/****************************************************************************** * * Copyright (C) 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include <errno.h> #include <malloc.h> #include <pthread.h> /* must be 1st header defined */ #include <android-base/stringprintf.h> #include <base/logging.h> #include "gki_int.h" using android::base::StringPrintf; extern bool nfc_debug_enabled; /* Temp android logging...move to android tgt config file */ #ifndef LINUX_NATIVE #else #define LOGV(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__) #define LOGE(format, ...) fprintf(stderr, LOG_TAG format, ##__VA_ARGS__) #define LOGI(format, ...) fprintf(stdout, LOG_TAG format, ##__VA_ARGS__) #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 #endif /* Define the structure that holds the GKI variables */ tGKI_CB gki_cb; #define NANOSEC_PER_MILLISEC (1000000) #define NSEC_PER_SEC (1000 * NANOSEC_PER_MILLISEC) /* works only for 1ms to 1000ms heart beat ranges */ #define LINUX_SEC (1000 / TICKS_PER_SEC) // #define GKI_TICK_TIMER_DEBUG /* this kind of mutex go into tGKI_OS control block!!!! */ /* static pthread_mutex_t GKI_sched_mutex; */ /*static pthread_mutex_t thread_delay_mutex; static pthread_cond_t thread_delay_cond; static pthread_mutex_t gki_timer_update_mutex; static pthread_cond_t gki_timer_update_cond; */ #ifdef NO_GKI_RUN_RETURN static pthread_t timer_thread_id = 0; #endif typedef struct { uint8_t task_id; /* GKI task id */ TASKPTR task_entry; /* Task entry function*/ uintptr_t params; /* Extra params to pass to task entry function */ pthread_cond_t* pCond; /* for android*/ pthread_mutex_t* pMutex; /* for android*/ } gki_pthread_info_t; gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS]; /******************************************************************************* ** ** Function gki_task_entry ** ** Description entry point of GKI created tasks ** ** Returns void ** *******************************************************************************/ void* gki_task_entry(void* params) { pthread_t thread_id = pthread_self(); gki_pthread_info_t* p_pthread_info = (gki_pthread_info_t*)params; DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "gki_task_entry task_id=%i, thread_id=%lx/%lx, pCond/pMutex=%p/%p", p_pthread_info->task_id, gki_cb.os.thread_id[p_pthread_info->task_id], pthread_self(), p_pthread_info->pCond, p_pthread_info->pMutex); gki_cb.os.thread_id[p_pthread_info->task_id] = thread_id; /* Call the actual thread entry point */ (p_pthread_info->task_entry)(p_pthread_info->params); LOG(ERROR) << StringPrintf("gki_task task_id=%i terminating", p_pthread_info->task_id); gki_cb.os.thread_id[p_pthread_info->task_id] = 0; return NULL; } /* end android */ /******************************************************************************* ** ** Function GKI_init ** ** Description This function is called once at startup to initialize ** all the timer structures. ** ** Returns void ** *******************************************************************************/ void GKI_init(void) { pthread_mutexattr_t attr; tGKI_OS* p_os; memset(&gki_cb, 0, sizeof(gki_cb)); gki_buffer_init(); gki_timers_init(); gki_cb.com.OSTicks = (uint32_t)times(0); pthread_mutexattr_init(&attr); #ifndef __CYGWIN__ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE_NP); #endif p_os = &gki_cb.os; pthread_mutex_init(&p_os->GKI_mutex, &attr); /* pthread_mutex_init(&GKI_sched_mutex, NULL); */ /* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */ /* pthread_cond_init (&thread_delay_cond, NULL); */ /* Initialiase GKI_timer_update suspend variables & mutexes to be in running * state. * this works too even if GKI_NO_TICK_STOP is defined in btld.txt */ p_os->no_timer_suspend = GKI_TIMER_TICK_RUN_COND; pthread_mutex_init(&p_os->gki_timer_mutex, NULL); pthread_cond_init(&p_os->gki_timer_cond, NULL); } /******************************************************************************* ** ** Function GKI_get_os_tick_count ** ** Description This function is called to retrieve the native OS system ** tick. ** ** Returns Tick count of native OS. ** *******************************************************************************/ uint32_t GKI_get_os_tick_count(void) { /* TODO - add any OS specific code here **/ return (gki_cb.com.OSTicks); } /******************************************************************************* ** ** Function