#include "rs_core.rsh"
#include "rs_f16_util.h"
extern float2 __attribute__((overloadable)) convert_float2(int2 c);
extern float3 __attribute__((overloadable)) convert_float3(int3 c);
extern float4 __attribute__((overloadable)) convert_float4(int4 c);
extern int2 __attribute__((overloadable)) convert_int2(float2 c);
extern int3 __attribute__((overloadable)) convert_int3(float3 c);
extern int4 __attribute__((overloadable)) convert_int4(float4 c);
extern float __attribute__((overloadable)) fmin(float v, float v2);
extern float2 __attribute__((overloadable)) fmin(float2 v, float v2);
extern float3 __attribute__((overloadable)) fmin(float3 v, float v2);
extern float4 __attribute__((overloadable)) fmin(float4 v, float v2);
extern float __attribute__((overloadable)) fmax(float v, float v2);
extern float2 __attribute__((overloadable)) fmax(float2 v, float v2);
extern float3 __attribute__((overloadable)) fmax(float3 v, float v2);
extern float4 __attribute__((overloadable)) fmax(float4 v, float v2);
// Float ops, 6.11.2
#define FN_FUNC_FN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v) { \
float2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v) { \
float3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v) { \
float4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define IN_FUNC_FN(fnc) \
extern int2 __attribute__((overloadable)) fnc(float2 v) { \
int2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern int3 __attribute__((overloadable)) fnc(float3 v) { \
int3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern int4 __attribute__((overloadable)) fnc(float4 v) { \
int4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define FN_FUNC_FN_FN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \
float2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \
float3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \
float4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define FN_FUNC_FN_F(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \
float2 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \
float3 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \
float4 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
r.w = fnc(v1.w, v2); \
return r; \
}
#define FN_FUNC_FN_IN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \
float2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \
float3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \
float4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define FN_FUNC_FN_I(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \
float2 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \
float3 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \
float4 r; \
r.x = fnc(v1.x, v2); \
r.y = fnc(v1.y, v2); \
r.z = fnc(v1.z, v2); \
r.w = fnc(v1.w, v2); \
return r; \
}
#define FN_FUNC_FN_PFN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 *v2) { \
float2 r; \
float t[2]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
v2->x = t[0]; \
v2->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 *v2) { \
float3 r; \
float t[3]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 *v2) { \
float4 r; \
float t[4]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
r.w = fnc(v1.w, &t[3]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
v2->w = t[3]; \
return r; \
}
#define FN_FUNC_FN_PIN(fnc) \
extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \
float2 r; \
int t[2]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
v2->x = t[0]; \
v2->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \
float3 r; \
int t[3]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \
float4 r; \
int t[4]; \
r.x = fnc(v1.x, &t[0]); \
r.y = fnc(v1.y, &t[1]); \
r.z = fnc(v1.z, &t[2]); \
r.w = fnc(v1.w, &t[3]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
v2->w = t[3]; \
return r; \
}
#define FN_FUNC_FN_FN_FN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 v2, float2 v3) { \
float2 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 v2, float3 v3) { \
float3 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
r.z = fnc(v1.z, v2.z, v3.z); \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 v2, float4 v3) { \
float4 r; \
r.x = fnc(v1.x, v2.x, v3.x); \
r.y = fnc(v1.y, v2.y, v3.y); \
r.z = fnc(v1.z, v2.z, v3.z); \
r.w = fnc(v1.w, v2.w, v3.w); \
return r; \
}
#define FN_FUNC_FN_FN_PIN(fnc) \
extern float2 __attribute__((overloadable)) \
fnc(float2 v1, float2 v2, int2 *v3) { \
float2 r; \
int t[2]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
v3->x = t[0]; \
v3->y = t[1]; \
return r; \
} \
extern float3 __attribute__((overloadable)) \
fnc(float3 v1, float3 v2, int3 *v3) { \
float3 r; \
int t[3]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
r.z = fnc(v1.z, v2.z, &t[2]); \
v3->x = t[0]; \
v3->y = t[1]; \
v3->z = t[2]; \
return r; \
} \
extern float4 __attribute__((overloadable)) \
fnc(float4 v1, float4 v2, int4 *v3) { \
float4 r; \
int t[4]; \
r.x = fnc(v1.x, v2.x, &t[0]); \
r.y = fnc(v1.y, v2.y, &t[1]); \
r.z = fnc(v1.z, v2.z, &t[2]); \
r.w = fnc(v1.w, v2.w, &t[3]); \
v3->x = t[0]; \
v3->y = t[1]; \
v3->z = t[2]; \
v3->w = t[3]; \
return r; \
}
static const unsigned int iposinf = 0x7f800000;
static const unsigned int ineginf = 0xff800000;
static float posinf() {
float f = *((float*)&iposinf);
return f;
}
static unsigned int float_bits(float f) {
/* TODO(jeanluc) Use this better approach once the Mac(SDK) build issues are fixed.
