// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator.
//
// This was originally based on tcmalloc, but has diverged quite a bit.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 70 size classes, each of which
// has its own free set of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using a free bitmap.
//
// The allocator's data structures are:
//
// fixalloc: a free-list allocator for fixed-size off-heap objects,
// used to manage storage used by the allocator.
// mheap: the malloc heap, managed at page (8192-byte) granularity.
// mspan: a run of pages managed by the mheap.
// mcentral: collects all spans of a given size class.
// mcache: a per-P cache of mspans with free space.
// mstats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding mspan in this P's mcache.
// Scan the mspan's free bitmap to find a free slot.
// If there is a free slot, allocate it.
// This can all be done without acquiring a lock.
//
// 2. If the mspan has no free slots, obtain a new mspan
// from the mcentral's list of mspans of the required size
// class that have free space.
// Obtaining a whole span amortizes the cost of locking
// the mcentral.
//
// 3. If the mcentral's mspan list is empty, obtain a run
// of pages from the mheap to use for the mspan.
//
// 4. If the mheap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Sweeping an mspan and freeing objects on it proceeds up a similar
// hierarchy:
//
// 1. If the mspan is being swept in response to allocation, it
// is returned to the mcache to satisfy the allocation.
//
// 2. Otherwise, if the mspan still has allocated objects in it,
// it is placed on the mcentral free list for the mspan's size
// class.
//
// 3. Otherwise, if all objects in the mspan are free, the mspan
// is now "idle", so it is returned to the mheap and no longer
// has a size class.
// This may coalesce it with adjacent idle mspans.
//
// 4. If an mspan remains idle for long enough, return its pages
// to the operating system.
//
// Allocating and freeing a large object uses the mheap
// directly, bypassing the mcache and mcentral.
//
// Free object slots in an mspan are zeroed only if mspan.needzero is
// false. If needzero is true, objects are zeroed as they are
// allocated. There are various benefits to delaying zeroing this way:
//
// 1. Stack frame allocation can avoid zeroing altogether.
//
// 2. It exhibits better temporal locality, since the program is
// probably about to write to the memory.
//
// 3. We don't zero pages that never get reused.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
const (
debugMalloc = false
maxTinySize = _TinySize
tinySizeClass = _TinySizeClass
maxSmallSize = _MaxSmallSize
pageShift = _PageShift
pageSize = _PageSize
pageMask = _PageMask
// By construction, single page spans of the smallest object class
// have the most objects per span.
maxObjsPerSpan = pageSize / 8
mSpanInUse = _MSpanInUse
concurrentSweep = _ConcurrentSweep
_PageSize = 1 << _PageShift
_PageMask = _PageSize - 1
// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
_64bit = 1 << (^uintptr(0) >> 63) / 2
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
_TinySize = 16
_TinySizeClass = int8(2)
_FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
_MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
_HeapAllocChunk = 1 << 20 // Chunk size for heap growth
// Per-P, per order stack segment cache size.
_StackCacheSize = 32 * 1024
// Number of orders that get caching. Order 0 is FixedStack
// and each successive order is twice as large.
// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
// will be allocated directly.
// Since FixedStack is different on different systems, we
// must vary NumStackOrders to keep the same maximum cached size.
// OS | FixedStack | NumStackOrders
// -----------------+------------+---------------
// linux/darwin/bsd | 2KB | 4
// windows/32 | 4KB | 3
// windows/64 | 8KB | 2
// plan9 | 4KB | 3
_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
// Number of bits in page to span calculations (4k pages).
// On Windows 64-bit we limit the arena to 32GB or 35 bits.
// Windows counts memory used by page table into committed memory
// of the process, so we can't reserve too much memory.
// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
// The only exception is mips32 which only has access to low 2GB of virtual memory.
// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
// but as most devices have less than 4GB of physical memory anyway, we
// try to be conservative here, and only ask for a 2GB heap.
_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
_MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift
// _MaxMem is the maximum heap arena size minus 1.