GKI_create_task ** ** Description This function is called to create a new OSS task. ** ** Parameters: task_entry - (input) pointer to the entry function of the ** task ** task_id - (input) Task id is mapped to priority ** taskname - (input) name given to the task ** stack - (input) pointer to the top of the stack ** (highest memory location) ** stacksize - (input) size of the stack allocated for the ** task ** ** Returns GKI_SUCCESS if all OK, GKI_FAILURE if any problem ** ** NOTE This function take some parameters that may not be needed ** by your particular OS. They are here for compatability ** of the function prototype. ** *******************************************************************************/ uint8_t GKI_create_task(TASKPTR task_entry, uint8_t task_id, int8_t* taskname, uint16_t* stack, uint16_t stacksize, void* pCondVar, void* pMutex) { struct sched_param param; int policy, ret = 0; pthread_condattr_t attr; pthread_attr_t attr1; pthread_condattr_init(&attr); pthread_condattr_setclock(&attr, CLOCK_MONOTONIC); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "GKI_create_task func=0x%p id=%d name=%s stack=0x%p stackSize=%d", task_entry, task_id, taskname, stack, stacksize); if (task_id >= GKI_MAX_TASKS) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("Error! task ID > max task allowed"); return (GKI_FAILURE); } gki_cb.com.OSRdyTbl[task_id] = TASK_READY; gki_cb.com.OSTName[task_id] = taskname; gki_cb.com.OSWaitTmr[task_id] = 0; gki_cb.com.OSWaitEvt[task_id] = 0; /* Initialize mutex and condition variable objects for events and timeouts */ pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL); pthread_cond_init(&gki_cb.os.thread_evt_cond[task_id], &attr); pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL); pthread_cond_init(&gki_cb.os.thread_timeout_cond[task_id], &attr); pthread_attr_init(&attr1); /* by default, pthread creates a joinable thread */ #if (FALSE == GKI_PTHREAD_JOINABLE) pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "GKI creating task %i, pCond/pMutex=%p/%p", task_id, pCondVar, pMutex); #else DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI creating JOINABLE task %i", task_id); #endif /* On Android, the new tasks starts running before * 'gki_cb.os.thread_id[task_id]' is initialized */ /* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id] * for it calls GKI_wait */ gki_pthread_info[task_id].task_id = task_id; gki_pthread_info[task_id].task_entry = task_entry; gki_pthread_info[task_id].params = 0; gki_pthread_info[task_id].pCond = (pthread_cond_t*)pCondVar; gki_pthread_info[task_id].pMutex = (pthread_mutex_t*)pMutex; ret = pthread_create(&gki_cb.os.thread_id[task_id], &attr1, gki_task_entry, &gki_pthread_info[task_id]); if (ret != 0) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("pthread_create failed(%d), %s!", ret, taskname); return GKI_FAILURE; } if (pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, ¶m) == 0) { #if (PBS_SQL_TASK == TRUE) if (task_id == PBS_SQL_TASK) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("PBS SQL lowest priority task"); policy = SCHED_NORMAL; } else #endif { policy = SCHED_RR; param.sched_priority = 30 - task_id - 2; } pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, ¶m); } DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "Leaving GKI_create_task %p %d %lx %s %p %d", task_entry, task_id, gki_cb.os.thread_id[task_id], taskname, stack, stacksize); return (GKI_SUCCESS); } /******************************************************************************* ** ** Function GKI_shutdown ** ** Description shutdowns the GKI tasks/threads in from max task id to 0 and ** frees pthread resources! ** IMPORTANT: in case of join method, GKI_shutdown must be ** called outside a GKI thread context! ** ** Returns void ** *******************************************************************************/ #define WAKE_LOCK_ID "brcm_nfca" #define PARTIAL_WAKE_LOCK 1 extern "C" int acquire_wake_lock(int lock, const char* id); extern "C" int release_wake_lock(const char* id); void GKI_shutdown(void) { uint8_t task_id; volatile int* p_run_cond = &gki_cb.os.no_timer_suspend; int oldCOnd = 0; #if (FALSE == GKI_PTHREAD_JOINABLE) int i = 0; #else int result; #endif /* release threads and set as TASK_DEAD. going from low to high priority fixes * GKI_exception