/******************************************************************************
*
* Copyright (C) 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <errno.h>
#include <malloc.h>
#include <pthread.h> /* must be 1st header defined */
#include <android-base/stringprintf.h>
#include <base/logging.h>
#include "gki_int.h"
using android::base::StringPrintf;
extern bool nfc_debug_enabled;
/* Temp android logging...move to android tgt config file */
#ifndef LINUX_NATIVE
#else
#define LOGV(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__)
#define LOGE(format, ...) fprintf(stderr, LOG_TAG format, ##__VA_ARGS__)
#define LOGI(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__)
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
#endif
/* Define the structure that holds the GKI variables
*/
tGKI_CB gki_cb;
#define NANOSEC_PER_MILLISEC (1000000)
#define NSEC_PER_SEC (1000 * NANOSEC_PER_MILLISEC)
/* works only for 1ms to 1000ms heart beat ranges */
#define LINUX_SEC (1000 / TICKS_PER_SEC)
// #define GKI_TICK_TIMER_DEBUG
/* this kind of mutex go into tGKI_OS control block!!!! */
/* static pthread_mutex_t GKI_sched_mutex; */
/*static pthread_mutex_t thread_delay_mutex;
static pthread_cond_t thread_delay_cond;
static pthread_mutex_t gki_timer_update_mutex;
static pthread_cond_t gki_timer_update_cond;
*/
#ifdef NO_GKI_RUN_RETURN
static pthread_t timer_thread_id = 0;
#endif
typedef struct {
uint8_t task_id; /* GKI task id */
TASKPTR task_entry; /* Task entry function*/
uintptr_t params; /* Extra params to pass to task entry function */
pthread_cond_t* pCond; /* for android*/
pthread_mutex_t* pMutex; /* for android*/
} gki_pthread_info_t;
gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS];
/*******************************************************************************
**
** Function gki_task_entry
**
** Description entry point of GKI created tasks
**
** Returns void
**
*******************************************************************************/
void* gki_task_entry(void* params) {
pthread_t thread_id = pthread_self();
gki_pthread_info_t* p_pthread_info = (gki_pthread_info_t*)params;
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"gki_task_entry task_id=%i, thread_id=%lx/%lx, pCond/pMutex=%p/%p",
p_pthread_info->task_id, gki_cb.os.thread_id[p_pthread_info->task_id],
pthread_self(), p_pthread_info->pCond, p_pthread_info->pMutex);
gki_cb.os.thread_id[p_pthread_info->task_id] = thread_id;
/* Call the actual thread entry point */
(p_pthread_info->task_entry)(p_pthread_info->params);
LOG(ERROR) << StringPrintf("gki_task task_id=%i terminating",
p_pthread_info->task_id);
gki_cb.os.thread_id[p_pthread_info->task_id] = 0;
return NULL;
}
/* end android */
/*******************************************************************************
**
** Function GKI_init
**
** Description This function is called once at startup to initialize
** all the timer structures.
**
** Returns void
**
*******************************************************************************/
void GKI_init(void) {
pthread_mutexattr_t attr;
tGKI_OS* p_os;
memset(&gki_cb, 0, sizeof(gki_cb));
gki_buffer_init();
gki_timers_init();
gki_cb.com.OSTicks = (uint32_t)times(0);
pthread_mutexattr_init(&attr);
#ifndef __CYGWIN__
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE_NP);
#endif
p_os = &gki_cb.os;
pthread_mutex_init(&p_os->GKI_mutex, &attr);
/* pthread_mutex_init(&GKI_sched_mutex, NULL); */
/* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */
/* pthread_cond_init (&thread_delay_cond, NULL); */
/* Initialiase GKI_timer_update suspend variables & mutexes to be in running
* state.
