/* * Copyright 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <keymaster/km_openssl/ckdf.h> #include <assert.h> #include <openssl/aes.h> #include <openssl/cmac.h> #include <keymaster/km_openssl/openssl_err.h> #include <keymaster/km_openssl/openssl_utils.h> #include <keymaster/serializable.h> namespace keymaster { inline uint32_t div_round_up(uint32_t dividend, uint32_t divisor) { return (dividend + divisor - 1) / divisor; } size_t min(size_t a, size_t b) { return a < b ? a : b; } DEFINE_OPENSSL_OBJECT_POINTER(CMAC_CTX) keymaster_error_t ckdf(const KeymasterKeyBlob& key, const KeymasterBlob& label, const keymaster_blob_t* context_chunks, size_t num_chunks, KeymasterKeyBlob* output) { // Note: the variables i and L correspond to i and L in the standard. See page 12 of // http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf. const uint32_t blocks = div_round_up(output->key_material_size, AES_BLOCK_SIZE); const uint32_t L = output->key_material_size * 8; // bits const uint32_t net_order_L = hton(L); CMAC_CTX_Ptr ctx(CMAC_CTX_new()); if (!ctx.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; auto algo = EVP_aes_128_cbc(); switch (key.key_material_size) { case AES_BLOCK_SIZE: /* Already set */ break; case AES_BLOCK_SIZE * 2: algo = EVP_aes_256_cbc(); break; default: return KM_ERROR_UNSUPPORTED_KEY_SIZE; } if (!CMAC_Init(ctx.get(), key.key_material, key.key_material_size, algo, nullptr /* engine */)) { return TranslateLastOpenSslError(); } auto output_pos = const_cast<uint8_t*>(output->begin()); memset(output_pos, 0, output->key_material_size); for (uint32_t i = 1; i <= blocks; ++i) { // Data to mac is i || label || 0x00 || context || L, with i and L represented in 32 bits, // in network order. // i uint32_t net_order_i = hton(i); if (!CMAC_Update(ctx.get(), reinterpret_cast<uint8_t*>(&net_order_i), sizeof(net_order_i))) { return TranslateLastOpenSslError(); } // label if (!CMAC_Update(ctx.get(), label.data, label.data_length)) { return TranslateLastOpenSslError(); } // 0x00 uint8_t zero = 0; if (!CMAC_Update(ctx.get(), &zero, sizeof(zero))) return TranslateLastOpenSslError(); // context for (size_t chunk = 0; chunk < num_chunks; ++chunk) { if (!CMAC_Update(ctx.get(), context_chunks[chunk].data, context_chunks[chunk].data_length)) { return TranslateLastOpenSslError(); } } // L uint8_t buf[4]; memcpy(buf, &net_order_L, 4); if (!CMAC_Update(ctx.get(), buf, sizeof(buf))) TranslateLastOpenSslError(); size_t out_len; if (output_pos <= output->end() - AES_BLOCK_SIZE) { if (!CMAC_Final(ctx.get(), output_pos, &out_len)) return TranslateLastOpenSslError(); output_pos += out_len; } else { uint8_t cmac[AES_BLOCK_SIZE]; if (!CMAC_Final(ctx.get(), cmac, &out_len)) return TranslateLastOpenSslError(); size_t to_copy = output->end() - output_pos; memcpy(output_pos, cmac, to_copy); output_pos += to_copy; } CMAC_Reset(ctx.get()); } assert(output_pos == output->end()); return KM_ERROR_OK; } } // namespace keymaster