problem due to btu->hci sleep request events */ for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--) { if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD) { gki_cb.com.OSRdyTbl[task_id - 1] = TASK_DEAD; /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id - 1] &= ~(TASK_MBOX_0_EVT_MASK | TASK_MBOX_1_EVT_MASK | TASK_MBOX_2_EVT_MASK | TASK_MBOX_3_EVT_MASK); GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT)); #if (FALSE == GKI_PTHREAD_JOINABLE) i = 0; while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10)) usleep(100 * 1000); #else /* wait for proper Arnold Schwarzenegger task state */ result = pthread_join(gki_cb.os.thread_id[task_id - 1], NULL); if (result < 0) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("FAILED: result: %d", result); } #endif DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("task %s dead", gki_cb.com.OSTName[task_id]); GKI_exit_task(task_id - 1); } } /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.GKI_mutex); /* pthread_mutex_destroy(&GKI_sched_mutex); */ /* pthread_mutex_destroy(&thread_delay_mutex); pthread_cond_destroy (&thread_delay_cond); */ #if (FALSE == GKI_PTHREAD_JOINABLE) i = 0; #endif #ifdef NO_GKI_RUN_RETURN shutdown_timer = 1; #endif if (gki_cb.os.gki_timer_wake_lock_on) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_shutdown : release_wake_lock(brcm_btld)"); release_wake_lock(WAKE_LOCK_ID); gki_cb.os.gki_timer_wake_lock_on = 0; } oldCOnd = *p_run_cond; *p_run_cond = GKI_TIMER_TICK_EXIT_COND; if (oldCOnd == GKI_TIMER_TICK_STOP_COND) pthread_cond_signal(&gki_cb.os.gki_timer_cond); } /******************************************************************************* ** ** Function GKI_run ** ** Description This function runs a task ** ** Parameters: start: TRUE start system tick (again), FALSE stop ** ** Returns void ** ******************************************************************************/ void gki_system_tick_start_stop_cback(bool start) { tGKI_OS* p_os = &gki_cb.os; volatile int* p_run_cond = &p_os->no_timer_suspend; #ifdef GKI_TICK_TIMER_DEBUG static volatile int wake_lock_count; #endif if (start == false) { /* this can lead to a race condition. however as we only read this variable * in the timer loop * we should be fine with this approach. otherwise uncomment below mutexes. */ /* GKI_disable(); */ *p_run_cond = GKI_TIMER_TICK_STOP_COND; /* GKI_enable(); */ #ifdef GKI_TICK_TIMER_DEBUG DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(">>> STOP wake_lock_count:%d", --wake_lock_count); #endif release_wake_lock(WAKE_LOCK_ID); gki_cb.os.gki_timer_wake_lock_on = 0; } else { /* restart GKI_timer_update() loop */ acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); gki_cb.os.gki_timer_wake_lock_on = 1; *p_run_cond = GKI_TIMER_TICK_RUN_COND; pthread_mutex_lock(&p_os->gki_timer_mutex); pthread_cond_signal(&p_os->gki_timer_cond); pthread_mutex_unlock(&p_os->gki_timer_mutex); #ifdef GKI_TICK_TIMER_DEBUG DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(">>> START wake_lock_count:%d", ++wake_lock_count); #endif } } /******************************************************************************* ** ** Function timer_thread ** ** Description Timer thread ** ** Parameters: id - (input) timer ID ** ** Returns void ** *******************************************************************************/ #ifdef NO_GKI_RUN_RETURN void timer_thread(signed long id) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s enter", __func__); struct timespec delay; int timeout = 1000; /* 10 ms per system tick */ int err; while (!shutdown_timer) { delay.tv_sec = timeout / 1000; delay.tv_nsec = 1000 * 1000 * (timeout % 1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno == EINTR); GKI_timer_update(1); } LOG(ERROR) << StringPrintf("%s exit", __func__); return; } #endif /******************************************************************************* ** ** Function GKI_run ** ** Description This function runs a task ** ** Parameters: p_task_id - (input) pointer to task id ** ** Returns void ** ** NOTE This function is only needed for operating systems where ** starting a task is a 2-step process. Most OS's do it in ** one step, If your OS does it in one step, this function ** should be empty. *******************************************************************************/ void