// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Memory allocator. // // This was originally based on tcmalloc, but has diverged quite a bit. // http://goog-perftools.sourceforge.net/doc/tcmalloc.html // The main allocator works in runs of pages. // Small allocation sizes (up to and including 32 kB) are // rounded to one of about 70 size classes, each of which // has its own free set of objects of exactly that size. // Any free page of memory can be split into a set of objects // of one size class, which are then managed using a free bitmap. // // The allocator's data structures are: // // fixalloc: a free-list allocator for fixed-size off-heap objects, // used to manage storage used by the allocator. // mheap: the malloc heap, managed at page (8192-byte) granularity. // mspan: a run of pages managed by the mheap. // mcentral: collects all spans of a given size class. // mcache: a per-P cache of mspans with free space. // mstats: allocation statistics. // // Allocating a small object proceeds up a hierarchy of caches: // // 1. Round the size up to one of the small size classes // and look in the corresponding mspan in this P's mcache. // Scan the mspan's free bitmap to find a free slot. // If there is a free slot, allocate it. // This can all be done without acquiring a lock. // // 2. If the mspan has no free slots, obtain a new mspan // from the mcentral's list of mspans of the required size // class that have free space. // Obtaining a whole span amortizes the cost of locking // the mcentral. // // 3. If the mcentral's mspan list is empty, obtain a run // of pages from the mheap to use for the mspan. // // 4. If the mheap is empty or has no page runs large enough, // allocate a new group of pages (at least 1MB) from the // operating system. Allocating a large run of pages // amortizes the cost of talking to the operating system. // // Sweeping an mspan and freeing objects on it proceeds up a similar // hierarchy: // // 1. If the mspan is being swept in response to allocation, it // is returned to the mcache to satisfy the allocation. // // 2. Otherwise, if the mspan still has allocated objects in it, // it is placed on the mcentral free list for the mspan's size // class. // // 3. Otherwise, if all objects in the mspan are free, the mspan // is now "idle", so it is returned to the mheap and no longer // has a size class. // This may coalesce it with adjacent idle mspans. // // 4. If an mspan remains idle for long enough, return its pages // to the operating system. // // Allocating and freeing a large object uses the mheap // directly, bypassing the mcache and mcentral. // // Free object slots in an mspan are zeroed only if mspan.needzero is // false. If needzero is true, objects are zeroed as they are // allocated. There are various benefits to delaying zeroing this way: // // 1. Stack frame allocation can avoid zeroing altogether. // // 2. It exhibits better temporal locality, since the program is // probably about to write to the memory. // // 3. We don't zero pages that never get reused. package runtime import ( "runtime/internal/sys" "unsafe" ) const ( debugMalloc = false maxTinySize = _TinySize tinySizeClass = _TinySizeClass maxSmallSize = _MaxSmallSize pageShift = _PageShift pageSize = _PageSize pageMask = _PageMask // By construction, single page spans of the smallest object class // have the most objects per span. maxObjsPerSpan = pageSize / 8 mSpanInUse = _MSpanInUse concurrentSweep = _ConcurrentSweep _PageSize = 1 << _PageShift _PageMask = _PageSize - 1 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems _64bit = 1 << (^uintptr(0) >> 63) / 2 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. _TinySize = 16 _TinySizeClass = int8(2) _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc _MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap. _HeapAllocChunk = 1 << 20 // Chunk size for heap growth // Per-P, per order stack segment cache size. _StackCacheSize = 32 * 1024 // Number of orders that get caching. Order 0 is FixedStack // and each successive order is twice as large. // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks // will be allocated directly. // Since FixedStack is different on different systems, we // must vary NumStackOrders to keep the same maximum cached size. // OS | FixedStack | NumStackOrders // -----------------+------------+--------------- // linux/darwin/bsd | 2KB | 4 // windows/32 | 4KB | 3 // windows/64 | 8KB | 2 // plan9 | 4KB | 3 _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9 // Number of bits in page to span calculations (4k pages). // On Windows 64-bit we limit the arena to 32GB or 35 bits. // Windows counts memory used by page table into committed memory // of the process, so we can't reserve too much memory. // See https://golang.org/issue/5402 and https://golang.org/issue/5236. // On other 64-bit platforms, we limit the arena to 512GB, or 39 bits. // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address. // The only exception is mips32 which only has access to low 2GB of virtual memory. // On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory, // but as most devices have less than 4GB of physical memory anyway, we // try to be conservative here, and only ask for a 2GB heap. _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle)) _MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift // _MaxMem is the maximum heap arena size minus 1. // // On 32-bit, this is also the maximum heap pointer value, // since the arena starts at address 0. _MaxMem = 1<<_MHeapMap_TotalBits - 1 // Max number of threads to run garbage collection. // 2, 3, and 4 are all plausible maximums depending // on the hardware details of the machine. The garbage // collector scales well to 32 cpus. _MaxGcproc = 32 // minLegalPointer is the smallest possible legal pointer. // This is the smallest possible architectural page size, // since we assume that the first page is never mapped. // // This should agree with minZeroPage in the compiler. minLegalPointer uintptr = 4096 ) // physPageSize is the size in bytes of the OS's physical pages. // Mapping and unmapping operations must be done at multiples of // physPageSize. // // This must be set by the OS init code (typically in osinit) before // mallocinit. var physPageSize uintptr // OS-defined helpers: // // sysAlloc obtains a large chunk of zeroed memory from the // operating system, typically on the order of a hundred kilobytes // or a megabyte. // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator // may use larger alignment, so the caller must be careful to realign the // memory obtained by sysAlloc. // // SysUnused notifies the operating system that the contents // of the memory region are no longer needed and can be reused // for other purposes. // SysUsed notifies the operating system that the contents // of the memory region are needed again. // // SysFree returns it unconditionally; this is only used if // an out-of-memory error has been detected midway through // an allocation. It is okay if SysFree is a no-op. // // SysReserve reserves address space without allocating memory. // If the pointer passed to it is non-nil, the caller wants the // reservation there, but SysReserve can still choose another // location if that one is unavailable. On some systems and in some // cases SysReserve will simply check that the address space is // available and not actually reserve it. If SysReserve returns // non-nil, it sets *reserved to true if the address space is // reserved, false if it has merely been checked. // NOTE: SysReserve returns OS-aligned memory, but the heap allocator // may use larger alignment, so the caller must be careful to realign the // memory obtained by sysAlloc. // // SysMap maps previously reserved address space for use. // The reserved argument is true if the address space was really // reserved, not merely checked. // // SysFault marks a (already sysAlloc'd) region to fault // if accessed. Used only for debugging the runtime. func mallocinit() { if class_to_size[_TinySizeClass] != _TinySize { throw("bad TinySizeClass") } testdefersizes() // Copy class sizes out for statistics table. for i := range class_to_size { memstats.by_size[i].size = uint32(class_to_size[i]) } // Check physPageSize. if physPageSize == 0 { // The OS init code failed to fetch the physical page size. throw("failed to get system page size") } if physPageSize < minPhysPageSize { print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n") throw("bad system page size") } if physPageSize&(physPageSize-1) != 0 { print("system page size (", physPageSize, ") must be a power of 2\n") throw("bad system page size") } // The auxiliary regions start at p and are laid out in the // following order: spans, bitmap, arena. var p, pSize uintptr var reserved bool // The spans array holds one *mspan per _PageSize of arena. var spansSize uintptr = (_MaxMem + 1) / _PageSize * sys.PtrSize spansSize = round(spansSize, _PageSize) // The bitmap holds 2 bits per word of arena. var bitmapSize uintptr = (_MaxMem + 1) / (sys.PtrSize * 8 / 2) bitmapSize = round(bitmapSize, _PageSize) // Set up the allocation arena, a contiguous area of memory where // allocated data will be found. if sys.PtrSize == 8 { // On a 64-bit machine, allocate from a single contiguous reservation. // 512 GB (MaxMem) should be big enough for now. // // The code will work with the reservation at any address, but ask // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). // Allocating a 512 GB region takes away 39 bits, and the amd64 // doesn't let us choose the top 17 bits, so that leaves the 9 bits // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid // UTF-8 sequences, and they are otherwise as far away from // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors // on OS X during thread allocations. 0x00c0 causes conflicts with // AddressSanitizer which reserves all memory up to 0x0100. // These choices are both for debuggability and to reduce the // odds of a conservative garbage collector (as is still used in gccgo) // not collecting memory because some non-pointer block of memory // had a bit pattern that matched a memory address. // // Actually we reserve 544 GB (because the bitmap ends up being 32 GB) // but it hardly matters: e0 00 is not valid UTF-8 either. // // If this fails we fall back to the 32 bit memory mechanism // // However, on arm64, we ignore all this advice above and slam the // allocation at 0x40 << 32 because when using 4k pages with 3-level // translation buffers, the user address space is limited to 39 bits // On darwin/arm64, the address space is even smaller. arenaSize := round(_MaxMem, _PageSize) pSize = bitmapSize + spansSize + arenaSize + _PageSize for i := 0; i <= 0x7f; i++ { switch { case GOARCH == "arm64" && GOOS == "darwin": p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) case GOARCH == "arm64": p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) default: p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) } p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved)) if p != 0 { break } } } if p == 0 { // On a 32-bit machine, we can't typically get away // with a giant virtual address space reservation. // Instead we map the memory information bitmap // immediately after the data segment, large enough // to handle the entire 4GB address space (256 MB), // along with a reservation for an initial arena. // When that gets used up, we'll start asking the kernel // for any memory anywhere. // We want to start the arena low, but if we're linked // against C code, it's possible global constructors // have called malloc and adjusted the process' brk. // Query the brk so we can avoid trying to map the // arena over it (which will cause the kernel to put // the arena somewhere else, likely at a high // address). procBrk := sbrk0() // If we fail to allocate, try again with a smaller arena. // This is necessary on Android L where we share a process // with ART, which reserves virtual memory aggressively. // In the worst case, fall back to a 0-sized initial arena, // in the hope that subsequent reservations will succeed. arenaSizes := []uintptr{ 512 << 20, 256 << 20, 128 << 20, 0, } for _, arenaSize := range arenaSizes { // SysReserve treats the address we ask for, end, as a hint, // not as an absolute requirement. If we ask for the end // of the data segment but the operating system requires // a little more space before we can start allocating, it will // give out a slightly higher pointer. Except QEMU, which // is buggy, as usual: it won't adjust the pointer upward. // So adjust it upward a little bit ourselves: 1/4 MB to get // away from the running binary image and then round up // to a MB boundary. p = round(firstmoduledata.end+(1<<18), 1<<20) pSize = bitmapSize + spansSize + arenaSize + _PageSize if p <= procBrk && procBrk < p+pSize { // Move the start above the brk, // leaving some room for future brk // expansion. p = round(procBrk+(1<<20), 1<<20) } p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved)) if p != 0 { break } } if p == 0 { throw("runtime: cannot reserve arena virtual address space") } } // PageSize can be larger than OS definition of page size, // so SysReserve can give us a PageSize-unaligned pointer. // To overcome this we ask for PageSize more and round up the pointer. p1 := round(p, _PageSize) pSize -= p1 - p spansStart := p1 p1 += spansSize mheap_.bitmap = p1 + bitmapSize p1 += bitmapSize if sys.PtrSize == 4 { // Set arena_start such that we can accept memory // reservations located anywhere in the 4GB virtual space. mheap_.arena_start = 0 } else { mheap_.arena_start = p1 } mheap_.arena_end = p + pSize mheap_.arena_used = p1 mheap_.arena_alloc = p1 mheap_.arena_reserved = reserved if mheap_.arena_start&(_PageSize-1) != 0 { println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start)) throw("misrounded allocation in mallocinit") } // Initialize the rest of the allocator. mheap_.init(spansStart, spansSize) _g_ := getg() _g_.m.mcache = allocmcache() } // sysAlloc allocates the next n bytes from the heap arena. The // returned pointer is always _PageSize aligned and between // h.arena_start and h.arena_end. sysAlloc returns nil on failure. // There is no corresponding free function. func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer { // strandLimit is the maximum number of bytes to strand from // the current arena block. If we would need to strand more // than this, we fall back to sysAlloc'ing just enough for // this allocation. const strandLimit = 16 << 20 if n > h.arena_end-h.arena_alloc { // If we haven't grown the arena to _MaxMem yet, try // to reserve some more address space. p_size := round(n+_PageSize, 256<<20) new_end := h.arena_end + p_size // Careful: can overflow if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxMem { // TODO: It would be bad if part of the arena // is reserved and part is not. var reserved bool p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved)) if p == 0 { // TODO: Try smaller reservation // growths in case we're in a crowded // 32-bit address space. goto reservationFailed } // p can be just about anywhere in the address // space, including before arena_end. if p == h.arena_end { // The new block is contiguous with // the current block. Extend the // current arena block. h.arena_end = new_end h.arena_reserved = reserved } else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxMem && h.arena_end-h.arena_alloc < strandLimit { // We were able to reserve more memory // within the arena space, but it's // not contiguous with our previous // reservation. It could be before or // after our current arena_used. // // Keep everything page-aligned. // Our pages are bigger than hardware pages. h.arena_end = p + p_size p = round(p, _PageSize) h.arena_alloc = p h.arena_reserved = reserved } else { // We got a mapping, but either // // 1) It's not in the arena, so we // can't use it. (This should never // happen on 32-bit.) // // 2) We would need to discard too // much of our current arena block to // use it. // // We haven't added this allocation to // the stats, so subtract it from a // fake stat (but avoid underflow). // // We'll fall back to a small sysAlloc. stat := uint64(p_size) sysFree(unsafe.Pointer(p), p_size, &stat) } } } if n <= h.arena_end-h.arena_alloc { // Keep taking from our reservation. p := h.arena_alloc sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys) h.arena_alloc += n if h.arena_alloc > h.arena_used { h.setArenaUsed(h.arena_alloc, true) } if p&(_PageSize-1) != 0 { throw("misrounded allocation in MHeap_SysAlloc") } return unsafe.Pointer(p) } reservationFailed: // If using 64-bit, our reservation is all we have. if sys.PtrSize != 4 { return nil } // On 32-bit, once the reservation is gone we can // try to get memory at a location chosen by the OS. p_size := round(n, _PageSize) + _PageSize p := uintptr(sysAlloc(p_size, &memstats.heap_sys)) if p == 0 { return nil } if p < h.arena_start || p+p_size-h.arena_start > _MaxMem { // This shouldn't be possible because _MaxMem is the // whole address space on 32-bit. top := uint64(h.arena_start) + _MaxMem print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n") sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys) return nil } p += -p & (_PageSize - 1) if p+n > h.arena_used { h.setArenaUsed(p+n, true) } if p&(_PageSize-1) != 0 { throw("misrounded allocation in MHeap_SysAlloc") } return unsafe.Pointer(p) } // base address for all 0-byte allocations var zerobase uintptr // nextFreeFast returns the next free object if one is quickly available. // Otherwise it returns 0. func nextFreeFast(s *mspan) gclinkptr { theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache? if theBit < 64 { result := s.freeindex + uintptr(theBit) if result < s.nelems { freeidx := result + 1 if freeidx%64 == 0 && freeidx != s.nelems { return 0 } s.allocCache >>= uint(theBit + 1) s.freeindex = freeidx s.allocCount++ return gclinkptr(result*s.elemsize + s.base()) } } return 0 } // nextFree returns the next free object from the cached span if one is available. // Otherwise it refills the cache with a span with an available object and // returns that object along with a flag indicating that this was a heavy // weight allocation. If it is a heavy weight allocation the caller must // determine whether a new GC cycle needs to be started or if the GC is active // whether this goroutine needs to assist the GC. func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) { s = c.alloc[spc] shouldhelpgc = false freeIndex := s.nextFreeIndex() if freeIndex == s.nelems { // The span is full. if uintptr(s.allocCount) != s.nelems { println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems) throw("s.allocCount != s.nelems && freeIndex == s.nelems") } systemstack(func() { c.refill(spc) }) shouldhelpgc = true s = c.alloc[spc] freeIndex = s.nextFreeIndex() } if freeIndex >= s.nelems { throw("freeIndex is not valid") } v = gclinkptr(freeIndex*s.elemsize + s.base()) s.allocCount++ if uintptr(s.allocCount) > s.nelems { println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems) throw("s.allocCount > s.nelems") } return } // Allocate an object of size bytes. // Small objects are allocated from the per-P cache's free lists. // Large objects (> 32 kB) are allocated straight from the heap. func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { if gcphase == _GCmarktermination { throw("mallocgc called with gcphase == _GCmarktermination") } if size == 0 { return unsafe.Pointer(&zerobase) } if debug.sbrk != 0 { align := uintptr(16) if typ != nil { align = uintptr(typ.align) } return persistentalloc(size, align, &memstats.other_sys) } // assistG is the G to charge for this allocation, or nil if // GC is not currently active. var assistG *g if gcBlackenEnabled != 0 { // Charge the current user G for this allocation. assistG = getg() if assistG.m.curg != nil { assistG = assistG.m.curg } // Charge the allocation against the G. We'll account // for internal fragmentation at the end of mallocgc. assistG.gcAssistBytes -= int64(size) if assistG.gcAssistBytes < 0 { // This G is in debt. Assist the GC to correct // this before allocating. This must happen // before disabling preemption. gcAssistAlloc(assistG) } } // Set mp.mallocing to keep from being preempted by GC. mp := acquirem() if mp.mallocing != 0 { throw("malloc deadlock") } if mp.gsignal == getg() { throw("malloc during signal") } mp.mallocing = 1 shouldhelpgc := false dataSize := size c := gomcache() var x unsafe.Pointer noscan := typ == nil || typ.kind&kindNoPointers != 0 if size <= maxSmallSize { if noscan && size < maxTinySize { // Tiny allocator. // // Tiny allocator combines several tiny allocation requests // into a single memory block. The resulting memory block // is freed when all subobjects are unreachable. The subobjects // must be noscan (don't have pointers), this ensures that // the amount of potentially wasted memory is bounded. // // Size of the memory block used for combining (maxTinySize) is tunable. // Current setting is 16 bytes, which relates to 2x worst case memory // wastage (when all but one subobjects are unreachable). // 8 bytes would result in no wastage at all, but provides less // opportunities for combining. // 32 bytes provides more opportunities for combining, // but can lead to 4x worst case wastage. // The best case winning is 8x regardless of block size. // // Objects obtained from tiny allocator must not be freed explicitly. // So when an object will be freed explicitly, we ensure that // its size >= maxTinySize. // // SetFinalizer has a special case for objects potentially coming // from tiny allocator, it such case it allows to set finalizers // for an inner byte of a memory block. // // The main targets of tiny allocator are small strings and // standalone escaping variables. On a json benchmark // the allocator reduces number of allocations by ~12% and // reduces heap size by ~20%. off := c.tinyoffset // Align tiny pointer for required (conservative) alignment. if size&7 == 0 { off = round(off, 8) } else if size&3 == 0 { off = round(off, 4) } else if size&1 == 0 { off = round(off, 2) } if off+size <= maxTinySize && c.tiny != 0 { // The object fits into existing tiny block. x = unsafe.Pointer(c.tiny + off) c.tinyoffset = off + size c.local_tinyallocs++ mp.mallocing = 0 