/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VtsHalEvsTest" #include "FormatConvert.h" // Round up to the nearest multiple of the given alignment value template<unsigned alignment> int align(int value) { static_assert((alignment && !(alignment & (alignment - 1))), "alignment must be a power of 2"); unsigned mask = alignment - 1; return (value + mask) & ~mask; } // Limit the given value to the provided range. :) static inline float clamp(float v, float min, float max) { if (v < min) return min; if (v > max) return max; return v; } static uint32_t yuvToRgbx(const unsigned char Y, const unsigned char Uin, const unsigned char Vin) { // Don't use this if you want to see the best performance. :) // Better to do this in a pixel shader if we really have to, but on actual // embedded hardware we expect to be able to texture directly from the YUV data float U = Uin - 128.0f; float V = Vin - 128.0f; float Rf = Y + 1.140f*V; float Gf = Y - 0.395f*U - 0.581f*V; float Bf = Y + 2.032f*U; unsigned char R = (unsigned char)clamp(Rf, 0.0f, 255.0f); unsigned char G = (unsigned char)clamp(Gf, 0.0f, 255.0f); unsigned char B = (unsigned char)clamp(Bf, 0.0f, 255.0f); return (R ) | (G << 8) | (B << 16) | 0xFF000000; // Fill the alpha channel with ones } void copyNV21toRGB32(unsigned width, unsigned height, uint8_t* src, uint32_t* dst, unsigned dstStridePixels) { // The NV21 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 interleaved // U/V array. It assumes an even width and height for the overall image, and a horizontal // stride that is an even multiple of 16 bytes for both the Y and UV arrays. unsigned strideLum = align<16>(width); unsigned sizeY = strideLum * height; unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels unsigned offsetUV = sizeY; uint8_t* srcY = src; uint8_t* srcUV = src+offsetUV; for (unsigned r = 0; r < height; r++) { // Note that we're walking the same UV row twice for even/odd luminance rows uint8_t* rowY = srcY + r*strideLum; uint8_t* rowUV = srcUV + (r/2 * strideColor); uint32_t* rowDest = dst + r*dstStridePixels; for (unsigned c = 0; c < width; c++) { unsigned uCol = (c & ~1); // uCol is always even and repeats 1:2 with Y values unsigned vCol = uCol | 1; // vCol is always odd rowDest[c] = yuvToRgbx(rowY[c], rowUV[uCol], rowUV[vCol]); } } } void copyYV12toRGB32(unsigned width, unsigned height, uint8_t* src, uint32_t* dst, unsigned dstStridePixels) { // The YV12 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 U array, followed // by another 1/2 x 1/2 V array. It assumes an even width and height for the overall image, // and a horizontal stride that is an even multiple of 16 bytes for each of the Y, U, // and V arrays. unsigned strideLum = align<16>(width); unsigned sizeY = strideLum * height; unsigned strideColor = align<16>(strideLum/2); unsigned sizeColor = strideColor * height/2; unsigned offsetU = sizeY; unsigned offsetV = sizeY + sizeColor; uint8_t* srcY = src; uint8_t* srcU = src+offsetU; uint8_t* srcV = src+offsetV; for (unsigned r = 0; r < height; r++) { // Note that we're walking the same U and V rows twice for even/odd luminance rows uint8_t* rowY = srcY + r*strideLum; uint8_t* rowU = srcU + (r/2 * strideColor); uint8_t* rowV = srcV + (r/2 * strideColor); uint32_t* rowDest = dst + r*dstStridePixels; for (unsigned c = 0; c < width; c++) { rowDest[c] = yuvToRgbx(rowY[c], rowU[c], rowV[c]); } } } void copyYUYVtoRGB32(unsigned width, unsigned height, uint8_t* src, unsigned srcStridePixels, uint32_t* dst, unsigned dstStridePixels) { uint32_t* srcWords = (uint32_t*)src; const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word const int dstRowPadding32 = dstStridePixels - width; // 4 bytes per pixel, 4 bytes per word for (unsigned r = 0; r < height; r++) { for (unsigned c = 0; c < width/2; c++) { // Note: we're walking two pixels at a time here (even/odd) uint32_t srcPixel = *srcWords++; uint8_t Y1 = (srcPixel) & 0xFF; uint8_t U = (srcPixel >> 8) & 0xFF; uint8_t Y2 = (srcPixel >> 16) & 0xFF; uint8_t V = (srcPixel >> 24) & 0xFF; // On the RGB output, we're writing one pixel at a time *(dst+0) = yuvToRgbx(Y1, U, V); *(dst+1) = yuvToRgbx(Y2, U, V); dst += 2; } // Skip over any extra data or end of row alignment padding srcWords += srcRowPadding32; dst += dstRowPadding32; } } void copyMatchedInterleavedFormats(unsigned width, unsigned height, void* src, unsigned srcStridePixels, void* dst, unsigned dstStridePixels, unsigned pixelSize) { for (unsigned row = 0; row < height; row++) { // Copy the entire row of pixel data memcpy(dst, src, width * pixelSize); // Advance to the next row (keeping in mind that stride here is in units of pixels) src = (uint8_t*)src + srcStridePixels * pixelSize; dst = (uint8_t*)dst + dstStridePixels * pixelSize; } }