GKI_run(__attribute__((unused)) void* p_task_id) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s enter", __func__); struct timespec delay; int err = 0; volatile int* p_run_cond = &gki_cb.os.no_timer_suspend; #ifndef GKI_NO_TICK_STOP /* register start stop function which disable timer loop in GKI_run() when no * timers are * in any GKI/BTA/BTU this should save power when BTLD is idle! */ GKI_timer_queue_register_callback(gki_system_tick_start_stop_cback); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("Start/Stop GKI_timer_update_registered!"); #endif #ifdef NO_GKI_RUN_RETURN DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_run == NO_GKI_RUN_RETURN"); pthread_attr_t timer_attr; shutdown_timer = 0; pthread_attr_init(&timer_attr); pthread_attr_setdetachstate(&timer_attr, PTHREAD_CREATE_DETACHED); if (pthread_create(&timer_thread_id, &timer_attr, timer_thread, NULL) != 0) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "GKI_run: pthread_create failed to create timer_thread!"); return GKI_FAILURE; } #else DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_run, run_cond(%p)=%d ", p_run_cond, *p_run_cond); for (; GKI_TIMER_TICK_EXIT_COND != *p_run_cond;) { do { /* adjust hear bit tick in btld by changning TICKS_PER_SEC!!!!! this * formula works only for * 1-1000ms heart beat units! */ delay.tv_sec = LINUX_SEC / 1000; delay.tv_nsec = 1000 * 1000 * (LINUX_SEC % 1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno == EINTR); if (GKI_TIMER_TICK_RUN_COND != *p_run_cond) break; // GKI has shutdown /* the unit should be alsways 1 (1 tick). only if you vary for some reason * heart beat tick * e.g. power saving you may want to provide more ticks */ GKI_timer_update(1); } while (GKI_TIMER_TICK_RUN_COND == *p_run_cond); /* currently on reason to exit above loop is no_timer_suspend == * GKI_TIMER_TICK_STOP_COND * block timer main thread till re-armed by */ #ifdef GKI_TICK_TIMER_DEBUG DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(">>> SUSPENDED"); #endif if (GKI_TIMER_TICK_EXIT_COND != *p_run_cond) { pthread_mutex_lock(&gki_cb.os.gki_timer_mutex); pthread_cond_wait(&gki_cb.os.gki_timer_cond, &gki_cb.os.gki_timer_mutex); pthread_mutex_unlock(&gki_cb.os.gki_timer_mutex); } /* potentially we need to adjust os gki_cb.com.OSTicks */ #ifdef GKI_TICK_TIMER_DEBUG DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf(">>> RESTARTED run_cond: %d", *p_run_cond); #endif } /* for */ #endif DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("%s exit", __func__); } /******************************************************************************* ** ** Function GKI_stop ** ** Description This function is called to stop ** the tasks and timers when the system is being stopped ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put specific code here. ** *******************************************************************************/ void GKI_stop(void) { uint8_t task_id; /* gki_queue_timer_cback(FALSE); */ /* TODO - add code here if needed*/ for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) { if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { GKI_exit_task(task_id); } } } /******************************************************************************* ** ** Function GKI_wait ** ** Description This function is called by tasks to wait for a specific ** event or set of events. The task may specify the duration ** that it wants to wait for, or 0 if infinite. ** ** Parameters: flag - (input) the event or set of events to wait for ** timeout - (input) the duration that the task wants to wait ** for the specific events (in system ticks) ** ** ** Returns the event mask of received events or zero if timeout ** *******************************************************************************/ uint16_t GKI_wait(uint16_t flag, uint32_t timeout) { uint16_t evt; uint8_t rtask; struct timespec abstime = {0, 0}; int sec; int nano_sec; rtask = GKI_get_taskid(); if (rtask >= GKI_MAX_TASKS) { LOG(ERROR) << StringPrintf("%s() Exiting thread; rtask %d >= %d", __func__, rtask, GKI_MAX_TASKS); return EVENT_MASK(GKI_SHUTDOWN_EVT); } gki_pthread_info_t* p_pthread_info = &gki_pthread_info[rtask]; if (p_pthread_info->pCond != NULL && p_pthread_info->pMutex != NULL) { int ret; DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_wait task=%i, pCond/pMutex = %p/%p", rtask, p_pthread_info->pCond, p_pthread_info->pMutex); ret = pthread_mutex_lock(p_pthread_info->pMutex); ret = pthread_cond_signal(p_pthread_info->pCond); ret = pthread_mutex_unlock(p_pthread_info->pMutex); p_pthread_info->pMutex = NULL; p_pthread_info->pCond = NULL; } gki_cb.com.OSWaitForEvt[rtask] = flag; /* protect OSWaitEvt[rtask] from modification from an other thread */ pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]); #if 0 /* for clean scheduling we probably should always call \ pthread_cond_wait() */ /* Check if anything in any of the mailboxes. There is a potential race condition where OSTaskQFirst[rtask] has been modified. however this should only result in addtional call to pthread_cond_wait() but as the cond is met, it will exit immediately (depending on schedulling) */ if (gki_cb.com.OSTaskQFirst[rtask][0]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][1]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][2]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][3]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK; #endif if (!(gki_cb.com.OSWaitEvt[rtask] & flag)) { if (timeout) { // timeout = GKI_MS_TO_TICKS(timeout); /* convert from // milliseconds to ticks */ /* get current system time */ // clock_gettime(CLOCK_MONOTONIC, &currSysTime); // abstime.tv_sec = currSysTime.time; // abstime.tv_nsec = NANOSEC_PER_MILLISEC * // currSysTime.millitm; clock_gettime(CLOCK_MONOTONIC, &abstime); /* add timeout */ sec = timeout / 1000; nano_sec = (timeout % 1000) * NANOSEC_PER_MILLISEC; abstime.tv_nsec += nano_sec; if (abstime.tv_nsec > NSEC_PER_SEC) { abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC); abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC; } abstime.tv_sec += sec; pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask], &abstime); } else { pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask]); } /* TODO: check, this is probably neither not needed depending on phtread_cond_wait() implmentation, e.g. it looks like it is implemented as a counter in which case multiple cond_signal should NOT be lost! */ // we are waking up after waiting for some events, so refresh variables // no need to call GKI_disable() here as we know that we will have some // events as we've been waking up after condition pending or timeout if (gki_cb.com.OSTaskQFirst[rtask][0]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][1]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][2]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][3]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK; if (gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { gki_cb.com.OSWaitEvt[rtask] = 0; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond * is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); LOG(ERROR) << StringPrintf("GKI TASK_DEAD received. exit thread %d...", rtask); gki_cb.os.thread_id[rtask] = 0; return (EVENT_MASK(GKI_SHUTDOWN_EVT)); } } /* Clear the wait for event mask */ gki_cb.com.OSWaitForEvt[rtask] = 0; /* Return only those bits which user wants... */ evt = gki_cb.com.OSWaitEvt[rtask] & flag; /* Clear only those bits which user wants... */ gki_cb.com.OSWaitEvt[rtask] &= ~flag; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when * cond is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); return (evt); } /******************************************************************************* ** ** Function GKI_delay ** ** Description This function is called by tasks to sleep unconditionally ** for a specified amount of time. The duration is in ** milliseconds ** ** Parameters: timeout - (input) the duration in milliseconds ** ** Returns void ** *******************************************************************************/ void GKI_delay(uint32_t timeout) { uint8_t rtask = GKI_get_taskid(); struct timespec delay; int err; DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_delay %d %d", rtask, timeout); delay.tv_sec = timeout / 1000; delay.tv_nsec = 1000 * 1000 * (timeout % 1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno == EINTR); /* Check if task was killed while sleeping */ /* NOTE ** if you do not implement task killing, you do not ** need this check. */ if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { } DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_delay %d %d