* this works too even if GKI_NO_TICK_STOP is defined in btld.txt */
p_os->no_timer_suspend = GKI_TIMER_TICK_RUN_COND;
pthread_mutex_init(&p_os->gki_timer_mutex, NULL);
pthread_cond_init(&p_os->gki_timer_cond, NULL);
}
/*******************************************************************************
**
** Function GKI_get_os_tick_count
**
** Description This function is called to retrieve the native OS system
** tick.
**
** Returns Tick count of native OS.
**
*******************************************************************************/
uint32_t GKI_get_os_tick_count(void) {
/* TODO - add any OS specific code here
**/
return (gki_cb.com.OSTicks);
}
/*******************************************************************************
**
** Function GKI_create_task
**
** Description This function is called to create a new OSS task.
**
** Parameters: task_entry - (input) pointer to the entry function of the
** task
** task_id - (input) Task id is mapped to priority
** taskname - (input) name given to the task
** stack - (input) pointer to the top of the stack
** (highest memory location)
** stacksize - (input) size of the stack allocated for the
** task
**
** Returns GKI_SUCCESS if all OK, GKI_FAILURE if any problem
**
** NOTE This function take some parameters that may not be needed
** by your particular OS. They are here for compatability
** of the function prototype.
**
*******************************************************************************/
uint8_t GKI_create_task(TASKPTR task_entry, uint8_t task_id, int8_t* taskname,
uint16_t* stack, uint16_t stacksize, void* pCondVar,
void* pMutex) {
struct sched_param param;
int policy, ret = 0;
pthread_condattr_t attr;
pthread_attr_t attr1;
pthread_condattr_init(&attr);
pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"GKI_create_task func=0x%p id=%d name=%s stack=0x%p stackSize=%d",
task_entry, task_id, taskname, stack, stacksize);
if (task_id >= GKI_MAX_TASKS) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("Error! task ID > max task allowed");
return (GKI_FAILURE);
}
gki_cb.com.OSRdyTbl[task_id] = TASK_READY;
gki_cb.com.OSTName[task_id] = taskname;
gki_cb.com.OSWaitTmr[task_id] = 0;
gki_cb.com.OSWaitEvt[task_id] = 0;
/* Initialize mutex and condition variable objects for events and timeouts */
pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL);
pthread_cond_init(&gki_cb.os.thread_evt_cond[task_id], &attr);
pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL);
pthread_cond_init(&gki_cb.os.thread_timeout_cond[task_id], &attr);
pthread_attr_init(&attr1);
/* by default, pthread creates a joinable thread */
#if (FALSE == GKI_PTHREAD_JOINABLE)
pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED);
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"GKI creating task %i, pCond/pMutex=%p/%p", task_id, pCondVar, pMutex);
#else
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI creating JOINABLE task %i", task_id);
#endif
/* On Android, the new tasks starts running before
* 'gki_cb.os.thread_id[task_id]' is initialized */
/* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id]
* for it calls GKI_wait */
gki_pthread_info[task_id].task_id = task_id;
gki_pthread_info[task_id].task_entry = task_entry;
gki_pthread_info[task_id].params = 0;
gki_pthread_info[task_id].pCond = (pthread_cond_t*)pCondVar;
gki_pthread_info[task_id].pMutex = (pthread_mutex_t*)pMutex;
ret = pthread_create(&gki_cb.os.thread_id[task_id], &attr1, gki_task_entry,
&gki_pthread_info[task_id]);
if (ret != 0) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("pthread_create failed(%d), %s!", ret, taskname);
return GKI_FAILURE;
}
if (pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, ¶m) ==
0) {
#if (PBS_SQL_TASK == TRUE)
if (task_id == PBS_SQL_TASK) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("PBS SQL lowest priority task");
policy = SCHED_NORMAL;
} else
#endif
{
policy = SCHED_RR;
param.sched_priority = 30 - task_id - 2;
}
pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, ¶m);
}
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"Leaving GKI_create_task %p %d %lx %s %p %d", task_entry, task_id,
gki_cb.os.thread_id[task_id], taskname, stack, stacksize);
return (GKI_SUCCESS);