//
// On 32-bit, this is also the maximum heap pointer value,
// since the arena starts at address 0.
_MaxMem = 1<<_MHeapMap_TotalBits - 1
// Max number of threads to run garbage collection.
// 2, 3, and 4 are all plausible maximums depending
// on the hardware details of the machine. The garbage
// collector scales well to 32 cpus.
_MaxGcproc = 32
// minLegalPointer is the smallest possible legal pointer.
// This is the smallest possible architectural page size,
// since we assume that the first page is never mapped.
//
// This should agree with minZeroPage in the compiler.
minLegalPointer uintptr = 4096
)
// physPageSize is the size in bytes of the OS's physical pages.
// Mapping and unmapping operations must be done at multiples of
// physPageSize.
//
// This must be set by the OS init code (typically in osinit) before
// mallocinit.
var physPageSize uintptr
// OS-defined helpers:
//
// sysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by sysAlloc.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation. It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable. On some systems and in some
// cases SysReserve will simply check that the address space is
// available and not actually reserve it. If SysReserve returns
// non-nil, it sets *reserved to true if the address space is
// reserved, false if it has merely been checked.
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by sysAlloc.
//
// SysMap maps previously reserved address space for use.
// The reserved argument is true if the address space was really
// reserved, not merely checked.
//
// SysFault marks a (already sysAlloc'd) region to fault
// if accessed. Used only for debugging the runtime.
func mallocinit() {
if class_to_size[_TinySizeClass] != _TinySize {
throw("bad TinySizeClass")
}
testdefersizes()
// Copy class sizes out for statistics table.
for i := range class_to_size {
memstats.by_size[i].size = uint32(class_to_size[i])
}
// Check physPageSize.
if physPageSize == 0 {
// The OS init code failed to fetch the physical page size.
throw("failed to get system page size")
}
if physPageSize < minPhysPageSize {
print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
throw("bad system page size")
}
if physPageSize&(physPageSize-1) != 0 {
print("system page size (", physPageSize, ") must be a power of 2\n")
throw("bad system page size")
}
// The auxiliary regions start at p and are laid out in the
// following order: spans, bitmap, arena.
var p, pSize uintptr
var reserved bool
// The spans array holds one *mspan per _PageSize of arena.
var spansSize uintptr = (_MaxMem + 1) / _PageSize * sys.PtrSize
spansSize = round(spansSize, _PageSize)
// The bitmap holds 2 bits per word of arena.
var bitmapSize uintptr = (_MaxMem + 1) / (sys.PtrSize * 8 / 2)
bitmapSize = round(bitmapSize, _PageSize)
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found.
if sys.PtrSize == 8 {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 512 GB (MaxMem) should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
// Allocating a 512 GB region takes away 39 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 9 bits
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
// UTF-8 sequences, and they are otherwise as far away from
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
// on OS X during thread allocations. 0x00c0 causes conflicts with
// AddressSanitizer which reserves all memory up to 0x0100.
// These choices are both for debuggability and to reduce the
// odds of a conservative garbage collector (as is still used in gccgo)
// not collecting memory because some non-pointer block of memory
// had a bit pattern that matched a memory address.
//
// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
// but it hardly matters: e0 00 is not valid UTF-8 either.
//
// If this fails we fall back to the 32 bit memory mechanism
//
// However, on arm64, we ignore all this advice above and slam the
// allocation at 0x40 << 32 because when using 4k pages with 3-level
// translation buffers, the user address space is limited to 39 bits
// On darwin/arm64, the address space is even smaller.
arenaSize := round(_MaxMem, _PageSize)
pSize = bitmapSize + spansSize + arenaSize + _PageSize
for i := 0; i <= 0x7f; i++ {
switch {
case GOARCH == "arm64" && GOOS == "darwin":
p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
case GOARCH == "arm64":
p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
default:
p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
}
p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
if p != 0 {
break
}
}
}
if p == 0 {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle the entire 4GB address space (256 MB),
// along with a reservation for an initial arena.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere.
