/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "VtsHalEvsTest"
#include "FormatConvert.h"
// Round up to the nearest multiple of the given alignment value
template<unsigned alignment>
int align(int value) {
static_assert((alignment && !(alignment & (alignment - 1))),
"alignment must be a power of 2");
unsigned mask = alignment - 1;
return (value + mask) & ~mask;
}
// Limit the given value to the provided range. :)
static inline float clamp(float v, float min, float max) {
if (v < min) return min;
if (v > max) return max;
return v;
}
static uint32_t yuvToRgbx(const unsigned char Y, const unsigned char Uin, const unsigned char Vin) {
// Don't use this if you want to see the best performance. :)
// Better to do this in a pixel shader if we really have to, but on actual
// embedded hardware we expect to be able to texture directly from the YUV data
float U = Uin - 128.0f;
float V = Vin - 128.0f;
float Rf = Y + 1.140f*V;
float Gf = Y - 0.395f*U - 0.581f*V;
float Bf = Y + 2.032f*U;
unsigned char R = (unsigned char)clamp(Rf, 0.0f, 255.0f);
unsigned char G = (unsigned char)clamp(Gf, 0.0f, 255.0f);
unsigned char B = (unsigned char)clamp(Bf, 0.0f, 255.0f);
return (R ) |
(G << 8) |
(B << 16) |
0xFF000000; // Fill the alpha channel with ones
}
void copyNV21toRGB32(unsigned width, unsigned height,
uint8_t* src,
uint32_t* dst, unsigned dstStridePixels)
{
// The NV21 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 interleaved
// U/V array. It assumes an even width and height for the overall image, and a horizontal
// stride that is an even multiple of 16 bytes for both the Y and UV arrays.
unsigned strideLum = align<16>(width);
unsigned sizeY = strideLum * height;
unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels
unsigned offsetUV = sizeY;
uint8_t* srcY = src;
uint8_t* srcUV = src+offsetUV;
for (unsigned r = 0; r < height; r++) {
// Note that we're walking the same UV row twice for even/odd luminance rows
uint8_t* rowY = srcY + r*strideLum;
uint8_t* rowUV = srcUV + (r/2 * strideColor);
uint32_t* rowDest = dst + r*dstStridePixels;
for (unsigned c = 0; c < width; c++) {
unsigned uCol = (c & ~1); // uCol is always even and repeats 1:2 with Y values
unsigned vCol = uCol | 1; // vCol is always odd
rowDest[c] = yuvToRgbx(rowY[c], rowUV[uCol], rowUV[vCol]);
}
}
}
void copyYV12toRGB32(unsigned width, unsigned height,
uint8_t* src,
uint32_t* dst, unsigned dstStridePixels)
{
// The YV12 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 U array, followed
// by another 1/2 x 1/2 V array. It assumes an even width and height for the overall image,
// and a horizontal stride that is an even multiple of 16 bytes for each of the Y, U,
// and V arrays.
unsigned strideLum = align<16>(width);
unsigned sizeY = strideLum * height;
unsigned strideColor = align<16>(strideLum/2);
unsigned sizeColor = strideColor * height/2;
unsigned offsetU = sizeY;
unsigned offsetV = sizeY + sizeColor;
uint8_t* srcY = src;
uint8_t* srcU = src+offsetU;
uint8_t* srcV = src+offsetV;
for (unsigned r = 0; r < height; r++) {
// Note that we're walking the same U and V rows twice for even/odd luminance rows
uint8_t* rowY = srcY + r*strideLum;
uint8_t* rowU = srcU + (r/2 * strideColor);
uint8_t* rowV = srcV + (r/2 * strideColor);
uint32_t* rowDest = dst + r*dstStridePixels;
for (unsigned c = 0; c < width; c++) {
rowDest[c] = yuvToRgbx(rowY[c], rowU[c], rowV[c]);
}
}
}
void copyYUYVtoRGB32(unsigned width, unsigned height,
uint8_t* src, unsigned srcStridePixels,
uint32_t* dst, unsigned dstStridePixels)
{
uint32_t* srcWords = (uint32_t*)src;
const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word
const int dstRowPadding32 = dstStridePixels - width; // 4 bytes per pixel, 4 bytes per word
for (unsigned r = 0; r < height; r++) {
for (unsigned c = 0; c < width/2; c++) {
// Note: we're walking two pixels at a time here (even/odd)
uint32_t srcPixel = *srcWords++;
uint8_t Y1 = (srcPixel) & 0xFF;
uint8_t U = (srcPixel >> 8) & 0xFF;
uint8_t Y2 = (srcPixel >> 16) & 0xFF;
uint8_t V = (srcPixel >> 24) & 0xFF;
// On the RGB output, we're writing one pixel at a time
*(dst+0) = yuvToRgbx(Y1, U, V);
*(dst+1) = yuvToRgbx(Y2, U, V);
dst += 2;
}
// Skip over any extra data or end of row alignment padding
srcWords += srcRowPadding32;
dst += dstRowPadding32;
}
}
void copyMatchedInterleavedFormats(unsigned width, unsigned height,
void* src, unsigned srcStridePixels,
void* dst, unsigned dstStridePixels,
unsigned pixelSize) {
for (unsigned row = 0; row < height; row++) {
// Copy the entire row of pixel data
memcpy(dst, src, width * pixelSize);
// Advance to the next row (keeping in mind that stride here is in units of pixels)
src = (uint8_t*)src + srcStridePixels * pixelSize;
dst = (uint8_t*)dst + dstStridePixels * pixelSize;
}
}