//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// Generic dominator tree construction - This file provides routines to /// construct immediate dominator information for a flow-graph based on the /// algorithm described in this document: /// /// A Fast Algorithm for Finding Dominators in a Flowgraph /// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. /// /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns /// out that the theoretically slower O(n*log(n)) implementation is actually /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/GenericDomTree.h" namespace llvm { // External storage for depth first iterator that reuses the info lookup map // domtree already has. We don't have a set, but a map instead, so we are // converting the one argument insert calls. template <class NodeRef, class InfoType> struct df_iterator_dom_storage { public: typedef DenseMap<NodeRef, InfoType> BaseSet; df_iterator_dom_storage(BaseSet &Storage) : Storage(Storage) {} typedef typename BaseSet::iterator iterator; std::pair<iterator, bool> insert(NodeRef N) { return Storage.insert({N, InfoType()}); } void completed(NodeRef) {} private: BaseSet &Storage; }; template <class GraphT> unsigned ReverseDFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V, unsigned N) { df_iterator_dom_storage< typename GraphT::NodeRef, typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec> DFStorage(DT.Info); bool IsChildOfArtificialExit = (N != 0); for (auto I = idf_ext_begin(V, DFStorage), E = idf_ext_end(V, DFStorage); I != E; ++I) { typename GraphT::NodeRef BB = *I; auto &BBInfo = DT.Info[BB]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = BB; // Set the parent to the top of the visited stack. The stack includes us, // and is 1 based, so we subtract to account for both of these. if (I.getPathLength() > 1) BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum; DT.Vertex.push_back(BB); // Vertex[n] = V; if (IsChildOfArtificialExit) BBInfo.Parent = 1; IsChildOfArtificialExit = false; } return N; } template <class GraphT> unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V, unsigned N) { df_iterator_dom_storage< typename GraphT::NodeRef, typename DominatorTreeBaseByGraphTraits<GraphT>::InfoRec> DFStorage(DT.Info); for (auto I = df_ext_begin(V, DFStorage), E = df_ext_end(V, DFStorage); I != E; ++I) { typename GraphT::NodeRef BB = *I; auto &BBInfo = DT.Info[BB]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = BB; // Set the parent to the top of the visited stack. The stack includes us, // and is 1 based, so we subtract to account for both of these. if (I.getPathLength() > 1) BBInfo.Parent = DT.Info[I.getPath(I.getPathLength() - 2)].DFSNum; DT.Vertex.push_back(BB); // Vertex[n] = V; } return N; } template <class GraphT> typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef VIn, unsigned LastLinked) { auto &VInInfo = DT.Info[VIn]; if (VInInfo.DFSNum < LastLinked) return VIn; SmallVector<typename GraphT::NodeRef, 32> Work; SmallPtrSet<typename GraphT::NodeRef, 32> Visited; if (VInInfo.Parent >= LastLinked) Work.push_back(VIn); while (!Work.empty()) { typename GraphT::NodeRef V = Work.back(); auto &VInfo = DT.Info[V]; typename GraphT::NodeRef VAncestor = DT.Vertex[VInfo.Parent]; // Process Ancestor first if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VInfo.Parent < LastLinked) continue; auto &VAInfo = DT.Info[VAncestor]; typename GraphT::NodeRef VAncestorLabel = VAInfo.Label; typename GraphT::NodeRef VLabel = VInfo.Label; if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Parent = VAInfo.Parent; } return VInInfo.Label; } template <class FuncT, class NodeT> void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT, FuncT &F) { typedef GraphTraits<NodeT> GraphT; static_assert(std::is_pointer<typename GraphT::NodeRef>::value, "NodeRef should be pointer type"); typedef typename std::remove_pointer<typename GraphT::NodeRef>::type NodeType; unsigned N = 0; bool MultipleRoots = (DT.Roots.size() > 1); if (MultipleRoots) { auto &BBInfo = DT.Info[nullptr]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = nullptr; DT.Vertex.push_back(nullptr); // Vertex[n] = V; } // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. if (DT.isPostDominator()){ for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); i != e; ++i) N = ReverseDFSPass<GraphT>(DT, DT.Roots[i], N); } else { N = DFSPass<GraphT>(DT, DT.Roots[0], N); } // it might be that some blocks did not get a DFS number (e.g., blocks of // infinite loops). In these cases an artificial exit node is required. MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F)); // When naively implemented, the Lengauer-Tarjan algorithm requires a separate // bucket for each vertex. However, this is unnecessary, because each vertex // is only placed into a single bucket (that of its semidominator), and each // vertex's bucket is processed before it is added to any bucket itself. // // Instead of using a bucket per vertex, we use a single array Buckets that // has two purposes. Before the vertex V with preorder number i is processed, // Buckets[i] stores the index of the first element in V's bucket. After V's // bucket is processed, Buckets[i] stores the index of the next element in the // bucket containing V, if any. SmallVector<unsigned, 32> Buckets; Buckets.resize(N + 1); for (unsigned i = 1; i <= N; ++i) Buckets[i] = i; for (unsigned i = N; i >= 2; --i) { typename GraphT::NodeRef W = DT.Vertex[i]; auto &WInfo = DT.Info[W]; // Step #2: Implicitly define the immediate dominator of vertices for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) { typename GraphT::NodeRef V = DT.Vertex[Buckets[j]]; typename GraphT::NodeRef U = Eval<GraphT>(DT, V, i + 1); DT.IDoms[V] = DT.Info[U].Semi < i ? U : W; } // Step #3: Calculate the semidominators of all vertices // initialize the semi dominator to point to the parent node WInfo.Semi = WInfo.Parent; for (const auto &N : inverse_children<NodeT>(W)) if (DT.Info.count(N)) { // Only if this predecessor is reachable! unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is // necessarily parent(V). In this case, set idom(V) here and avoid placing // V into a bucket. if (WInfo.Semi == WInfo.Parent) { DT.IDoms[W] = DT.Vertex[WInfo.Parent]; } else { Buckets[i] = Buckets[WInfo.Semi]; Buckets[WInfo.Semi] = i; } } if (N >= 1) { typename GraphT::NodeRef Root = DT.Vertex[1]; for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) { typename GraphT::NodeRef V = DT.Vertex[Buckets[j]]; DT.IDoms[V] = Root; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeRef W = DT.Vertex[i]; typename GraphT::NodeRef &WIDom = DT.IDoms[W]; if (WIDom != DT.Vertex[DT.Info[W].Semi]) WIDom = DT.IDoms[WIDom]; } if (DT.Roots.empty()) return; // Add a node for the root. This node might be the actual root, if there is // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) // which postdominates all real exits if there are multiple exit blocks, or // an infinite loop. typename GraphT::NodeRef Root = !MultipleRoots ? DT.Roots[0] : nullptr; DT.RootNode = (DT.DomTreeNodes[Root] = llvm::make_unique<DomTreeNodeBase<NodeType>>(Root, nullptr)) .get(); // Loop over all of the reachable blocks in the function... for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeRef W = DT.Vertex[i]; // Don't replace this with 'count', the insertion side effect is important if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? typename GraphT::NodeRef ImmDom = DT.getIDom(W); assert(ImmDom || DT.DomTreeNodes[nullptr]); // Get or calculate the node for the immediate dominator DomTreeNodeBase<NodeType> *IDomNode = DT.getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DT.DomTreeNodes[W] = IDomNode->addChild( llvm::make_unique<DomTreeNodeBase<NodeType>>(W, IDomNode)); } // Free temporary memory used to construct idom's DT.IDoms.clear(); DT.Info.clear(); DT.Vertex.clear(); DT.Vertex.shrink_to_fit(); DT.updateDFSNumbers(); } } #endif