// Get the bits while following the strict aliasing rules.
unsigned int result;
memcpy(&result, &f, sizeof(f));
return result;
*/
return *(unsigned int*)(char*)(&f);
}
static bool isinf(float f) {
unsigned int i = float_bits(f);
return (i == iposinf) || (i == ineginf);
}
static bool isnan(float f) {
unsigned int i = float_bits(f);
return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff));
}
static bool isposzero(float f) {
return (float_bits(f) == 0x00000000);
}
static bool isnegzero(float f) {
return (float_bits(f) == 0x80000000);
}
static bool iszero(float f) {
return isposzero(f) || isnegzero(f);
}
extern float __attribute__((overloadable)) SC_acosf(float);
float __attribute__((overloadable)) acos(float v) {
return SC_acosf(v);
}
FN_FUNC_FN(acos)
extern float __attribute__((overloadable)) SC_acoshf(float);
float __attribute__((overloadable)) acosh(float v) {
return SC_acoshf(v);
}
FN_FUNC_FN(acosh)
extern float __attribute__((overloadable)) acospi(float v) {
return acos(v) / M_PI;
}
FN_FUNC_FN(acospi)
extern float __attribute__((overloadable)) SC_asinf(float);
float __attribute__((overloadable)) asin(float v) {
return SC_asinf(v);
}
FN_FUNC_FN(asin)
extern float __attribute__((overloadable)) SC_asinhf(float);
float __attribute__((overloadable)) asinh(float v) {
return SC_asinhf(v);
}
FN_FUNC_FN(asinh)
extern float __attribute__((overloadable)) asinpi(float v) {
return asin(v) / M_PI;
}
FN_FUNC_FN(asinpi)
extern float __attribute__((overloadable)) SC_atanf(float);
float __attribute__((overloadable)) atan(float v) {
return SC_atanf(v);
}
FN_FUNC_FN(atan)
extern float __attribute__((overloadable)) SC_atan2f(float, float);
float __attribute__((overloadable)) atan2(float v1, float v2) {
return SC_atan2f(v1, v2);
}
FN_FUNC_FN_FN(atan2)
extern float __attribute__((overloadable)) SC_atanhf(float);
float __attribute__((overloadable)) atanh(float v) {
return SC_atanhf(v);
}
FN_FUNC_FN(atanh)
extern float __attribute__((overloadable)) atanpi(float v) {
return atan(v) / M_PI;
}
FN_FUNC_FN(atanpi)
extern float __attribute__((overloadable)) atan2pi(float y, float x) {
return atan2(y, x) / M_PI;
}
FN_FUNC_FN_FN(atan2pi)
extern float __attribute__((overloadable)) SC_cbrtf(float);
float __attribute__((overloadable)) cbrt(float v) {
return SC_cbrtf(v);
}
FN_FUNC_FN(cbrt)
extern float __attribute__((overloadable)) SC_ceilf(float);
float __attribute__((overloadable)) ceil(float v) {
return SC_ceilf(v);
}
FN_FUNC_FN(ceil)
extern float __attribute__((overloadable)) SC_copysignf(float, float);
float __attribute__((overloadable)) copysign(float v1, float v2) {
return SC_copysignf(v1, v2);
}
FN_FUNC_FN_FN(copysign)
extern float __attribute__((overloadable)) SC_cosf(float);
float __attribute__((overloadable)) cos(float v) {
return SC_cosf(v);
}
FN_FUNC_FN(cos)
extern float __attribute__((overloadable)) SC_coshf(float);
float __attribute__((overloadable)) cosh(float v) {
return SC_coshf(v);
}
FN_FUNC_FN(cosh)
extern float __attribute__((overloadable)) cospi(float v) {
return cos(v * M_PI);
}
FN_FUNC_FN(cospi)
extern float __attribute__((overloadable)) SC_erfcf(float);
float __attribute__((overloadable)) erfc(float v) {
return SC_erfcf(v);
}
FN_FUNC_FN(erfc)
extern float __attribute__((overloadable)) SC_erff(float);
float __attribute__((overloadable)) erf(float v) {
return SC_erff(v);
}
FN_FUNC_FN(erf)
extern float __attribute__((overloadable)) SC_expf(float);
float __attribute__((overloadable)) exp(float v) {
return SC_expf(v);
}
FN_FUNC_FN(exp)
extern float __attribute__((overloadable)) SC_exp2f(float);
float __attribute__((overloadable)) exp2(float v) {
return SC_exp2f(v);
}
FN_FUNC_FN(exp2)
extern float __attribute__((overloadable)) pow(float, float);
extern float __attribute__((overloadable)) exp10(float v) {
return exp2(v * 3.321928095f);
}
FN_FUNC_FN(exp10)
extern float __attribute__((overloadable)) SC_expm1f(float);
float __attribute__((overloadable)) expm1(float v) {
return SC_expm1f(v);
}
FN_FUNC_FN(expm1)
extern float __attribute__((overloadable)) fabs(float v) {
int i = *((int*)(void*)&v) & 0x7fffffff;
return *((float*)(void*)&i);
}
FN_FUNC_FN(fabs)
extern float __attribute__((overloadable)) SC_fdimf(float, float);
float __attribute__((overloadable)) fdim(float v1, float v2) {
return SC_fdimf(v1, v2);
}
FN_FUNC_FN_FN(fdim)