done", rtask, timeout); return; } /******************************************************************************* ** ** Function GKI_send_event ** ** Description This function is called by tasks to send events to other ** tasks. Tasks can also send events to themselves. ** ** Parameters: task_id - (input) The id of the task to which the event has ** to be sent ** event - (input) The event that has to be sent ** ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** *******************************************************************************/ uint8_t GKI_send_event(uint8_t task_id, uint16_t event) { /* use efficient coding to avoid pipeline stalls */ if (task_id < GKI_MAX_TASKS) { /* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */ pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]); /* Set the event bit */ gki_cb.com.OSWaitEvt[task_id] |= event; pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]); return (GKI_SUCCESS); } return (GKI_FAILURE); } /******************************************************************************* ** ** Function GKI_isend_event ** ** Description This function is called from ISRs to send events to other ** tasks. The only difference between this function and ** GKI_send_event is that this function assumes interrupts are ** already disabled. ** ** Parameters: task_id - (input) The destination task Id for the event. ** event - (input) The event flag ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put your code here, otherwise you can delete the entire ** body of the function. ** *******************************************************************************/ uint8_t GKI_isend_event(uint8_t task_id, uint16_t event) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_isend_event %d %x", task_id, event); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_isend_event %d %x done", task_id, event); return GKI_send_event(task_id, event); } /******************************************************************************* ** ** Function GKI_get_taskid ** ** Description This function gets the currently running task ID. ** ** Returns task ID ** ** NOTE The Widcomm upper stack and profiles may run as a single ** task. If you only have one GKI task, then you can hard-code ** this function to return a '1'. Otherwise, you should have ** some OS-specific method to determine the current task. ** *******************************************************************************/ uint8_t GKI_get_taskid(void) { int i; pthread_t thread_id = pthread_self(); for (i = 0; i < GKI_MAX_TASKS; i++) { if (gki_cb.os.thread_id[i] == thread_id) { return (i); } } return (-1); } /******************************************************************************* ** ** Function GKI_map_taskname ** ** Description This function gets the task name of the taskid passed as ** arg. If GKI_MAX_TASKS is passed as arg the currently running ** task name is returned ** ** Parameters: task_id - (input) The id of the task whose name is being ** sought. GKI_MAX_TASKS is passed to get the name of the ** currently running task. ** ** Returns pointer to task name ** ** NOTE this function needs no customization ** *******************************************************************************/ int8_t* GKI_map_taskname(uint8_t task_id) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_map_taskname %d", task_id); if (task_id < GKI_MAX_TASKS) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf( "GKI_map_taskname %d %s done", task_id, gki_cb.com.OSTName[task_id]); return (gki_cb.com.OSTName[task_id]); } else if (task_id == GKI_MAX_TASKS) { return (gki_cb.com.OSTName[GKI_get_taskid()]); } else { return (int8_t*)"BAD"; } } /******************************************************************************* ** ** Function GKI_enable ** ** Description This function enables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_enable(void) { pthread_mutex_unlock(&gki_cb.os.GKI_mutex); /* pthread_mutex_xx is nesting save, no need for this: already_disabled = * 0; */ return; } /******************************************************************************* ** ** Function GKI_disable ** ** Description This function disables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_disable(void) { // DLOG_IF(INFO, nfc_debug_enabled) << // StringPrintf("GKI_disable"); /* pthread_mutex_xx is nesting save, no need for this: if (!already_disabled) { already_disabled = 1; */ pthread_mutex_lock(&gki_cb.os.GKI_mutex); /* } */ // DLOG_IF(INFO, nfc_debug_enabled) << // StringPrintf("Leaving GKI_disable"); return; } /******************************************************************************* ** ** Function GKI_exception ** ** Description This function throws an exception. ** This is normally only called for a nonrecoverable error. ** ** Parameters: code - (input) The code for the error ** msg - (input) The message that has to be logged ** ** Returns void ** *******************************************************************************/ void GKI_exception(uint16_t code, std::string msg) { uint8_t task_id; LOG(ERROR) << StringPrintf("Task State Table"); for (task_id = 0; task_id < GKI_MAX_TASKS; task_id++) { LOG(ERROR) << StringPrintf("TASK ID [%d] task name [%s] state [%d]", task_id, gki_cb.com.OSTName[task_id], gki_cb.com.OSRdyTbl[task_id]); } LOG(ERROR) << StringPrintf("%d %s", code, msg.c_str()); LOG(ERROR) << StringPrintf( "********************************************************************"); LOG(ERROR) << StringPrintf("* %d %s", code, msg.c_str()); LOG(ERROR) << StringPrintf( "********************************************************************"); LOG(ERROR) << StringPrintf("%d %s done", code, msg.c_str()); return; } /******************************************************************************* ** ** Function GKI_get_time_stamp ** ** Description This function formats the time into a user area ** ** Parameters: tbuf - (output) the address to the memory containing the ** formatted time ** ** Returns the address of the user area containing the formatted time ** The format of the time is ???? ** ** NOTE This function is only called by OBEX. ** *******************************************************************************/ int8_t* GKI_get_time_stamp(int8_t* tbuf) { uint32_t ms_time; uint32_t s_time; uint32_t m_time; uint32_t h_time; int8_t* p_out = tbuf; gki_cb.com.OSTicks = times(0); ms_time = GKI_TICKS_TO_MS(gki_cb.com.OSTicks); s_time = ms_time / 100; /* 100 Ticks per second */ m_time = s_time / 60; h_time = m_time / 60; ms_time -= s_time * 100; s_time -= m_time * 60; m_time -= h_time * 60; *p_out++ = (int8_t)((h_time / 10) + '0'); *p_out++ = (int8_t)((h_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (int8_t)((m_time / 10) + '0'); *p_out++ = (int8_t)((m_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (int8_t)((s_time / 10) + '0'); *p_out++ = (int8_t)((s_time % 10) + '0'); *p_out++ = ':'; *p_out++ = (int8_t)((ms_time / 10) + '0'); *p_out++ = (int8_t)((ms_time % 10) + '0'); *p_out++ = ':'; *p_out = 0; return (tbuf); } /******************************************************************************* ** ** Function GKI_register_mempool ** ** Description This function registers a specific memory pool. ** ** Parameters: p_mem - (input) pointer to the memory pool ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If your OS has different memory pools, you ** can tell GKI the pool to use by calling this function. ** *******************************************************************************/ void GKI_register_mempool(void* p_mem) { gki_cb.com.p_user_mempool = p_mem; return; } /******************************************************************************* ** ** Function GKI_os_malloc ** ** Description This function allocates memory ** ** Parameters: size - (input) The size of the memory that has to be ** allocated ** ** Returns the address of the memory allocated, or NULL if failed ** ** NOTE This function is called by the Widcomm stack when ** dynamic memory allocation is used. ** *******************************************************************************/ void* GKI_os_malloc(uint32_t size) { return (malloc(size)); } /******************************************************************************* ** ** Function GKI_os_free ** ** Description This function frees memory ** ** Parameters: size - (input) The address of the memory that has to be ** freed ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. It is only called from within GKI if dynamic ** *******************************************************************************/ void GKI_os_free(void* p_mem) { if (p_mem != NULL) free(p_mem); return; } /******************************************************************************* ** ** Function