releasem(mp) return x } // Allocate a new maxTinySize block. span := c.alloc[tinySpanClass] v := nextFreeFast(span) if v == 0 { v, _, shouldhelpgc = c.nextFree(tinySpanClass) } x = unsafe.Pointer(v) (*[2]uint64)(x)[0] = 0 (*[2]uint64)(x)[1] = 0 // See if we need to replace the existing tiny block with the new one // based on amount of remaining free space. if size < c.tinyoffset || c.tiny == 0 { c.tiny = uintptr(x) c.tinyoffset = size } size = maxTinySize } else { var sizeclass uint8 if size <= smallSizeMax-8 { sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv] } else { sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv] } size = uintptr(class_to_size[sizeclass]) spc := makeSpanClass(sizeclass, noscan) span := c.alloc[spc] v := nextFreeFast(span) if v == 0 { v, span, shouldhelpgc = c.nextFree(spc) } x = unsafe.Pointer(v) if needzero && span.needzero != 0 { memclrNoHeapPointers(unsafe.Pointer(v), size) } } } else { var s *mspan shouldhelpgc = true systemstack(func() { s = largeAlloc(size, needzero, noscan) }) s.freeindex = 1 s.allocCount = 1 x = unsafe.Pointer(s.base()) size = s.elemsize } var scanSize uintptr if !noscan { // If allocating a defer+arg block, now that we've picked a malloc size // large enough to hold everything, cut the "asked for" size down to // just the defer header, so that the GC bitmap will record the arg block // as containing nothing at all (as if it were unused space at the end of // a malloc block caused by size rounding). // The defer arg areas are scanned as part of scanstack. if typ == deferType { dataSize = unsafe.Sizeof(_defer{}) } heapBitsSetType(uintptr(x), size, dataSize, typ) if dataSize > typ.size { // Array allocation. If there are any // pointers, GC has to scan to the last // element. if typ.ptrdata != 0 { scanSize = dataSize - typ.size + typ.ptrdata } } else { scanSize = typ.ptrdata } c.local_scan += scanSize } // Ensure that the stores above that initialize x to // type-safe memory and set the heap bits occur before // the caller can make x observable to the garbage // collector. Otherwise, on weakly ordered machines, // the garbage collector could follow a pointer to x, // but see uninitialized memory or stale heap bits. publicationBarrier() // Allocate black during GC. // All slots hold nil so no scanning is needed. // This may be racing with GC so do it atomically if there can be // a race marking the bit. if gcphase != _GCoff { gcmarknewobject(uintptr(x), size, scanSize) } if raceenabled { racemalloc(x, size) } if msanenabled { msanmalloc(x, size) } mp.mallocing = 0 releasem(mp) if debug.allocfreetrace != 0 { tracealloc(x, size, typ) } if rate := MemProfileRate; rate > 0 { if size < uintptr(rate) && int32(size) < c.next_sample { c.next_sample -= int32(size) } else { mp := acquirem() profilealloc(mp, x, size) releasem(mp) } } if assistG != nil { // Account for internal fragmentation in the assist // debt now that we know it. assistG.gcAssistBytes -= int64(size - dataSize) } if shouldhelpgc { if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { gcStart(gcBackgroundMode, t) } } return x } func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan { // print("largeAlloc size=", size, "\n") if size+_PageSize < size { throw("out of memory") } npages := size >> _PageShift if size&_PageMask != 0 { npages++ } // Deduct credit for this span allocation and sweep if // necessary. mHeap_Alloc will also sweep npages, so this only // pays the debt down to npage pages. deductSweepCredit(npages*_PageSize, npages) s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero) if s == nil { throw("out of memory") } s.limit = s.base() + size heapBitsForSpan(s.base()).initSpan(s) return s } // implementation of new builtin // compiler (both frontend and SSA backend) knows the signature // of this function func newobject(typ *_type) unsafe.Pointer { return mallocgc(typ.size, typ, true) } //go:linkname reflect_unsafe_New reflect.unsafe_New func reflect_unsafe_New(typ *_type) unsafe.Pointer { return newobject(typ) } // newarray allocates an array of n elements of type typ. func newarray(typ *_type, n int) unsafe.Pointer { if n == 1 { return mallocgc(typ.size, typ, true) } if n < 0 || uintptr(n) > maxSliceCap(typ.size) { panic(plainError("runtime: allocation size out of range")) } return mallocgc(typ.size*uintptr(n), typ, true) } //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer { return newarray(typ, n) } func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { mp.mcache.next_sample = nextSample() mProf_Malloc(x, size) } // nextSample returns the next sampling point for heap profiling. The goal is // to sample allocations on average every MemProfileRate bytes, but with a // completely random distribution over the allocation timeline; this // corresponds to a Poisson process with parameter MemProfileRate. In Poisson // processes, the distance between two samples follows the exponential // distribution (exp(MemProfileRate)), so the best return value is a random // number taken from an exponential distribution whose mean is MemProfileRate. func nextSample() int32 { if GOOS == "plan9" { // Plan 9 doesn't support floating point in note handler. if g := getg(); g == g.m.gsignal { return nextSampleNoFP() } } return fastexprand(MemProfileRate) } // fastexprand returns a random number from an exponential distribution with // the specified mean. func fastexprand(mean int) int32 { // Avoid overflow. Maximum possible step is // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean. switch { case mean > 0x7000000: mean = 0x7000000 case mean == 0: return 0 } // Take a random sample of the exponential distribution exp(-mean*x). // The probability distribution function is mean*exp(-mean*x), so the CDF is // p = 1 - exp(-mean*x), so // q = 1 - p == exp(-mean*x) // log_e(q) = -mean*x // -log_e(q)/mean = x // x = -log_e(q) * mean // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency const randomBitCount = 26 q := fastrand()%(1<<randomBitCount) + 1 qlog := fastlog2(float64(q)) - randomBitCount if qlog > 0 { qlog = 0 } const minusLog2 = -0.6931471805599453 // -ln(2) return int32(qlog*(minusLog2*float64(mean))) + 1 } // nextSampleNoFP is similar to nextSample, but uses older, // simpler code to avoid floating point. func nextSampleNoFP() int32 { // Set first allocation sample size. rate := MemProfileRate if rate > 0x3fffffff { // make 2*rate not overflow rate = 0x3fffffff } if rate != 0 { return int32(fastrand() % uint32(2*rate)) } return 0 } type persistentAlloc struct { base *notInHeap off uintptr } var globalAlloc struct { mutex persistentAlloc } // Wrapper around sysAlloc that can allocate small chunks. // There is no associated free operation. // Intended for things like function/type/debug-related persistent data. // If align is 0, uses default align (currently 8). // The returned memory will be zeroed. // // Consider marking persistentalloc'd types go:notinheap. func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { var p *notInHeap systemstack(func() { p = persistentalloc1(size, align, sysStat) }) return unsafe.Pointer(p) } // Must run on system stack because stack growth can (re)invoke it. // See issue 9174. //go:systemstack func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap { const ( chunk = 256 << 10 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows ) if size == 0 { throw("persistentalloc: size == 0") } if align != 0 { if align&(align-1) != 0 { throw("persistentalloc: align is not a power of 2") } if align > _PageSize { throw("persistentalloc: align is too large") } } else { align = 8 } if size >= maxBlock { return (*notInHeap)(sysAlloc(size, sysStat)) } mp := acquirem() var persistent *persistentAlloc if mp != nil && mp.p != 0 { persistent = &mp.p.ptr().palloc } else { lock(&globalAlloc.mutex) persistent = &globalAlloc.persistentAlloc } persistent.off = round(persistent.off, align) if persistent.off+size > chunk || persistent.base == nil { persistent.base = (*notInHeap)(sysAlloc(chunk, &memstats.other_sys)) if persistent.base == nil { if persistent == &globalAlloc.persistentAlloc { unlock(&globalAlloc.mutex) } throw("runtime: cannot allocate memory") } persistent.off = 0 } p := persistent.base.add(persistent.off) persistent.off += size releasem(mp) if persistent == &globalAlloc.persistentAlloc { unlock(&globalAlloc.mutex) } if sysStat != &memstats.other_sys { mSysStatInc(sysStat, size) mSysStatDec(&memstats.other_sys, size) } return p } // notInHeap is off-heap memory allocated by a lower-level allocator // like sysAlloc or persistentAlloc. // // In general, it's better to use real types marked as go:notinheap, // but this serves as a generic type for situations where that isn't // possible (like in the allocators). // // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc? // //go:notinheap type notInHeap struct{} func (p *notInHeap) add(bytes uintptr) *notInHeap { return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes)) }