// We want to start the arena low, but if we're linked
// against C code, it's possible global constructors
// have called malloc and adjusted the process' brk.
// Query the brk so we can avoid trying to map the
// arena over it (which will cause the kernel to put
// the arena somewhere else, likely at a high
// address).
procBrk := sbrk0()
// If we fail to allocate, try again with a smaller arena.
// This is necessary on Android L where we share a process
// with ART, which reserves virtual memory aggressively.
// In the worst case, fall back to a 0-sized initial arena,
// in the hope that subsequent reservations will succeed.
arenaSizes := []uintptr{
512 << 20,
256 << 20,
128 << 20,
0,
}
for _, arenaSize := range arenaSizes {
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. Except QEMU, which
// is buggy, as usual: it won't adjust the pointer upward.
// So adjust it upward a little bit ourselves: 1/4 MB to get
// away from the running binary image and then round up
// to a MB boundary.
p = round(firstmoduledata.end+(1<<18), 1<<20)
pSize = bitmapSize + spansSize + arenaSize + _PageSize
if p <= procBrk && procBrk < p+pSize {
// Move the start above the brk,
// leaving some room for future brk
// expansion.
p = round(procBrk+(1<<20), 1<<20)
}
p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
if p != 0 {
break
}
}
if p == 0 {
throw("runtime: cannot reserve arena virtual address space")
}
}
// PageSize can be larger than OS definition of page size,
// so SysReserve can give us a PageSize-unaligned pointer.
// To overcome this we ask for PageSize more and round up the pointer.
p1 := round(p, _PageSize)
pSize -= p1 - p
spansStart := p1
p1 += spansSize
mheap_.bitmap = p1 + bitmapSize
p1 += bitmapSize
if sys.PtrSize == 4 {
// Set arena_start such that we can accept memory
// reservations located anywhere in the 4GB virtual space.
mheap_.arena_start = 0
} else {
mheap_.arena_start = p1
}
mheap_.arena_end = p + pSize
mheap_.arena_used = p1
mheap_.arena_alloc = p1
mheap_.arena_reserved = reserved
if mheap_.arena_start&(_PageSize-1) != 0 {
println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
throw("misrounded allocation in mallocinit")
}
// Initialize the rest of the allocator.
mheap_.init(spansStart, spansSize)
_g_ := getg()
_g_.m.mcache = allocmcache()
}
// sysAlloc allocates the next n bytes from the heap arena. The
// returned pointer is always _PageSize aligned and between
// h.arena_start and h.arena_end. sysAlloc returns nil on failure.
// There is no corresponding free function.
func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
// strandLimit is the maximum number of bytes to strand from
// the current arena block. If we would need to strand more
// than this, we fall back to sysAlloc'ing just enough for
// this allocation.
const strandLimit = 16 << 20
if n > h.arena_end-h.arena_alloc {
// If we haven't grown the arena to _MaxMem yet, try
// to reserve some more address space.
p_size := round(n+_PageSize, 256<<20)
new_end := h.arena_end + p_size // Careful: can overflow
if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxMem {
// TODO: It would be bad if part of the arena
// is reserved and part is not.
var reserved bool
p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
if p == 0 {
// TODO: Try smaller reservation
// growths in case we're in a crowded
// 32-bit address space.
goto reservationFailed
}
// p can be just about anywhere in the address
// space, including before arena_end.
if p == h.arena_end {
// The new block is contiguous with
// the current block. Extend the
// current arena block.
h.arena_end = new_end
h.arena_reserved = reserved
} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxMem && h.arena_end-h.arena_alloc < strandLimit {
// We were able to reserve more memory
// within the arena space, but it's
// not contiguous with our previous
// reservation. It could be before or
// after our current arena_used.
//
// Keep everything page-aligned.