extern float __attribute__((overloadable)) SC_floorf(float);
float __attribute__((overloadable)) floor(float v) {
return SC_floorf(v);
}
FN_FUNC_FN(floor)
extern float __attribute__((overloadable)) SC_fmaf(float, float, float);
float __attribute__((overloadable)) fma(float v1, float v2, float v3) {
return SC_fmaf(v1, v2, v3);
}
FN_FUNC_FN_FN_FN(fma)
extern float __attribute__((overloadable)) SC_fminf(float, float);
extern float __attribute__((overloadable)) SC_fmodf(float, float);
float __attribute__((overloadable)) fmod(float v1, float v2) {
return SC_fmodf(v1, v2);
}
FN_FUNC_FN_FN(fmod)
extern float __attribute__((overloadable)) fract(float v, float *iptr) {
int i = (int)floor(v);
if (iptr) {
iptr[0] = i;
}
return fmin(v - i, 0x1.fffffep-1f);
}
FN_FUNC_FN_PFN(fract)
extern float __attribute__((const, overloadable)) fract(float v) {
float unused;
return fract(v, &unused);
}
FN_FUNC_FN(fract)
extern float __attribute__((overloadable)) SC_frexpf(float, int *);
float __attribute__((overloadable)) frexp(float v1, int* v2) {
return SC_frexpf(v1, v2);
}
FN_FUNC_FN_PIN(frexp)
extern float __attribute__((overloadable)) SC_hypotf(float, float);
float __attribute__((overloadable)) hypot(float v1, float v2) {
return SC_hypotf(v1, v2);
}
FN_FUNC_FN_FN(hypot)
extern int __attribute__((overloadable)) SC_ilogbf(float);
int __attribute__((overloadable)) ilogb(float v) {
return SC_ilogbf(v);
}
IN_FUNC_FN(ilogb)
extern float __attribute__((overloadable)) SC_ldexpf(float, int);
float __attribute__((overloadable)) ldexp(float v1, int v2) {
return SC_ldexpf(v1, v2);
}
FN_FUNC_FN_IN(ldexp)
FN_FUNC_FN_I(ldexp)
extern float __attribute__((overloadable)) SC_lgammaf(float);
float __attribute__((overloadable)) lgamma(float v) {
return SC_lgammaf(v);
}
FN_FUNC_FN(lgamma)
extern float __attribute__((overloadable)) SC_lgammaf_r(float, int*);
float __attribute__((overloadable)) lgamma(float v, int* ptr) {
return SC_lgammaf_r(v, ptr);
}
FN_FUNC_FN_PIN(lgamma)
extern float __attribute__((overloadable)) SC_logf(float);
float __attribute__((overloadable)) log(float v) {
return SC_logf(v);
}
FN_FUNC_FN(log)
extern float __attribute__((overloadable)) SC_log10f(float);
float __attribute__((overloadable)) log10(float v) {
return SC_log10f(v);
}
FN_FUNC_FN(log10)
extern float __attribute__((overloadable)) log2(float v) {
return log10(v) * 3.321928095f;
}
FN_FUNC_FN(log2)
extern float __attribute__((overloadable)) SC_log1pf(float);
float __attribute__((overloadable)) log1p(float v) {
return SC_log1pf(v);
}
FN_FUNC_FN(log1p)
extern float __attribute__((overloadable)) SC_logbf(float);
float __attribute__((overloadable)) logb(float v) {
return SC_logbf(v);
}
FN_FUNC_FN(logb)
extern float __attribute__((overloadable)) mad(float a, float b, float c) {
return a * b + c;
}
extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) {
return a * b + c;
}
extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) {
return a * b + c;
}
extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) {
return a * b + c;
}
extern float __attribute__((overloadable)) SC_modff(float, float *);
float __attribute__((overloadable)) modf(float v1, float *v2) {
return SC_modff(v1, v2);
}
FN_FUNC_FN_PFN(modf);
extern float __attribute__((overloadable)) nan(uint v) {
float f[1];
uint32_t *ip = (uint32_t *)f;
*ip = v | 0x7fc00000;
return f[0];
}
extern float __attribute__((overloadable)) SC_nextafterf(float, float);
float __attribute__((overloadable)) nextafter(float v1, float v2) {
return SC_nextafterf(v1, v2);
}
FN_FUNC_FN_FN(nextafter)
// This function must be defined here if we're compiling with debug info
// (libclcore_g.bc), because we need a C source to get debug information.
// Otherwise the implementation can be found in IR.
#if defined(RS_G_RUNTIME)
extern float __attribute__((overloadable)) SC_powf(float, float);
float __attribute__((overloadable)) pow(float v1, float v2) {
return SC_powf(v1, v2);
}
#endif // defined(RS_G_RUNTIME)
FN_FUNC_FN_FN(pow)
extern float __attribute__((overloadable)) pown(float v, int p) {
/* The mantissa of a float has fewer bits than an int (24 effective vs. 31).
* For very large ints, we'll lose whether the exponent is even or odd, making
* the selection of a correct sign incorrect. We correct this. Use copysign
* to handle the negative zero case.