}
/*******************************************************************************
**
** Function GKI_shutdown
**
** Description shutdowns the GKI tasks/threads in from max task id to 0 and
** frees pthread resources!
** IMPORTANT: in case of join method, GKI_shutdown must be
** called outside a GKI thread context!
**
** Returns void
**
*******************************************************************************/
#define WAKE_LOCK_ID "brcm_nfca"
#define PARTIAL_WAKE_LOCK 1
extern "C" int acquire_wake_lock(int lock, const char* id);
extern "C" int release_wake_lock(const char* id);
void GKI_shutdown(void) {
uint8_t task_id;
volatile int* p_run_cond = &gki_cb.os.no_timer_suspend;
int oldCOnd = 0;
#if (FALSE == GKI_PTHREAD_JOINABLE)
int i = 0;
#else
int result;
#endif
/* release threads and set as TASK_DEAD. going from low to high priority fixes
* GKI_exception problem due to btu->hci sleep request events */
for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--) {
if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD) {
gki_cb.com.OSRdyTbl[task_id - 1] = TASK_DEAD;
/* paranoi settings, make sure that we do not execute any mailbox events
*/
gki_cb.com.OSWaitEvt[task_id - 1] &=
~(TASK_MBOX_0_EVT_MASK | TASK_MBOX_1_EVT_MASK | TASK_MBOX_2_EVT_MASK |
TASK_MBOX_3_EVT_MASK);
GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT));
#if (FALSE == GKI_PTHREAD_JOINABLE)
i = 0;
while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10))
usleep(100 * 1000);
#else
/* wait for proper Arnold Schwarzenegger task state */
result = pthread_join(gki_cb.os.thread_id[task_id - 1], NULL);
if (result < 0) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("FAILED: result: %d", result);
}
#endif
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("task %s dead", gki_cb.com.OSTName[task_id]);
GKI_exit_task(task_id - 1);
}
}
/* Destroy mutex and condition variable objects */
pthread_mutex_destroy(&gki_cb.os.GKI_mutex);
/* pthread_mutex_destroy(&GKI_sched_mutex); */
/* pthread_mutex_destroy(&thread_delay_mutex);
pthread_cond_destroy (&thread_delay_cond); */
#if (FALSE == GKI_PTHREAD_JOINABLE)
i = 0;
#endif
#ifdef NO_GKI_RUN_RETURN
shutdown_timer = 1;
#endif
if (gki_cb.os.gki_timer_wake_lock_on) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_shutdown : release_wake_lock(brcm_btld)");
release_wake_lock(WAKE_LOCK_ID);
gki_cb.os.gki_timer_wake_lock_on = 0;
}
oldCOnd = *p_run_cond;
*p_run_cond = GKI_TIMER_TICK_EXIT_COND;
if (oldCOnd == GKI_TIMER_TICK_STOP_COND)
pthread_cond_signal(&gki_cb.os.gki_timer_cond);
}
/*******************************************************************************
**
** Function GKI_run
**
** Description This function runs a task
**
** Parameters: start: TRUE start system tick (again), FALSE stop
**
** Returns void
**
******************************************************************************/
void gki_system_tick_start_stop_cback(bool start) {
tGKI_OS* p_os = &gki_cb.os;
volatile int* p_run_cond = &p_os->no_timer_suspend;
#ifdef GKI_TICK_TIMER_DEBUG
static volatile int wake_lock_count;
#endif
if (start == false) {
/* this can lead to a race condition. however as we only read this variable
* in the timer loop
* we should be fine with this approach. otherwise uncomment below mutexes.
*/
/* GKI_disable(); */
*p_run_cond = GKI_TIMER_TICK_STOP_COND;
/* GKI_enable(); */
#ifdef GKI_TICK_TIMER_DEBUG
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf(">>> STOP wake_lock_count:%d", --wake_lock_count);
#endif
release_wake_lock(WAKE_LOCK_ID);
gki_cb.os.gki_timer_wake_lock_on = 0;
} else {
/* restart GKI_timer_update() loop */
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
gki_cb.os.gki_timer_wake_lock_on = 1;
*p_run_cond = GKI_TIMER_TICK_RUN_COND;
pthread_mutex_lock(&p_os->gki_timer_mutex);
pthread_cond_signal(&p_os->gki_timer_cond);
pthread_mutex_unlock(&p_os->gki_timer_mutex);
#ifdef GKI_TICK_TIMER_DEBUG
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf(">>> START wake_lock_count:%d", ++wake_lock_count);
#endif
}
}
/*******************************************************************************
**
** Function timer_thread
**
** Description Timer thread
**
** Parameters: id - (input) timer ID
**
** Returns void
**
*******************************************************************************/
#ifdef NO_GKI_RUN_RETURN
void timer_thread(signed long id) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s enter", __func__);
struct timespec delay;
int timeout = 1000; /* 10 ms per system tick */
int err;
while (!shutdown_timer) {
delay.tv_sec = timeout / 1000;
delay.tv_nsec = 1000 * 1000 * (timeout % 1000);
/* [u]sleep can't be used because it uses SIGALRM */
do {
err = nanosleep(&delay, &delay);
} while (err < 0 && errno == EINTR);
GKI_timer_update(1);
}
LOG(ERROR) << StringPrintf("%s exit", __func__);
return;