// Our pages are bigger than hardware pages.
h.arena_end = p + p_size
p = round(p, _PageSize)
h.arena_alloc = p
h.arena_reserved = reserved
} else {
// We got a mapping, but either
//
// 1) It's not in the arena, so we
// can't use it. (This should never
// happen on 32-bit.)
//
// 2) We would need to discard too
// much of our current arena block to
// use it.
//
// We haven't added this allocation to
// the stats, so subtract it from a
// fake stat (but avoid underflow).
//
// We'll fall back to a small sysAlloc.
stat := uint64(p_size)
sysFree(unsafe.Pointer(p), p_size, &stat)
}
}
}
if n <= h.arena_end-h.arena_alloc {
// Keep taking from our reservation.
p := h.arena_alloc
sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
h.arena_alloc += n
if h.arena_alloc > h.arena_used {
h.setArenaUsed(h.arena_alloc, true)
}
if p&(_PageSize-1) != 0 {
throw("misrounded allocation in MHeap_SysAlloc")
}
return unsafe.Pointer(p)
}
reservationFailed:
// If using 64-bit, our reservation is all we have.
if sys.PtrSize != 4 {
return nil
}
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS.
p_size := round(n, _PageSize) + _PageSize
p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
if p == 0 {
return nil
}
if p < h.arena_start || p+p_size-h.arena_start > _MaxMem {
// This shouldn't be possible because _MaxMem is the
// whole address space on 32-bit.
top := uint64(h.arena_start) + _MaxMem
print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
return nil
}
p += -p & (_PageSize - 1)
if p+n > h.arena_used {
h.setArenaUsed(p+n, true)
}
if p&(_PageSize-1) != 0 {
throw("misrounded allocation in MHeap_SysAlloc")
}
return unsafe.Pointer(p)
}
// base address for all 0-byte allocations
var zerobase uintptr
// nextFreeFast returns the next free object if one is quickly available.
// Otherwise it returns 0.
func nextFreeFast(s *mspan) gclinkptr {
theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
if theBit < 64 {
result := s.freeindex + uintptr(theBit)
if result < s.nelems {
freeidx := result + 1
if freeidx%64 == 0 && freeidx != s.nelems {
return 0
}
s.allocCache >>= uint(theBit + 1)
s.freeindex = freeidx
s.allocCount++
return gclinkptr(result*s.elemsize + s.base())
}
}
return 0
}
// nextFree returns the next free object from the cached span if one is available.
// Otherwise it refills the cache with a span with an available object and
// returns that object along with a flag indicating that this was a heavy
// weight allocation. If it is a heavy weight allocation the caller must
// determine whether a new GC cycle needs to be started or if the GC is active
// whether this goroutine needs to assist the GC.
func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
s = c.alloc[spc]
shouldhelpgc = false
freeIndex := s.nextFreeIndex()
if freeIndex == s.nelems {
// The span is full.
if uintptr(s.allocCount) != s.nelems {
println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount != s.nelems && freeIndex == s.nelems")
}
systemstack(func() {
c.refill(spc)
})
shouldhelpgc = true
s = c.alloc[spc]
freeIndex = s.nextFreeIndex()
}
if freeIndex >= s.nelems {
throw("freeIndex is not valid")
}
v = gclinkptr(freeIndex*s.elemsize + s.base())
s.allocCount++
if uintptr(s.allocCount) > s.nelems {
println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
throw("s.allocCount > s.nelems")
}
return
}
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
if gcphase == _GCmarktermination {
throw("mallocgc called with gcphase == _GCmarktermination")
}
if size == 0 {
return unsafe.Pointer(&zerobase)
}
if debug.sbrk != 0 {
align := uintptr(16)
if typ != nil {
align = uintptr(typ.align)
}
return persistentalloc(size, align, &memstats.other_sys)
}
// assistG is the G to charge for this allocation, or nil if
// GC is not currently active.
var assistG *g
if gcBlackenEnabled != 0 {
// Charge the current user G for this allocation.