*/
float sign = (p & 0x1) ? copysign(1.f, v) : 1.f;
float f = pow(v, (float)p);
return copysign(f, sign);
}
FN_FUNC_FN_IN(pown)
extern float __attribute__((overloadable)) powr(float v, float p) {
return pow(v, p);
}
extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) {
return pow(v, p);
}
extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) {
return pow(v, p);
}
extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) {
return pow(v, p);
}
extern float __attribute__((overloadable)) SC_remainderf(float, float);
float __attribute__((overloadable)) remainder(float v1, float v2) {
return SC_remainderf(v1, v2);
}
FN_FUNC_FN_FN(remainder)
extern float __attribute__((overloadable)) SC_remquof(float, float, int *);
float __attribute__((overloadable)) remquo(float v1, float v2, int *v3) {
return SC_remquof(v1, v2, v3);
}
FN_FUNC_FN_FN_PIN(remquo)
extern float __attribute__((overloadable)) SC_rintf(float);
float __attribute__((overloadable)) rint(float v) {
return SC_rintf(v);
}
FN_FUNC_FN(rint)
extern float __attribute__((overloadable)) rootn(float v, int r) {
if (r == 0) {
return posinf();
}
if (iszero(v)) {
if (r < 0) {
if (r & 1) {
return copysign(posinf(), v);
} else {
return posinf();
}
} else {
if (r & 1) {
return copysign(0.f, v);
} else {
return 0.f;
}
}
}
if (!isinf(v) && !isnan(v) && (v < 0.f)) {
if (r & 1) {
return (-1.f * pow(-1.f * v, 1.f / r));
} else {
return nan(0);
}
}
return pow(v, 1.f / r);
}
FN_FUNC_FN_IN(rootn);
extern float __attribute__((overloadable)) SC_roundf(float);
float __attribute__((overloadable)) round(float v) {
return SC_roundf(v);
}
FN_FUNC_FN(round)
extern float __attribute__((overloadable)) SC_randf2(float, float);
float __attribute__((overloadable)) rsRand(float min, float max) {
return SC_randf2(min, max);
}
extern float __attribute__((overloadable)) rsqrt(float v) {
return 1.f / sqrt(v);
}
#if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME)
// These functions must be defined here if we are not using the SSE
// implementation, which includes when we are built as part of the
// debug runtime (libclcore_debug.bc) or compiling with debug info.
#if defined(RS_G_RUNTIME)
extern float __attribute__((overloadable)) SC_sqrtf(float);
float __attribute__((overloadable)) sqrt(float v) {
return SC_sqrtf(v);
}
#endif // defined(RS_G_RUNTIME)
FN_FUNC_FN(sqrt)
#else
extern float2 __attribute__((overloadable)) sqrt(float2);
extern float3 __attribute__((overloadable)) sqrt(float3);
extern float4 __attribute__((overloadable)) sqrt(float4);
#endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME)
FN_FUNC_FN(rsqrt)
extern float __attribute__((overloadable)) SC_sinf(float);
float __attribute__((overloadable)) sin(float v) {
return SC_sinf(v);
}
FN_FUNC_FN(sin)
extern float __attribute__((overloadable)) sincos(float v, float *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern float __attribute__((overloadable)) SC_sinhf(float);
float __attribute__((overloadable)) sinh(float v) {
return SC_sinhf(v);
}
FN_FUNC_FN(sinh)
extern float __attribute__((overloadable)) sinpi(float v) {
return sin(v * M_PI);
}
FN_FUNC_FN(sinpi)
extern float __attribute__((overloadable)) SC_tanf(float);
float __attribute__((overloadable)) tan(float v) {
return SC_tanf(v);
}
FN_FUNC_FN(tan)
extern float __attribute__((overloadable)) SC_tanhf(float);
float __attribute__((overloadable)) tanh(float v) {
return SC_tanhf(v);
}
FN_FUNC_FN(tanh)
extern float __attribute__((overloadable)) tanpi(float v) {
return tan(v * M_PI);
}
FN_FUNC_FN(tanpi)
extern float __attribute__((overloadable)) SC_tgammaf(float);
float __attribute__((overloadable)) tgamma(float v) {
return SC_tgammaf(v);
}
FN_FUNC_FN(tgamma)
extern float __attribute__((overloadable)) SC_truncf(float);
float __attribute__((overloadable)) trunc(float v) {
return SC_truncf(v);
}
FN_FUNC_FN(trunc)
// Int ops (partial), 6.11.3
#define XN_FUNC_YN(typeout, fnc, typein) \
extern typeout __attribute__((overloadable)) fnc(typein); \
extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \
typeout##2 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
return r; \
} \
extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \
typeout##3 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
return r; \
} \
extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \
typeout##4 r; \
r.x = fnc(v.x); \
r.y = fnc(v.y); \
r.z = fnc(v.z); \
r.w = fnc(v.w); \
return r; \
}
#define UIN_FUNC_IN(fnc) \
XN_FUNC_YN(uchar, fnc, char) \
XN_FUNC_YN(ushort, fnc, short) \
XN_FUNC_YN(uint, fnc, int)
#define IN_FUNC_IN(fnc) \
XN_FUNC_YN(uchar, fnc, uchar) \
XN_FUNC_YN(char, fnc, char) \
XN_FUNC_YN(ushort, fnc, ushort) \
XN_FUNC_YN(short, fnc, short) \
XN_FUNC_YN(uint, fnc, uint) \
XN_FUNC_YN(int, fnc, int)
#define XN_FUNC_XN_XN_BODY(type, fnc, body) \
extern type __attribute__((overloadable)) \
fnc(type v1, type v2) { \
return body; \
} \
extern type##2 __attribute__((overloadable)) \
fnc(type##2 v1, type##2 v2) { \
type##2 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
return r; \
} \
extern type##3 __attribute__((overloadable)) \
fnc(type##3 v1, type##3 v2) { \
type##3 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
return r; \
} \
extern type##4 __attribute__((overloadable)) \
fnc(type##4 v1, type##4 v2) { \
type##4 r; \
r.x = fnc(v1.x, v2.x); \
r.y = fnc(v1.y, v2.y); \
r.z = fnc(v1.z, v2.z); \
r.w = fnc(v1.w, v2.w); \
return r; \
}
#define IN_FUNC_IN_IN_BODY(fnc, body) \
XN_FUNC_XN_XN_BODY(uchar, fnc, body) \
XN_FUNC_XN_XN_BODY(char, fnc, body) \
XN_FUNC_XN_XN_BODY(ushort, fnc, body) \
XN_FUNC_XN_XN_BODY(short, fnc, body) \
XN_FUNC_XN_XN_BODY(uint, fnc, body) \
XN_FUNC_XN_XN_BODY(int, fnc, body) \
XN_FUNC_XN_XN_BODY(float, fnc, body)
/**
* abs
*/
extern uint32_t __attribute__((overloadable)) abs(int32_t v) {
if (v < 0)
return -v;
return v;
}
extern uint16_t __attribute__((overloadable)) abs(int16_t v) {
if (v < 0)
return -v;
return v;
}
extern uint8_t __attribute__((overloadable)) abs(int8_t v) {
if (v < 0)
return -v;
return v;
}
/**
* clz
* __builtin_clz only accepts a 32-bit unsigned int, so every input will be
* expanded to 32 bits. For our smaller data types, we need to subtract off
* these unused top bits (that will be always be composed of zeros).