}
#endif
/*******************************************************************************
**
** Function GKI_run
**
** Description This function runs a task
**
** Parameters: p_task_id - (input) pointer to task id
**
** Returns void
**
** NOTE This function is only needed for operating systems where
** starting a task is a 2-step process. Most OS's do it in
** one step, If your OS does it in one step, this function
** should be empty.
*******************************************************************************/
void GKI_run(__attribute__((unused)) void* p_task_id) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s enter", __func__);
struct timespec delay;
int err = 0;
volatile int* p_run_cond = &gki_cb.os.no_timer_suspend;
#ifndef GKI_NO_TICK_STOP
/* register start stop function which disable timer loop in GKI_run() when no
* timers are
* in any GKI/BTA/BTU this should save power when BTLD is idle! */
GKI_timer_queue_register_callback(gki_system_tick_start_stop_cback);
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("Start/Stop GKI_timer_update_registered!");
#endif
#ifdef NO_GKI_RUN_RETURN
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_run == NO_GKI_RUN_RETURN");
pthread_attr_t timer_attr;
shutdown_timer = 0;
pthread_attr_init(&timer_attr);
pthread_attr_setdetachstate(&timer_attr, PTHREAD_CREATE_DETACHED);
if (pthread_create(&timer_thread_id, &timer_attr, timer_thread, NULL) != 0) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"GKI_run: pthread_create failed to create timer_thread!");
return GKI_FAILURE;
}
#else
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_run, run_cond(%p)=%d ", p_run_cond, *p_run_cond);
for (; GKI_TIMER_TICK_EXIT_COND != *p_run_cond;) {
do {
/* adjust hear bit tick in btld by changning TICKS_PER_SEC!!!!! this
* formula works only for
* 1-1000ms heart beat units! */
delay.tv_sec = LINUX_SEC / 1000;
delay.tv_nsec = 1000 * 1000 * (LINUX_SEC % 1000);
/* [u]sleep can't be used because it uses SIGALRM */
do {
err = nanosleep(&delay, &delay);
} while (err < 0 && errno == EINTR);
if (GKI_TIMER_TICK_RUN_COND != *p_run_cond) break; // GKI has shutdown
/* the unit should be alsways 1 (1 tick). only if you vary for some reason
* heart beat tick
* e.g. power saving you may want to provide more ticks
*/
GKI_timer_update(1);
} while (GKI_TIMER_TICK_RUN_COND == *p_run_cond);
/* currently on reason to exit above loop is no_timer_suspend ==
* GKI_TIMER_TICK_STOP_COND
* block timer main thread till re-armed by */
#ifdef GKI_TICK_TIMER_DEBUG
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(">>> SUSPENDED");
#endif
if (GKI_TIMER_TICK_EXIT_COND != *p_run_cond) {
pthread_mutex_lock(&gki_cb.os.gki_timer_mutex);
pthread_cond_wait(&gki_cb.os.gki_timer_cond, &gki_cb.os.gki_timer_mutex);
pthread_mutex_unlock(&gki_cb.os.gki_timer_mutex);
}
/* potentially we need to adjust os gki_cb.com.OSTicks */
#ifdef GKI_TICK_TIMER_DEBUG
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf(">>> RESTARTED run_cond: %d", *p_run_cond);
#endif
} /* for */
#endif
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s exit", __func__);
}
/*******************************************************************************
**
** Function GKI_stop
**
** Description This function is called to stop
** the tasks and timers when the system is being stopped
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to use it in your own implementation,