assistG = getg()
if assistG.m.curg != nil {
assistG = assistG.m.curg
}
// Charge the allocation against the G. We'll account
// for internal fragmentation at the end of mallocgc.
assistG.gcAssistBytes -= int64(size)
if assistG.gcAssistBytes < 0 {
// This G is in debt. Assist the GC to correct
// this before allocating. This must happen
// before disabling preemption.
gcAssistAlloc(assistG)
}
}
// Set mp.mallocing to keep from being preempted by GC.
mp := acquirem()
if mp.mallocing != 0 {
throw("malloc deadlock")
}
if mp.gsignal == getg() {
throw("malloc during signal")
}
mp.mallocing = 1
shouldhelpgc := false
dataSize := size
c := gomcache()
var x unsafe.Pointer
noscan := typ == nil || typ.kind&kindNoPointers != 0
if size <= maxSmallSize {
if noscan && size < maxTinySize {
// Tiny allocator.
//
// Tiny allocator combines several tiny allocation requests
// into a single memory block. The resulting memory block
// is freed when all subobjects are unreachable. The subobjects
// must be noscan (don't have pointers), this ensures that
// the amount of potentially wasted memory is bounded.
//
// Size of the memory block used for combining (maxTinySize) is tunable.
// Current setting is 16 bytes, which relates to 2x worst case memory
// wastage (when all but one subobjects are unreachable).
// 8 bytes would result in no wastage at all, but provides less
// opportunities for combining.
// 32 bytes provides more opportunities for combining,
// but can lead to 4x worst case wastage.
// The best case winning is 8x regardless of block size.
//
// Objects obtained from tiny allocator must not be freed explicitly.
// So when an object will be freed explicitly, we ensure that
// its size >= maxTinySize.
//
// SetFinalizer has a special case for objects potentially coming
// from tiny allocator, it such case it allows to set finalizers
// for an inner byte of a memory block.
//
// The main targets of tiny allocator are small strings and
// standalone escaping variables. On a json benchmark
// the allocator reduces number of allocations by ~12% and
// reduces heap size by ~20%.
off := c.tinyoffset
// Align tiny pointer for required (conservative) alignment.
if size&7 == 0 {
off = round(off, 8)
} else if size&3 == 0 {
off = round(off, 4)
} else if size&1 == 0 {
off = round(off, 2)
}
if off+size <= maxTinySize && c.tiny != 0 {
// The object fits into existing tiny block.
x = unsafe.Pointer(c.tiny + off)
c.tinyoffset = off + size
c.local_tinyallocs++
mp.mallocing = 0
releasem(mp)
return x
}
// Allocate a new maxTinySize block.
span := c.alloc[tinySpanClass]
v := nextFreeFast(span)
if v == 0 {
v, _, shouldhelpgc = c.nextFree(tinySpanClass)
}
x = unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0
(*[2]uint64)(x)[1] = 0
// See if we need to replace the existing tiny block with the new one
// based on amount of remaining free space.
if size < c.tinyoffset || c.tiny == 0 {
c.tiny = uintptr(x)
c.tinyoffset = size
}
size = maxTinySize
} else {
var sizeclass uint8
if size <= smallSizeMax-8 {
sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
} else {
sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
}
size = uintptr(class_to_size[sizeclass])
spc := makeSpanClass(sizeclass, noscan)
span := c.alloc[spc]
v := nextFreeFast(span)
if v == 0 {
v, span, shouldhelpgc = c.nextFree(spc)
}
x = unsafe.Pointer(v)
if needzero && span.needzero != 0 {
memclrNoHeapPointers(unsafe.Pointer(v), size)
}
}
} else {
var s *mspan
shouldhelpgc = true
systemstack(func() {
s = largeAlloc(size, needzero, noscan)
})
s.freeindex = 1
s.allocCount = 1
x = unsafe.Pointer(s.base())
size = s.elemsize
}
var scanSize uintptr
if !noscan {
// If allocating a defer+arg block, now that we've picked a malloc size
// large enough to hold everything, cut the "asked for" size down to
// just the defer header, so that the GC bitmap will record the arg block
// as containing nothing at all (as if it were unused space at the end of
// a malloc block caused by size rounding).