*/
extern uint32_t __attribute__((overloadable)) clz(uint32_t v) {
return __builtin_clz(v);
}
extern uint16_t __attribute__((overloadable)) clz(uint16_t v) {
return __builtin_clz(v) - 16;
}
extern uint8_t __attribute__((overloadable)) clz(uint8_t v) {
return __builtin_clz(v) - 24;
}
extern int32_t __attribute__((overloadable)) clz(int32_t v) {
return __builtin_clz(v);
}
extern int16_t __attribute__((overloadable)) clz(int16_t v) {
return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16;
}
extern int8_t __attribute__((overloadable)) clz(int8_t v) {
return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24;
}
UIN_FUNC_IN(abs)
IN_FUNC_IN(clz)
// 6.11.4
extern float __attribute__((overloadable)) degrees(float radians) {
return radians * (180.f / M_PI);
}
extern float2 __attribute__((overloadable)) degrees(float2 radians) {
return radians * (180.f / M_PI);
}
extern float3 __attribute__((overloadable)) degrees(float3 radians) {
return radians * (180.f / M_PI);
}
extern float4 __attribute__((overloadable)) degrees(float4 radians) {
return radians * (180.f / M_PI);
}
extern float __attribute__((overloadable)) mix(float start, float stop, float amount) {
return start + (stop - start) * amount;
}
extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) {
return start + (stop - start) * amount;
}
extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) {
return start + (stop - start) * amount;
}
extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) {
return start + (stop - start) * amount;
}
extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) {
return start + (stop - start) * amount;
}
extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) {
return start + (stop - start) * amount;
}
extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) {
return start + (stop - start) * amount;
}
extern float __attribute__((overloadable)) radians(float degrees) {
return degrees * (M_PI / 180.f);
}
extern float2 __attribute__((overloadable)) radians(float2 degrees) {
return degrees * (M_PI / 180.f);
}
extern float3 __attribute__((overloadable)) radians(float3 degrees) {
return degrees * (M_PI / 180.f);
}
extern float4 __attribute__((overloadable)) radians(float4 degrees) {
return degrees * (M_PI / 180.f);
}
extern float __attribute__((overloadable)) step(float edge, float v) {
return (v < edge) ? 0.f : 1.f;
}
extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) {
float2 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) {
float3 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) {
float4 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
r.w = (v.w < edge.w) ? 0.f : 1.f;
return r;
}
extern float2 __attribute__((overloadable)) step(float2 edge, float v) {
float2 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float3 edge, float v) {
float3 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float4 edge, float v) {
float4 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
r.w = (v < edge.w) ? 0.f : 1.f;
return r;
}
extern float2 __attribute__((overloadable)) step(float edge, float2 v) {
float2 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
return r;
}
extern float3 __attribute__((overloadable)) step(float edge, float3 v) {
float3 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
return r;
}
extern float4 __attribute__((overloadable)) step(float edge, float4 v) {
float4 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
r.w = (v.w < edge) ? 0.f : 1.f;
return r;
}
extern float __attribute__((overloadable)) sign(float v) {
if (v > 0) return 1.f;
if (v < 0) return -1.f;
return v;
}
FN_FUNC_FN(sign)
// 6.11.5
extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) {
float3 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
return r;
}
extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) {
float4 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
r.w = 0.f;
return r;
}
#if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME)
// These functions must be defined here if we are not using the SSE
// implementation, which includes when we are built as part of the
// debug runtime (libclcore_debug.bc) or compiling with debug info.
extern float __attribute__((overloadable)) dot(float lhs, float rhs) {
return lhs * rhs;
}
extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y;
}
extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;
}
extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) {
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w;
}
extern float __attribute__((overloadable)) length(float v) {
return fabs(v);
}
extern float __attribute__((overloadable)) length(float2 v) {
return sqrt(v.x*v.x + v.y*v.y);
}
extern float __attribute__((overloadable)) length(float3 v) {
return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
extern float __attribute__((overloadable)) length(float4 v) {
return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
}
#else
extern float __attribute__((overloadable)) length(float v);
extern float __attribute__((overloadable)) length(float2 v);
extern float __attribute__((overloadable)) length(float3 v);
extern float __attribute__((overloadable)) length(float4 v);
#endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME)
extern float __attribute__((overloadable)) distance(float lhs, float rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) {
return length(lhs - rhs);
}
extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) {
return length(lhs - rhs);
}
/* For the normalization functions, vectors of length 0 should simply be
* returned (i.e. all the components of that vector are 0).