** put specific code here.
**
*******************************************************************************/
void GKI_stop(void) {
uint8_t task_id;
/* gki_queue_timer_cback(FALSE); */
/* TODO - add code here if needed*/
for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) {
if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) {
GKI_exit_task(task_id);
}
}
}
/*******************************************************************************
**
** Function GKI_wait
**
** Description This function is called by tasks to wait for a specific
** event or set of events. The task may specify the duration
** that it wants to wait for, or 0 if infinite.
**
** Parameters: flag - (input) the event or set of events to wait for
** timeout - (input) the duration that the task wants to wait
** for the specific events (in system ticks)
**
**
** Returns the event mask of received events or zero if timeout
**
*******************************************************************************/
uint16_t GKI_wait(uint16_t flag, uint32_t timeout) {
uint16_t evt;
uint8_t rtask;
struct timespec abstime = {0, 0};
int sec;
int nano_sec;
rtask = GKI_get_taskid();
if (rtask >= GKI_MAX_TASKS) {
LOG(ERROR) << StringPrintf("%s() Exiting thread; rtask %d >= %d", __func__,
rtask, GKI_MAX_TASKS);
return EVENT_MASK(GKI_SHUTDOWN_EVT);
}
gki_pthread_info_t* p_pthread_info = &gki_pthread_info[rtask];
if (p_pthread_info->pCond != NULL && p_pthread_info->pMutex != NULL) {
int ret;
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_wait task=%i, pCond/pMutex = %p/%p", rtask,
p_pthread_info->pCond, p_pthread_info->pMutex);
ret = pthread_mutex_lock(p_pthread_info->pMutex);
ret = pthread_cond_signal(p_pthread_info->pCond);
ret = pthread_mutex_unlock(p_pthread_info->pMutex);
p_pthread_info->pMutex = NULL;
p_pthread_info->pCond = NULL;
}
gki_cb.com.OSWaitForEvt[rtask] = flag;
/* protect OSWaitEvt[rtask] from modification from an other thread */
pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]);
#if 0 /* for clean scheduling we probably should always call \
pthread_cond_wait() */
/* Check if anything in any of the mailboxes. There is a potential race condition where OSTaskQFirst[rtask]
has been modified. however this should only result in addtional call to pthread_cond_wait() but as
the cond is met, it will exit immediately (depending on schedulling) */
if (gki_cb.com.OSTaskQFirst[rtask][0])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][1])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][2])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][3])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
#endif
if (!(gki_cb.com.OSWaitEvt[rtask] & flag)) {
if (timeout) {
// timeout = GKI_MS_TO_TICKS(timeout); /* convert from
// milliseconds to ticks */
/* get current system time */
// clock_gettime(CLOCK_MONOTONIC, &currSysTime);
// abstime.tv_sec = currSysTime.time;
// abstime.tv_nsec = NANOSEC_PER_MILLISEC *
// currSysTime.millitm;
clock_gettime(CLOCK_MONOTONIC, &abstime);
/* add timeout */
sec = timeout / 1000;
nano_sec = (timeout % 1000) * NANOSEC_PER_MILLISEC;
abstime.tv_nsec += nano_sec;
if (abstime.tv_nsec > NSEC_PER_SEC) {
abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC);
abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC;
}
abstime.tv_sec += sec;
pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask],
&gki_cb.os.thread_evt_mutex[rtask], &abstime);
} else {
pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask],
&gki_cb.os.thread_evt_mutex[rtask]);
}
/* TODO: check, this is probably neither not needed depending on
phtread_cond_wait() implmentation,
e.g. it looks like it is implemented as a counter in which case multiple
cond_signal
should NOT be lost! */
// we are waking up after waiting for some events, so refresh variables
// no need to call GKI_disable() here as we know that we will have some
// events as we've been waking up after condition pending or timeout
if (gki_cb.com.OSTaskQFirst[rtask][0])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][1])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][2])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][3])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
if (gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) {
gki_cb.com.OSWaitEvt[rtask] = 0;
/* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond
* is met */
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
LOG(ERROR) << StringPrintf("GKI TASK_DEAD received. exit thread %d...",
rtask);
gki_cb.os.thread_id[rtask] = 0;
return (EVENT_MASK(GKI_SHUTDOWN_EVT));
}
}
/* Clear the wait for event mask */
gki_cb.com.OSWaitForEvt[rtask] = 0;
/* Return only those bits which user wants... */
evt = gki_cb.com.OSWaitEvt[rtask] & flag;
/* Clear only those bits which user wants... */
gki_cb.com.OSWaitEvt[rtask] &= ~flag;
/* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when
* cond is met */
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
return (evt);
}
/*******************************************************************************
**
** Function GKI_delay
**
** Description This function is called by tasks to sleep unconditionally
** for a specified amount of time. The duration is in
** milliseconds
**
** Parameters: timeout - (input) the duration in milliseconds
**
** Returns void
**
*******************************************************************************/
void GKI_delay(uint32_t timeout) {
uint8_t rtask = GKI_get_taskid();
struct timespec delay;
int err;
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_delay %d %d", rtask, timeout);
delay.tv_sec = timeout / 1000;
delay.tv_nsec = 1000 * 1000 * (timeout % 1000);
/* [u]sleep can't be used because it uses SIGALRM */
do {
err = nanosleep(&delay, &delay);
} while (err < 0 && errno == EINTR);