GKI_suspend_task() ** ** Description This function suspends the task specified in the argument. ** ** Parameters: task_id - (input) the id of the task that has to suspended ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to implement task suspension ** capability, put specific code here. ** *******************************************************************************/ uint8_t GKI_suspend_task(uint8_t task_id) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_suspend_task %d - NOT implemented", task_id); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_suspend_task %d done", task_id); return (GKI_SUCCESS); } /******************************************************************************* ** ** Function GKI_resume_task() ** ** Description This function resumes the task specified in the argument. ** ** Parameters: task_id - (input) the id of the task that has to resumed ** ** Returns GKI_SUCCESS if all OK ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to implement task suspension ** capability, put specific code here. ** *******************************************************************************/ uint8_t GKI_resume_task(uint8_t task_id) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_resume_task %d - NOT implemented", task_id); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_resume_task %d done", task_id); return (GKI_SUCCESS); } /******************************************************************************* ** ** Function GKI_exit_task ** ** Description This function is called to stop a GKI task. ** ** Parameters: task_id - (input) the id of the task that has to be stopped ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put specific code here to kill a task. ** *******************************************************************************/ void GKI_exit_task(uint8_t task_id) { if (task_id >= GKI_MAX_TASKS) { return; } GKI_disable(); gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD; /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]); pthread_cond_destroy(&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]); pthread_cond_destroy(&gki_cb.os.thread_timeout_cond[task_id]); GKI_enable(); // GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT)); DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_exit_task %d done", task_id); return; } /******************************************************************************* ** ** Function GKI_sched_lock ** ** Description This function is called by tasks to disable scheduler ** task context switching. ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put code here to tell the OS to disable context switching. ** *******************************************************************************/ void GKI_sched_lock(void) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_sched_lock"); GKI_disable(); return; } /******************************************************************************* ** ** Function GKI_sched_unlock ** ** Description This function is called by tasks to enable scheduler ** switching. ** ** Returns void ** ** NOTE This function is NOT called by the Widcomm stack and ** profiles. If you want to use it in your own implementation, ** put code here to tell the OS to re-enable context switching. ** *******************************************************************************/ void GKI_sched_unlock(void) { DLOG_IF(INFO, nfc_debug_enabled) << StringPrintf("GKI_sched_unlock"); GKI_enable(); } /******************************************************************************* ** ** Function GKI_shiftdown ** ** Description shift memory down (to make space to insert a record) ** *******************************************************************************/ void GKI_shiftdown(uint8_t* p_mem, uint32_t len, uint32_t shift_amount) { uint8_t* ps = p_mem + len - 1; uint8_t* pd = ps + shift_amount; uint32_t xx; for (xx = 0; xx < len; xx++) *pd-- = *ps--; } /******************************************************************************* ** ** Function GKI_shiftup ** ** Description shift memory up (to delete a record) ** *******************************************************************************/ void GKI_shiftup(uint8_t* p_dest, uint8_t* p_src, uint32_t len) { uint8_t* ps = p_src; uint8_t* pd = p_dest; uint32_t xx; for (xx = 0; xx < len; xx++) *pd++ = *ps++; }