*/
extern float __attribute__((overloadable)) normalize(float v) {
if (v == 0.0f) {
return 0.0f;
} else if (v < 0.0f) {
return -1.0f;
} else {
return 1.0f;
}
}
extern float2 __attribute__((overloadable)) normalize(float2 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float3 __attribute__((overloadable)) normalize(float3 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float4 __attribute__((overloadable)) normalize(float4 v) {
float l = length(v);
return l == 0.0f ? v : v / l;
}
extern float __attribute__((overloadable)) half_sqrt(float v) {
return sqrt(v);
}
FN_FUNC_FN(half_sqrt)
extern float __attribute__((overloadable)) fast_length(float v) {
return fabs(v);
}
extern float __attribute__((overloadable)) fast_length(float2 v) {
return half_sqrt(v.x*v.x + v.y*v.y);
}
extern float __attribute__((overloadable)) fast_length(float3 v) {
return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}
extern float __attribute__((overloadable)) fast_length(float4 v) {
return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
}
extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) {
return fast_length(lhs - rhs);
}
extern float __attribute__((overloadable)) half_rsqrt(float);
/* For the normalization functions, vectors of length 0 should simply be
* returned (i.e. all the components of that vector are 0).
*/
extern float __attribute__((overloadable)) fast_normalize(float v) {
if (v == 0.0f) {
return 0.0f;
} else if (v < 0.0f) {
return -1.0f;
} else {
return 1.0f;
}
}
// If the length is 0, then rlength should be NaN.
extern float2 __attribute__((overloadable)) fast_normalize(float2 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y);
return (rlength == rlength) ? v * rlength : v;
}
extern float3 __attribute__((overloadable)) fast_normalize(float3 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z);
return (rlength == rlength) ? v * rlength : v;
}
extern float4 __attribute__((overloadable)) fast_normalize(float4 v) {
float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
return (rlength == rlength) ? v * rlength : v;
}
extern float __attribute__((overloadable)) half_recip(float v) {
return 1.f / v;
}
/*
extern float __attribute__((overloadable)) approx_atan(float x) {
if (x == 0.f)
return 0.f;
if (x < 0.f)
return -1.f * approx_atan(-1.f * x);
if (x > 1.f)
return M_PI_2 - approx_atan(approx_recip(x));
return x * approx_recip(1.f + 0.28f * x*x);
}
FN_FUNC_FN(approx_atan)
*/
typedef union
{
float fv;
int32_t iv;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.fv = (d); \
(i) = gf_u.iv; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.iv = (i); \
(d) = sf_u.fv; \
} while (0)
// Valid -125 to 125
extern float __attribute__((overloadable)) native_exp2(float v) {
int32_t iv = (int)v;
int32_t x = iv + (iv >> 31); // ~floor(v)
float r = (v - x);
float fo;
SET_FLOAT_WORD(fo, (x + 127) << 23);
r *= 0.694f; // ~ log(e) / log(2)
float r2 = r*r;
float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float2 __attribute__((overloadable)) native_exp2(float2 v) {
int2 iv = convert_int2(v);
int2 x = iv + (iv >> (int2)31);//floor(v);
float2 r = (v - convert_float2(x));
x += 127;
float2 fo = (float2)(x << (int2)23);
r *= 0.694f; // ~ log(e) / log(2)
float2 r2 = r*r;
float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float4 __attribute__((overloadable)) native_exp2(float4 v) {
int4 iv = convert_int4(v);
int4 x = iv + (iv >> (int4)31);//floor(v);
float4 r = (v - convert_float4(x));
x += 127;
float4 fo = (float4)(x << (int4)23);
r *= 0.694f; // ~ log(e) / log(2)
float4 r2 = r*r;
float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f);
return fo * adj;
}
extern float3 __attribute__((overloadable)) native_exp2(float3 v) {
float4 t = 1.f;
t.xyz = v;
return native_exp2(t).xyz;
}
extern float __attribute__((overloadable)) native_exp(float v) {
return native_exp2(v * 1.442695041f);
}
extern float2 __attribute__((overloadable)) native_exp(float2 v) {
return native_exp2(v * 1.442695041f);
}
extern float3 __attribute__((overloadable)) native_exp(float3 v) {
return native_exp2(v * 1.442695041f);
}
extern float4 __attribute__((overloadable)) native_exp(float4 v) {
return native_exp2(v * 1.442695041f);
}
extern float __attribute__((overloadable)) native_exp10(float v) {
return native_exp2(v * 3.321928095f);
}
extern float2 __attribute__((overloadable)) native_exp10(float2 v) {
return native_exp2(v * 3.321928095f);
}
extern float3 __attribute__((overloadable)) native_exp10(float3 v) {
return native_exp2(v * 3.321928095f);
}
extern float4 __attribute__((overloadable)) native_exp10(float4 v) {
return native_exp2(v * 3.321928095f);
}
extern float __attribute__((overloadable)) native_log2(float v) {
int32_t ibits;
GET_FLOAT_WORD(ibits, v);
int32_t e = (ibits >> 23) & 0xff;
ibits &= 0x7fffff;
ibits |= 127 << 23;
float ir;
SET_FLOAT_WORD(ir, ibits);
ir -= 1.5f;
float ir2 = ir*ir;
float adj2 = (0.405465108f / 0.693147181f) +
((0.666666667f / 0.693147181f) * ir) -
((0.222222222f / 0.693147181f) * ir2) +
((0.098765432f / 0.693147181f) * ir*ir2) -
((0.049382716f / 0.693147181f) * ir2*ir2) +
((0.026337449f / 0.693147181f) * ir*ir2*ir2) -
((0.014631916f / 0.693147181f) * ir2*ir2*ir2);
return (float)(e - 127) + adj2;
}
