/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <keymaster/km_openssl/ckdf.h>
#include <assert.h>
#include <openssl/aes.h>
#include <openssl/cmac.h>
#include <keymaster/km_openssl/openssl_err.h>
#include <keymaster/km_openssl/openssl_utils.h>
#include <keymaster/serializable.h>
namespace keymaster {
inline uint32_t div_round_up(uint32_t dividend, uint32_t divisor) {
return (dividend + divisor - 1) / divisor;
}
size_t min(size_t a, size_t b) {
return a < b ? a : b;
}
DEFINE_OPENSSL_OBJECT_POINTER(CMAC_CTX)
keymaster_error_t ckdf(const KeymasterKeyBlob& key, const KeymasterBlob& label,
const keymaster_blob_t* context_chunks, size_t num_chunks,
KeymasterKeyBlob* output) {
// Note: the variables i and L correspond to i and L in the standard. See page 12 of
// http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf.
const uint32_t blocks = div_round_up(output->key_material_size, AES_BLOCK_SIZE);
const uint32_t L = output->key_material_size * 8; // bits
const uint32_t net_order_L = hton(L);
CMAC_CTX_Ptr ctx(CMAC_CTX_new());
if (!ctx.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED;
auto algo = EVP_aes_128_cbc();
switch (key.key_material_size) {
case AES_BLOCK_SIZE:
/* Already set */
break;
case AES_BLOCK_SIZE * 2:
algo = EVP_aes_256_cbc();
break;
default:
return KM_ERROR_UNSUPPORTED_KEY_SIZE;
}
if (!CMAC_Init(ctx.get(), key.key_material, key.key_material_size, algo,
nullptr /* engine */)) {
return TranslateLastOpenSslError();
}
auto output_pos = const_cast<uint8_t*>(output->begin());
memset(output_pos, 0, output->key_material_size);
for (uint32_t i = 1; i <= blocks; ++i) {
// Data to mac is i || label || 0x00 || context || L, with i and L represented in 32 bits,
// in network order.
// i
uint32_t net_order_i = hton(i);
if (!CMAC_Update(ctx.get(), reinterpret_cast<uint8_t*>(&net_order_i),
sizeof(net_order_i))) {
return TranslateLastOpenSslError();
}
// label
if (!CMAC_Update(ctx.get(), label.data, label.data_length)) {
return TranslateLastOpenSslError();
}
// 0x00
uint8_t zero = 0;
if (!CMAC_Update(ctx.get(), &zero, sizeof(zero))) return TranslateLastOpenSslError();
// context
for (size_t chunk = 0; chunk < num_chunks; ++chunk) {
if (!CMAC_Update(ctx.get(), context_chunks[chunk].data,
context_chunks[chunk].data_length)) {
return TranslateLastOpenSslError();
}
}
// L
uint8_t buf[4];
memcpy(buf, &net_order_L, 4);
if (!CMAC_Update(ctx.get(), buf, sizeof(buf))) TranslateLastOpenSslError();
size_t out_len;
if (output_pos <= output->end() - AES_BLOCK_SIZE) {
if (!CMAC_Final(ctx.get(), output_pos, &out_len)) return TranslateLastOpenSslError();
output_pos += out_len;
} else {
uint8_t cmac[AES_BLOCK_SIZE];
if (!CMAC_Final(ctx.get(), cmac, &out_len)) return TranslateLastOpenSslError();
size_t to_copy = output->end() - output_pos;
memcpy(output_pos, cmac, to_copy);
output_pos += to_copy;
}
CMAC_Reset(ctx.get());
}
assert(output_pos == output->end());
return KM_ERROR_OK;
}
} // namespace keymaster