//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// algorithm described in this document:
///
/// A Fast Algorithm for Finding Dominators in a Flowgraph
/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/GenericDomTree.h"
namespace llvm {
// External storage for depth first iterator that reuses the info lookup map
// domtree already has. We don't have a set, but a map instead, so we are
// converting the one argument insert calls.
template <class NodeRef, class InfoType> struct df_iterator_dom_storage {
public:
typedef DenseMap<NodeRef, InfoType> BaseSet;
df_iterator_dom_storage(BaseSet &Storage) : Storage(Storage) {}
typedef typename BaseSet::iterator iterator;
std::pair<iterator, bool> insert(NodeRef N) {
return Storage.insert({N, InfoType()});
}
void completed(NodeRef) {}
private:
BaseSet &Storage;
};
template <class GraphT>
unsigned ReverseDFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
typename GraphT::NodeRef V, unsigned N) {
df_iterator_dom_storage<
typename GraphT::NodeRef,
typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec>
DFStorage(DT.Info);
bool IsChildOfArtificialExit = (N != 0);
for (auto I = idf_ext_begin(V, DFStorage), E = idf_ext_end(V, DFStorage);
I != E; ++I) {
typename GraphT::NodeRef BB = *I;
auto &BBInfo = DT.Info[BB];
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = BB;
// Set the parent to the top of the visited stack. The stack includes us,
// and is 1 based, so we subtract to account for both of these.
if (I.getPathLength() > 1)
BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum;
DT.Vertex.push_back(BB); // Vertex[n] = V;
if (IsChildOfArtificialExit)
BBInfo.Parent = 1;
IsChildOfArtificialExit = false;
}
return N;
}
template <class GraphT>
unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
typename GraphT::NodeRef V, unsigned N) {
df_iterator_dom_storage<
typename GraphT::NodeRef,
typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec>
DFStorage(DT.Info);
for (auto I = df_ext_begin(V, DFStorage), E = df_ext_end(V, DFStorage);
I != E; ++I) {
typename GraphT::NodeRef BB = *I;
auto &BBInfo = DT.Info[BB];
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = BB;
// Set the parent to the top of the visited stack. The stack includes us,
// and is 1 based, so we subtract to account for both of these.
if (I.getPathLength() > 1)
BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum;
DT.Vertex.push_back(BB); // Vertex[n] = V;
}
return N;
}
template <class GraphT>
typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
typename GraphT::NodeRef VIn,
unsigned LastLinked) {
auto &VInInfo = DT.Info[VIn];
if (VInInfo.DFSNum < LastLinked)
return VIn;
SmallVector<typename GraphT::NodeRef, 32> Work;
SmallPtrSet<typename GraphT::NodeRef, 32> Visited;
if (VInInfo.Parent >= LastLinked)
Work.push_back(VIn);
while (!Work.empty()) {
typename GraphT::NodeRef V = Work.back();
auto &VInfo = DT.Info[V];
typename GraphT::NodeRef VAncestor = DT.Vertex[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VInfo.Parent < LastLinked)
continue;
auto &VAInfo = DT.Info[VAncestor];
typename GraphT::NodeRef VAncestorLabel = VAInfo.Label;
typename GraphT::NodeRef VLabel = VInfo.Label;
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Parent = VAInfo.Parent;
}
return VInInfo.Label;
}
template <class FuncT, class NodeT>
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
FuncT &F) {
typedef GraphTraits<NodeT> GraphT;
static_assert(std::is_pointer<typename GraphT::NodeRef>::value,
"NodeRef should be pointer type");
typedef typename std::remove_pointer<typename GraphT::NodeRef>::type NodeType;
unsigned N = 0;
bool MultipleRoots = (DT.Roots.size() > 1);
if (MultipleRoots) {
auto &BBInfo = DT.Info[nullptr];
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = nullptr;
DT.Vertex.push_back(nullptr); // Vertex[n] = V;
}
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
if (DT.isPostDominator()){
for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
i != e; ++i)
N = ReverseDFSPass<GraphT>(DT, DT.Roots[i], N);
} else {
N = DFSPass<GraphT>(DT, DT.Roots[0], N);
}
// it might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
// When naively implemented, the Lengauer-Tarjan algorithm requires a separate
// bucket for each vertex. However, this is unnecessary, because each vertex
// is only placed into a single bucket (that of its semidominator), and each
// vertex's bucket is processed before it is added to any bucket itself.
//
// Instead of using a bucket per vertex, we use a single array Buckets that
// has two purposes. Before the vertex V with preorder number i is processed,
// Buckets[i] stores the index of the first element in V's bucket. After V's
// bucket is processed, Buckets[i] stores the index of the next element in the
// bucket containing V, if any.
SmallVector<unsigned, 32> Buckets;
Buckets.resize(N + 1);
for (unsigned i = 1; i <= N; ++i)
Buckets[i] = i;
for (unsigned i = N; i >= 2; --i) {
typename GraphT::NodeRef W = DT.Vertex[i];
auto &WInfo = DT.Info[W];
// Step #2: Implicitly define the immediate dominator of vertices
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
typename GraphT::NodeRef U = Eval<GraphT>(DT, V, i + 1);
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
}
// Step #3: Calculate the semidominators of all vertices
// initialize the semi dominator to point to the parent node
WInfo.Semi = WInfo.Parent;
for (const auto &N : inverse_children<NodeT>(W))
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
// If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
// necessarily parent(V). In this case, set idom(V) here and avoid placing
// V into a bucket.
if (WInfo.Semi == WInfo.Parent) {
DT.IDoms[W] = DT.Vertex[WInfo.Parent];
} else {
Buckets[i] = Buckets[WInfo.Semi];
Buckets[WInfo.Semi] = i;
}
}
if (N >= 1) {
typename GraphT::NodeRef Root = DT.Vertex[1];
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
DT.IDoms[V] = Root;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeRef W = DT.Vertex[i];
typename GraphT::NodeRef &WIDom = DT.IDoms[W];
if (WIDom != DT.Vertex[DT.Info[W].Semi])
WIDom = DT.IDoms[WIDom];
}
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks, or
// an infinite loop.
typename GraphT::NodeRef Root = !MultipleRoots ? DT.Roots[0] : nullptr;
DT.RootNode =
(DT.DomTreeNodes[Root] =
llvm::make_unique<DomTreeNodeBase<NodeType>>(Root, nullptr))
.get();
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeRef W = DT.Vertex[i];
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W])
continue; // Haven't calculated this node yet?
typename GraphT::NodeRef ImmDom = DT.getIDom(W);
assert(ImmDom || DT.DomTreeNodes[nullptr]);
// Get or calculate the node for the immediate dominator
DomTreeNodeBase<NodeType> *IDomNode = DT.getNodeForBlock(ImmDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DT.DomTreeNodes[W] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeType>>(W, IDomNode));
}
// Free temporary memory used to construct idom's
DT.IDoms.clear();
DT.Info.clear();
DT.Vertex.clear();
DT.Vertex.shrink_to_fit();
DT.updateDFSNumbers();
}
}
#endif