->osh, gpioh, sizeof(gpioh_item_t)); return; } else { p = sii->gpioh_head; n = p->next; while (n) { if ((void*)n == gpioh) { p->next = n->next; MFREE(sii->osh, gpioh, sizeof(gpioh_item_t)); return; } p = n; n = n->next; } } ASSERT(0); /* Not found in list */ } void si_gpio_handler_process(si_t *sih) { si_info_t *sii; gpioh_item_t *h; uint32 level = si_gpioin(sih); uint32 levelp = si_gpiointpolarity(sih, 0, 0, 0); uint32 edge = si_gpioevent(sih, GPIO_REGEVT, 0, 0); uint32 edgep = si_gpioevent(sih, GPIO_REGEVT_INTPOL, 0, 0); sii = SI_INFO(sih); for (h = sii->gpioh_head; h != NULL; h = h->next) { if (h->handler) { uint32 status = (h->level ? level : edge) & h->event; uint32 polarity = (h->level ? levelp : edgep) & h->event; /* polarity bitval is opposite of status bitval */ if (status ^ polarity) h->handler(status, h->arg); } } si_gpioevent(sih, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */ } uint32 si_gpio_int_enable(si_t *sih, bool enable) { si_info_t *sii; uint offs; sii = SI_INFO(sih); if (sih->ccrev < 11) return 0xffffffff; offs = OFFSETOF(chipcregs_t, intmask); return (si_corereg(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0))); } /* Return the size of the specified SOCRAM bank */ static uint socram_banksize(si_info_t *sii, sbsocramregs_t *regs, uint8 index, uint8 mem_type) { uint banksize, bankinfo; uint bankidx = index | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT); ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM); W_REG(sii->osh, ®s->bankidx, bankidx); bankinfo = R_REG(sii->osh, ®s->bankinfo); banksize = SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1); return banksize; } void si_socdevram(si_t *sih, bool set, uint8 *enable, uint8 *protect) { si_info_t *sii; uint origidx; uint intr_val = 0; sbsocramregs_t *regs; bool wasup; uint corerev; sii = SI_INFO(sih); /* Block ints and save current core */ INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); if (!set) *enable = *protect = 0; /* Switch to SOCRAM core */ if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0))) goto done; /* Get info for determining size */ if (!(wasup = si_iscoreup(sih))) si_core_reset(sih, 0, 0); corerev = si_corerev(sih); if (corerev >= 10) { uint32 extcinfo; uint8 nb; uint8 i; uint32 bankidx, bankinfo; extcinfo = R_REG(sii->osh, ®s->extracoreinfo); nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT); for (i = 0; i < nb; i++) { bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT); W_REG(sii->osh, ®s->bankidx, bankidx); bankinfo = R_REG(sii->osh, ®s->bankinfo); if (set) { bankinfo &= ~SOCRAM_BANKINFO_DEVRAMSEL_MASK; bankinfo &= ~SOCRAM_BANKINFO_DEVRAMPRO_MASK; if (*enable) { bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMSEL_SHIFT); if (*protect) bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMPRO_SHIFT); } W_REG(sii->osh, ®s->bankinfo, bankinfo); } else if (i == 0) { if (bankinfo & SOCRAM_BANKINFO_DEVRAMSEL_MASK) { *enable = 1; if (bankinfo & SOCRAM_BANKINFO_DEVRAMPRO_MASK) *protect = 1; } } } } /* Return to previous state and core */ if (!wasup) si_core_disable(sih, 0); si_setcoreidx(sih, origidx); done: INTR_RESTORE(sii, intr_val); } bool si_socdevram_pkg(si_t *sih) { if (si_socdevram_size(sih) > 0) return TRUE; else return FALSE; } uint32 si_socdevram_size(si_t *sih) { si_info_t *sii; uint origidx; uint intr_val = 0; uint32 memsize = 0; sbsocramregs_t *regs; bool wasup; uint corerev; sii = SI_INFO(sih); /* Block ints and save current core */ INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); /* Switch to SOCRAM core */ if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0))) goto done; /* Get info for determining size */ if (!