/* Check if task was killed while sleeping */
/* NOTE
** if you do not implement task killing, you do not
** need this check.
*/
if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) {
}
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_delay %d %d done", rtask, timeout);
return;
}
/*******************************************************************************
**
** Function GKI_send_event
**
** Description This function is called by tasks to send events to other
** tasks. Tasks can also send events to themselves.
**
** Parameters: task_id - (input) The id of the task to which the event has
** to be sent
** event - (input) The event that has to be sent
**
**
** Returns GKI_SUCCESS if all OK, else GKI_FAILURE
**
*******************************************************************************/
uint8_t GKI_send_event(uint8_t task_id, uint16_t event) {
/* use efficient coding to avoid pipeline stalls */
if (task_id < GKI_MAX_TASKS) {
/* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */
pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]);
/* Set the event bit */
gki_cb.com.OSWaitEvt[task_id] |= event;
pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]);
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]);
return (GKI_SUCCESS);
}
return (GKI_FAILURE);
}
/*******************************************************************************
**
** Function GKI_isend_event
**
** Description This function is called from ISRs to send events to other
** tasks. The only difference between this function and
** GKI_send_event is that this function assumes interrupts are
** already disabled.
**
** Parameters: task_id - (input) The destination task Id for the event.
** event - (input) The event flag
**
** Returns GKI_SUCCESS if all OK, else GKI_FAILURE
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to use it in your own implementation,
** put your code here, otherwise you can delete the entire
** body of the function.
**
*******************************************************************************/
uint8_t GKI_isend_event(uint8_t task_id, uint16_t event) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_isend_event %d %x", task_id, event);
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_isend_event %d %x done", task_id, event);
return GKI_send_event(task_id, event);
}
/*******************************************************************************
**
** Function GKI_get_taskid
**
** Description This function gets the currently running task ID.
**
** Returns task ID
**
** NOTE The Widcomm upper stack and profiles may run as a single
** task. If you only have one GKI task, then you can hard-code
** this function to return a '1'. Otherwise, you should have
** some OS-specific method to determine the current task.
**
*******************************************************************************/
uint8_t GKI_get_taskid(void) {
int i;
pthread_t thread_id = pthread_self();
for (i = 0; i < GKI_MAX_TASKS; i++) {
if (gki_cb.os.thread_id[i] == thread_id) {
return (i);
}
}
return (-1);
}
/*******************************************************************************
**
** Function GKI_map_taskname
**
** Description This function gets the task name of the taskid passed as
** arg. If GKI_MAX_TASKS is passed as arg the currently running
** task name is returned
**
** Parameters: task_id - (input) The id of the task whose name is being
** sought. GKI_MAX_TASKS is passed to get the name of the
** currently running task.
**
** Returns pointer to task name
**
** NOTE this function needs no customization
**
*******************************************************************************/
int8_t* GKI_map_taskname(uint8_t task_id) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_map_taskname %d", task_id);
if (task_id < GKI_MAX_TASKS) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(
"GKI_map_taskname %d %s done", task_id, gki_cb.com.OSTName[task_id]);
return (gki_cb.com.OSTName[task_id]);
} else if (task_id == GKI_MAX_TASKS) {
return (gki_cb.com.OSTName[GKI_get_taskid()]);
} else {
return (int8_t*)"BAD";