extern float2 __attribute__((overloadable)) native_log2(float2 v) {
float2 v2 = {native_log2(v.x), native_log2(v.y)};
return v2;
}
extern float3 __attribute__((overloadable)) native_log2(float3 v) {
float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)};
return v2;
}
extern float4 __attribute__((overloadable)) native_log2(float4 v) {
float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)};
return v2;
}
extern float __attribute__((overloadable)) native_log(float v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float2 __attribute__((overloadable)) native_log(float2 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float3 __attribute__((overloadable)) native_log(float3 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float4 __attribute__((overloadable)) native_log(float4 v) {
return native_log2(v) * (1.f / 1.442695041f);
}
extern float __attribute__((overloadable)) native_log10(float v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float2 __attribute__((overloadable)) native_log10(float2 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float3 __attribute__((overloadable)) native_log10(float3 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float4 __attribute__((overloadable)) native_log10(float4 v) {
return native_log2(v) * (1.f / 3.321928095f);
}
extern float __attribute__((overloadable)) native_powr(float v, float y) {
float v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) {
float2 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) {
float3 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) {
float4 v2 = native_log2(v);
v2 = fmax(v2 * y, -125.f);
return native_exp2(v2);
}
extern double __attribute__((overloadable)) min(double v1, double v2) {
return v1 < v2 ? v1 : v2;
}
extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) {
double2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) {
double3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) {
double4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern long __attribute__((overloadable)) min(long v1, long v2) {
return v1 < v2 ? v1 : v2;
}
extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) {
long2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) {
long3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) {
long4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) {
return v1 < v2 ? v1 : v2;
}
extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) {
ulong2 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
return r;
}
extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) {
ulong3 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
return r;
}
extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) {
ulong4 r;
r.x = v1.x < v2.x ? v1.x : v2.x;
r.y = v1.y < v2.y ? v1.y : v2.y;
r.z = v1.z < v2.z ? v1.z : v2.z;
r.w = v1.w < v2.w ? v1.w : v2.w;
return r;
}
extern double __attribute__((overloadable)) max(double v1, double v2) {
return v1 > v2 ? v1 : v2;
}
extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) {
double2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) {
double3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) {
double4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
extern long __attribute__((overloadable)) max(long v1, long v2) {
return v1 > v2 ? v1 : v2;
}
extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) {
long2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) {
long3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) {
long4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) {
return v1 > v2 ? v1 : v2;
}
extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) {
ulong2 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
return r;
}
extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) {
ulong3 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
return r;
}
extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) {
ulong4 r;
r.x = v1.x > v2.x ? v1.x : v2.x;
r.y = v1.y > v2.y ? v1.y : v2.y;
r.z = v1.z > v2.z ? v1.z : v2.z;
r.w = v1.w > v2.w ? v1.w : v2.w;
return r;
}
#define THUNK_NATIVE_F(fn) \
float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \
float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \
float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \
float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);}
#define THUNK_NATIVE_F_F(fn) \
float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);}
#define THUNK_NATIVE_F_FP(fn) \
float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);}
#define THUNK_NATIVE_F_I(fn) \
float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \
float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \
float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \
float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);}
THUNK_NATIVE_F(acos)
THUNK_NATIVE_F(acosh)
THUNK_NATIVE_F(acospi)
THUNK_NATIVE_F(asin)
THUNK_NATIVE_F(asinh)
THUNK_NATIVE_F(asinpi)
THUNK_NATIVE_F(atan)
THUNK_NATIVE_F_F(atan2)
THUNK_NATIVE_F(atanh)
THUNK_NATIVE_F(atanpi)
THUNK_NATIVE_F_F(atan2pi)
THUNK_NATIVE_F(cbrt)
THUNK_NATIVE_F(cos)
THUNK_NATIVE_F(cosh)
THUNK_NATIVE_F(cospi)
THUNK_NATIVE_F(expm1)
THUNK_NATIVE_F_F(hypot)
THUNK_NATIVE_F(log1p)
THUNK_NATIVE_F_I(rootn)
THUNK_NATIVE_F(rsqrt)