// The defer arg areas are scanned as part of scanstack.
if typ == deferType {
dataSize = unsafe.Sizeof(_defer{})
}
heapBitsSetType(uintptr(x), size, dataSize, typ)
if dataSize > typ.size {
// Array allocation. If there are any
// pointers, GC has to scan to the last
// element.
if typ.ptrdata != 0 {
scanSize = dataSize - typ.size + typ.ptrdata
}
} else {
scanSize = typ.ptrdata
}
c.local_scan += scanSize
}
// Ensure that the stores above that initialize x to
// type-safe memory and set the heap bits occur before
// the caller can make x observable to the garbage
// collector. Otherwise, on weakly ordered machines,
// the garbage collector could follow a pointer to x,
// but see uninitialized memory or stale heap bits.
publicationBarrier()
// Allocate black during GC.
// All slots hold nil so no scanning is needed.
// This may be racing with GC so do it atomically if there can be
// a race marking the bit.
if gcphase != _GCoff {
gcmarknewobject(uintptr(x), size, scanSize)
}
if raceenabled {
racemalloc(x, size)
}
if msanenabled {
msanmalloc(x, size)
}
mp.mallocing = 0
releasem(mp)
if debug.allocfreetrace != 0 {
tracealloc(x, size, typ)
}
if rate := MemProfileRate; rate > 0 {
if size < uintptr(rate) && int32(size) < c.next_sample {
c.next_sample -= int32(size)
} else {
mp := acquirem()
profilealloc(mp, x, size)
releasem(mp)
}
}
if assistG != nil {
// Account for internal fragmentation in the assist
// debt now that we know it.
assistG.gcAssistBytes -= int64(size - dataSize)
}
if shouldhelpgc {
if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
gcStart(gcBackgroundMode, t)
}
}
return x
}
func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
// print("largeAlloc size=", size, "\n")
if size+_PageSize < size {
throw("out of memory")
}
npages := size >> _PageShift
if size&_PageMask != 0 {
npages++
}
// Deduct credit for this span allocation and sweep if
// necessary. mHeap_Alloc will also sweep npages, so this only
// pays the debt down to npage pages.
deductSweepCredit(npages*_PageSize, npages)
s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
if s == nil {
throw("out of memory")
}
s.limit = s.base() + size
heapBitsForSpan(s.base()).initSpan(s)
return s
}
// implementation of new builtin
// compiler (both frontend and SSA backend) knows the signature
// of this function
func newobject(typ *_type) unsafe.Pointer {
return mallocgc(typ.size, typ, true)
}
//go:linkname reflect_unsafe_New reflect.unsafe_New
func reflect_unsafe_New(typ *_type) unsafe.Pointer {
return newobject(typ)
}
// newarray allocates an array of n elements of type typ.
func newarray(typ *_type, n int) unsafe.Pointer {
if n == 1 {
return mallocgc(typ.size, typ, true)
}
if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
panic(plainError("runtime: allocation size out of range"))
}
return mallocgc(typ.size*uintptr(n), typ, true)
}
//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
return newarray(typ, n)
}
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
mp.mcache.next_sample = nextSample()
mProf_Malloc(x, size)
}
// nextSample returns the next sampling point for heap profiling. The goal is
// to sample allocations on average every MemProfileRate bytes, but with a
// completely random distribution over the allocation timeline; this
// corresponds to a Poisson process with parameter MemProfileRate. In Poisson
// processes, the distance between two samples follows the exponential
// distribution (exp(MemProfileRate)), so the best return value is a random
// number taken from an exponential distribution whose mean is MemProfileRate.
func nextSample() int32 {
if GOOS == "plan9" {
// Plan 9 doesn't support floating point in note handler.
if g := getg(); g == g.m.gsignal {
return nextSampleNoFP()
}
}
return fastexprand(MemProfileRate)
}
// fastexprand returns a random number from an exponential distribution with
// the specified mean.
func fastexprand(mean int) int32 {
// Avoid overflow. Maximum possible step is
// -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
switch {
case mean > 0x7000000:
mean = 0x7000000
case mean == 0:
return 0
}
// Take a random sample of the exponential distribution exp(-mean*x).