}
}
/*******************************************************************************
**
** Function GKI_enable
**
** Description This function enables interrupts.
**
** Returns void
**
*******************************************************************************/
void GKI_enable(void) {
pthread_mutex_unlock(&gki_cb.os.GKI_mutex);
/* pthread_mutex_xx is nesting save, no need for this: already_disabled =
* 0; */
return;
}
/*******************************************************************************
**
** Function GKI_disable
**
** Description This function disables interrupts.
**
** Returns void
**
*******************************************************************************/
void GKI_disable(void) {
// DLOG_IF(INFO, nfc_debug_enabled) <<
// StringPrintf("GKI_disable");
/* pthread_mutex_xx is nesting save, no need for this: if
(!already_disabled) {
already_disabled = 1; */
pthread_mutex_lock(&gki_cb.os.GKI_mutex);
/* } */
// DLOG_IF(INFO, nfc_debug_enabled) <<
// StringPrintf("Leaving GKI_disable");
return;
}
/*******************************************************************************
**
** Function GKI_exception
**
** Description This function throws an exception.
** This is normally only called for a nonrecoverable error.
**
** Parameters: code - (input) The code for the error
** msg - (input) The message that has to be logged
**
** Returns void
**
*******************************************************************************/
void GKI_exception(uint16_t code, std::string msg) {
uint8_t task_id;
LOG(ERROR) << StringPrintf("Task State Table");
for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) {
LOG(ERROR) << StringPrintf("TASK ID [%d] task name [%s] state [%d]",
task_id, gki_cb.com.OSTName[task_id],
gki_cb.com.OSRdyTbl[task_id]);
}
LOG(ERROR) << StringPrintf("%d %s", code, msg.c_str());
LOG(ERROR) << StringPrintf(
"********************************************************************");
LOG(ERROR) << StringPrintf("* %d %s", code, msg.c_str());
LOG(ERROR) << StringPrintf(
"********************************************************************");
LOG(ERROR) << StringPrintf("%d %s done", code, msg.c_str());
return;
}
/*******************************************************************************
**
** Function GKI_get_time_stamp
**
** Description This function formats the time into a user area
**
** Parameters: tbuf - (output) the address to the memory containing the
** formatted time
**
** Returns the address of the user area containing the formatted time
** The format of the time is ????
**
** NOTE This function is only called by OBEX.
**
*******************************************************************************/
int8_t* GKI_get_time_stamp(int8_t* tbuf) {
uint32_t ms_time;
uint32_t s_time;
uint32_t m_time;
uint32_t h_time;
int8_t* p_out = tbuf;
gki_cb.com.OSTicks = times(0);
ms_time = GKI_TICKS_TO_MS(gki_cb.com.OSTicks);
s_time = ms_time / 100; /* 100 Ticks per second */
m_time = s_time / 60;
h_time = m_time / 60;
ms_time -= s_time * 100;
s_time -= m_time * 60;
m_time -= h_time * 60;
*p_out++ = (int8_t)((h_time / 10) + '0');
*p_out++ = (int8_t)((h_time % 10) + '0');
*p_out++ = ':';
*p_out++ = (int8_t)((m_time / 10) + '0');
*p_out++ = (int8_t)((m_time % 10) + '0');
*p_out++ = ':';
*p_out++ = (int8_t)((s_time / 10) + '0');
*p_out++ = (int8_t)((s_time % 10) + '0');
*p_out++ = ':';
*p_out++ = (int8_t)((ms_time / 10) + '0');
*p_out++ = (int8_t)((ms_time % 10) + '0');
*p_out++ = ':';
*p_out = 0;
return (tbuf);
}
/*******************************************************************************
**
** Function GKI_register_mempool
**
** Description This function registers a specific memory pool.
**
** Parameters: p_mem - (input) pointer to the memory pool
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If your OS has different memory pools, you