(wasup = si_iscoreup(sih))) si_core_reset(sih, 0, 0); corerev = si_corerev(sih); if (corerev >= 10) { uint32 extcinfo; uint8 nb; uint8 i; extcinfo = R_REG(sii->osh, ®s->extracoreinfo); nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT)); for (i = 0; i < nb; i++) memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM); } /* Return to previous state and core */ if (!wasup) si_core_disable(sih, 0); si_setcoreidx(sih, origidx); done: INTR_RESTORE(sii, intr_val); return memsize; } /* Return the RAM size of the SOCRAM core */ uint32 si_socram_size(si_t *sih) { si_info_t *sii; uint origidx; uint intr_val = 0; sbsocramregs_t *regs; bool wasup; uint corerev; uint32 coreinfo; uint memsize = 0; sii = SI_INFO(sih); /* Block ints and save current core */ INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); /* Switch to SOCRAM core */ if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0))) goto done; /* Get info for determining size */ if (!(wasup = si_iscoreup(sih))) si_core_reset(sih, 0, 0); corerev = si_corerev(sih); coreinfo = R_REG(sii->osh, ®s->coreinfo); /* Calculate size from coreinfo based on rev */ if (corerev == 0) memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK)); else if (corerev < 3) { memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK)); memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; } else if ((corerev <= 7) || (corerev == 12)) { uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; uint bsz = (coreinfo & SRCI_SRBSZ_MASK); uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; if (lss != 0) nb --; memsize = nb * (1 << (bsz + SR_BSZ_BASE)); if (lss != 0) memsize += (1 << ((lss - 1) + SR_BSZ_BASE)); } else { uint8 i; uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; for (i = 0; i < nb; i++) memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM); } /* Return to previous state and core */ if (!wasup) si_core_disable(sih, 0); si_setcoreidx(sih, origidx); done: INTR_RESTORE(sii, intr_val); return memsize; } void si_btcgpiowar(si_t *sih) { si_info_t *sii; uint origidx; uint intr_val = 0; chipcregs_t *cc; sii = SI_INFO(sih); /* Make sure that there is ChipCommon core present && * UART_TX is strapped to 1 */ if (!(sih->cccaps & CC_CAP_UARTGPIO)) return; /* si_corereg cannot be used as we have to guarantee 8-bit read/writes */ INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); ASSERT(cc != NULL); W_REG(sii->osh, &cc->uart0mcr, R_REG(sii->osh, &cc->uart0mcr) | 0x04); /* restore the original index */ si_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); } uint si_pll_reset(si_t *sih) { uint err = 0; return (err); } /* check if the device is removed */ bool si_deviceremoved(si_t *sih) { uint32 w; si_info_t *sii; sii = SI_INFO(sih); switch (BUSTYPE(sih->bustype)) { case PCI_BUS: ASSERT(sii->osh != NULL); w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_VID, sizeof(uint32)); if ((w & 0xFFFF) != VENDOR_BROADCOM) return TRUE; break; } return FALSE; } bool si_is_sprom_available(si_t *sih) { if (sih->ccrev >= 31) { si_info_t *sii; uint origidx; chipcregs_t *cc; uint32 sromctrl; if ((sih->cccaps & CC_CAP_SROM) == 0) return FALSE; sii = SI_INFO(sih); origidx = sii->curidx; cc = si_setcoreidx(sih, SI_CC_IDX); sromctrl = R_REG(sii->osh, &cc->sromcontrol); si_setcoreidx(sih, origidx); return (sromctrl & SRC_PRESENT); } switch (CHIPID(sih->chip)) { case BCM4312_CHIP_ID: return ((sih->chipst & CST4312_SPROM_OTP_SEL_MASK) != CST4312_OTP_SEL); case BCM4325_CHIP_ID: return (sih->chipst & CST4325_SPROM_SEL) != 0; case BCM4322_CHIP_ID: case BCM43221_CHIP_ID: case BCM43231_CHIP_ID: case BCM43222_CHIP_ID: case BCM43111_CHIP_ID: case BCM43112_CHIP_ID: case BCM4342_CHIP_ID: { uint32 spromotp; spromotp = (sih->chipst & CST4322_SPROM_OTP_SEL_MASK) >> CST4322_SPROM_OTP_SEL_SHIFT; return (spromotp & CST4322_SPROM_PRESENT) != 0; } case BCM4329_CHIP_ID: return (sih->chipst & CST4329_SPROM_SEL) != 0; case BCM4315_CHIP_ID: return (sih->chipst & CST4315_SPROM_SEL) != 0; case BCM4319_CHIP_ID: return (sih->chipst & CST4319_SPROM_SEL) != 0; case BCM4336_CHIP_ID: case BCM43362_CHIP_ID: return (sih->chipst & CST4336_SPROM_PRESENT) != 0; case BCM4330_CHIP_ID: return (sih->chipst & CST4330_SPROM_PRESENT) != 0; case BCM4313_CHIP_ID: return (sih->chipst & CST4313_SPROM_PRESENT) != 0; case BCM43239_CHIP_ID: return ((sih->chipst & CST43239_SPROM_MASK) && !(sih->chipst & CST43239_SFLASH_MASK)); default: return TRUE; } }