// The probability distribution function is mean*exp(-mean*x), so the CDF is
// p = 1 - exp(-mean*x), so
// q = 1 - p == exp(-mean*x)
// log_e(q) = -mean*x
// -log_e(q)/mean = x
// x = -log_e(q) * mean
// x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency
const randomBitCount = 26
q := fastrand()%(1<<randomBitCount) + 1
qlog := fastlog2(float64(q)) - randomBitCount
if qlog > 0 {
qlog = 0
}
const minusLog2 = -0.6931471805599453 // -ln(2)
return int32(qlog*(minusLog2*float64(mean))) + 1
}
// nextSampleNoFP is similar to nextSample, but uses older,
// simpler code to avoid floating point.
func nextSampleNoFP() int32 {
// Set first allocation sample size.
rate := MemProfileRate
if rate > 0x3fffffff { // make 2*rate not overflow
rate = 0x3fffffff
}
if rate != 0 {
return int32(fastrand() % uint32(2*rate))
}
return 0
}
type persistentAlloc struct {
base *notInHeap
off uintptr
}
var globalAlloc struct {
mutex
persistentAlloc
}
// Wrapper around sysAlloc that can allocate small chunks.
// There is no associated free operation.
// Intended for things like function/type/debug-related persistent data.
// If align is 0, uses default align (currently 8).
// The returned memory will be zeroed.
//
// Consider marking persistentalloc'd types go:notinheap.
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
var p *notInHeap
systemstack(func() {
p = persistentalloc1(size, align, sysStat)
})
return unsafe.Pointer(p)
}
// Must run on system stack because stack growth can (re)invoke it.
// See issue 9174.
//go:systemstack
func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap {
const (
chunk = 256 << 10
maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
)
if size == 0 {
throw("persistentalloc: size == 0")
}
if align != 0 {
if align&(align-1) != 0 {
throw("persistentalloc: align is not a power of 2")
}
if align > _PageSize {
throw("persistentalloc: align is too large")
}
} else {
align = 8
}
if size >= maxBlock {
return (*notInHeap)(sysAlloc(size, sysStat))
}
mp := acquirem()
var persistent *persistentAlloc
if mp != nil && mp.p != 0 {
persistent = &mp.p.ptr().palloc
} else {
lock(&globalAlloc.mutex)
persistent = &globalAlloc.persistentAlloc
}
persistent.off = round(persistent.off, align)
if persistent.off+size > chunk || persistent.base == nil {
persistent.base = (*notInHeap)(sysAlloc(chunk, &memstats.other_sys))
if persistent.base == nil {
if persistent == &globalAlloc.persistentAlloc {
unlock(&globalAlloc.mutex)
}
throw("runtime: cannot allocate memory")
}
persistent.off = 0
}
p := persistent.base.add(persistent.off)
persistent.off += size
releasem(mp)
if persistent == &globalAlloc.persistentAlloc {
unlock(&globalAlloc.mutex)
}
if sysStat != &memstats.other_sys {
mSysStatInc(sysStat, size)
mSysStatDec(&memstats.other_sys, size)
}
return p
}
// notInHeap is off-heap memory allocated by a lower-level allocator
// like sysAlloc or persistentAlloc.
//
// In general, it's better to use real types marked as go:notinheap,
// but this serves as a generic type for situations where that isn't
// possible (like in the allocators).
//
// TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
//
//go:notinheap
type notInHeap struct{}
func (p *notInHeap) add(bytes uintptr) *notInHeap {
return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
}