** can tell GKI the pool to use by calling this function.
**
*******************************************************************************/
void GKI_register_mempool(void* p_mem) {
gki_cb.com.p_user_mempool = p_mem;
return;
}
/*******************************************************************************
**
** Function GKI_os_malloc
**
** Description This function allocates memory
**
** Parameters: size - (input) The size of the memory that has to be
** allocated
**
** Returns the address of the memory allocated, or NULL if failed
**
** NOTE This function is called by the Widcomm stack when
** dynamic memory allocation is used.
**
*******************************************************************************/
void* GKI_os_malloc(uint32_t size) { return (malloc(size)); }
/*******************************************************************************
**
** Function GKI_os_free
**
** Description This function frees memory
**
** Parameters: size - (input) The address of the memory that has to be
** freed
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. It is only called from within GKI if dynamic
**
*******************************************************************************/
void GKI_os_free(void* p_mem) {
if (p_mem != NULL) free(p_mem);
return;
}
/*******************************************************************************
**
** Function GKI_suspend_task()
**
** Description This function suspends the task specified in the argument.
**
** Parameters: task_id - (input) the id of the task that has to suspended
**
** Returns GKI_SUCCESS if all OK, else GKI_FAILURE
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to implement task suspension
** capability, put specific code here.
**
*******************************************************************************/
uint8_t GKI_suspend_task(uint8_t task_id) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_suspend_task %d - NOT implemented", task_id);
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_suspend_task %d done", task_id);
return (GKI_SUCCESS);
}
/*******************************************************************************
**
** Function GKI_resume_task()
**
** Description This function resumes the task specified in the argument.
**
** Parameters: task_id - (input) the id of the task that has to resumed
**
** Returns GKI_SUCCESS if all OK
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to implement task suspension
** capability, put specific code here.
**
*******************************************************************************/
uint8_t GKI_resume_task(uint8_t task_id) {
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_resume_task %d - NOT implemented", task_id);
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_resume_task %d done", task_id);
return (GKI_SUCCESS);
}
/*******************************************************************************
**
** Function GKI_exit_task
**
** Description This function is called to stop a GKI task.
**
** Parameters: task_id - (input) the id of the task that has to be stopped
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to use it in your own implementation,
** put specific code here to kill a task.
**
*******************************************************************************/
void GKI_exit_task(uint8_t task_id) {
if (task_id >= GKI_MAX_TASKS) {
return;
}
GKI_disable();
gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD;
/* Destroy mutex and condition variable objects */
pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]);
pthread_cond_destroy(&gki_cb.os.thread_evt_cond[task_id]);
pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]);
pthread_cond_destroy(&gki_cb.os.thread_timeout_cond[task_id]);
GKI_enable();
// GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT));
DLOG_IF(INFO, nfc_debug_enabled)
<< StringPrintf("GKI_exit_task %d done", task_id);
return;
}
/*******************************************************************************
**
** Function GKI_sched_lock
**
** Description This function is called by tasks to disable scheduler
** task context switching.
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to use it in your own implementation,
** put code here to tell the OS to disable context switching.
**
*******************************************************************************/
void GKI_sched_lock(void) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_sched_lock");
GKI_disable();
return;
}
/*******************************************************************************
**
** Function GKI_sched_unlock
**
** Description This function is called by tasks to enable scheduler
** switching.
**
** Returns void
**
** NOTE This function is NOT called by the Widcomm stack and
** profiles. If you want to use it in your own implementation,
** put code here to tell the OS to re-enable context switching.
**
*******************************************************************************/
void GKI_sched_unlock(void) {
DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_sched_unlock");
GKI_enable();
}
/*******************************************************************************
**
** Function GKI_shiftdown
**
** Description shift memory down (to make space to insert a record)
**
*******************************************************************************/
void GKI_shiftdown(uint8_t* p_mem, uint32_t len, uint32_t shift_amount) {
uint8_t* ps = p_mem + len - 1;
uint8_t* pd = ps + shift_amount;
uint32_t xx;
for (xx = 0; xx < len; xx++) *pd-- = *ps--;
}
/*******************************************************************************
**
** Function GKI_shiftup
**
** Description shift memory up (to delete a record)
**
*******************************************************************************/
void GKI_shiftup(uint8_t* p_dest, uint8_t* p_src, uint32_t len) {
uint8_t* ps = p_src;
uint8_t* pd = p_dest;
uint32_t xx;
for (xx = 0; xx < len; xx++) *pd++ = *ps++;
}