THUNK_NATIVE_F(sqrt)
THUNK_NATIVE_F(sin)
THUNK_NATIVE_F_FP(sincos)
THUNK_NATIVE_F(sinh)
THUNK_NATIVE_F(sinpi)
THUNK_NATIVE_F(tan)
THUNK_NATIVE_F(tanh)
THUNK_NATIVE_F(tanpi)
#undef THUNK_NATIVE_F
#undef THUNK_NATIVE_F_F
#undef THUNK_NATIVE_F_I
#undef THUNK_NATIVE_F_FP
float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);}
float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);}
float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);}
float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);}
float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);}
float __attribute__((overloadable)) native_length(float v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);}
float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);}
float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;}
float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;}
float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;}
float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;}
float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;}
float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;}
float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;}
float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;}
#undef FN_FUNC_FN
#undef IN_FUNC_FN
#undef FN_FUNC_FN_FN
#undef FN_FUNC_FN_F
#undef FN_FUNC_FN_IN
#undef FN_FUNC_FN_I
#undef FN_FUNC_FN_PFN
#undef FN_FUNC_FN_PIN
#undef FN_FUNC_FN_FN_FN
#undef FN_FUNC_FN_FN_PIN
#undef XN_FUNC_YN
#undef UIN_FUNC_IN
#undef IN_FUNC_IN
#undef XN_FUNC_XN_XN_BODY
#undef IN_FUNC_IN_IN_BODY
static const unsigned short kHalfPositiveInfinity = 0x7c00;
/* Define f16 functions of the form
* HN output = fn(HN input)
* where HN is scalar or vector half type
*/
#define HN_FUNC_HN(fn) \
extern half __attribute__((overloadable)) fn(half h) { \
return (half) fn((float) h); \
} \
extern half2 __attribute__((overloadable)) fn(half2 v) { \
return convert_half2(fn(convert_float2(v))); \
} \
extern half3 __attribute__((overloadable)) fn(half3 v) { \
return convert_half3(fn(convert_float3(v))); \
} \
extern half4 __attribute__((overloadable)) fn(half4 v) { \
return convert_half4(fn(convert_float4(v))); \
}
/* Define f16 functions of the form
* HN output = fn(HN input1, HN input2)
* where HN is scalar or vector half type
*/
#define HN_FUNC_HN_HN(fn) \
extern half __attribute__((overloadable)) fn(half h1, half h2) { \
return (half) fn((float) h1, (float) h2); \
} \
extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \
return convert_half2(fn(convert_float2(v1), \
convert_float2(v2))); \
} \
extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \
return convert_half3(fn(convert_float3(v1), \
convert_float3(v2))); \
} \
extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \
return convert_half4(fn(convert_float4(v1), \
convert_float4(v2))); \
}
/* Define f16 functions of the form
* HN output = fn(HN input1, half input2)
* where HN is scalar or vector half type
*/
#define HN_FUNC_HN_H(fn) \
extern half2 __attribute__((overloadable)) fn(half2 v1, half v2) { \
return convert_half2(fn(convert_float2(v1), (float) v2)); \
} \
extern half3 __attribute__((overloadable)) fn(half3 v1, half v2) { \
return convert_half3(fn(convert_float3(v1), (float) v2)); \
} \
extern half4 __attribute__((overloadable)) fn(half4 v1, half v2) { \
return convert_half4(fn(convert_float4(v1), (float) v2)); \
}
/* Define f16 functions of the form
* HN output = fn(HN input1, HN input2, HN input3)
* where HN is scalar or vector half type
*/
#define HN_FUNC_HN_HN_HN(fn) \
extern half __attribute__((overloadable)) fn(half h1, half h2, half h3) { \
return (half) fn((float) h1, (float) h2, (float) h3); \
} \
extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2, half2 v3) { \
return convert_half2(fn(convert_float2(v1), \
convert_float2(v2), \
convert_float2(v3))); \
} \
extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2, half3 v3) { \
return convert_half3(fn(convert_float3(v1), \
convert_float3(v2), \
convert_float3(v3))); \
} \
extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2, half4 v3) { \
return convert_half4(fn(convert_float4(v1), \
convert_float4(v2), \
convert_float4(v3))); \
}
/* Define f16 functions of the form
* HN output = fn(HN input1, IN input2)
* where HN is scalar or vector half type and IN the equivalent integer type
* of same vector length.
*/
#define HN_FUNC_HN_IN(fn) \
extern half __attribute__((overloadable)) fn(half h1, int v) { \
return (half) fn((float) h1, v); \
} \
extern half2 __attribute__((overloadable)) fn(half2 v1, int2 v2) { \
return convert_half2(fn(convert_float2(v1), v2)); \
} \
extern half3 __attribute__((overloadable)) fn(half3 v1, int3 v2) { \
return convert_half3(fn(convert_float3(v1), v2)); \
} \
extern half4 __attribute__((overloadable)) fn(half4 v1, int4 v2) { \
return convert_half4(fn(convert_float4(v1), v2)); \
}
/* Define f16 functions of the form
* half output = fn(HN input1)
* where HN is a scalar or vector half type.
*/
#define H_FUNC_HN(fn) \
extern half __attribute__((overloadable)) fn(half h) { \
return (half) fn((float) h); \
} \
extern half __attribute__((overloadable)) fn(half2 v) { \
return fn(convert_float2(v)); \
} \
extern half __attribute__((overloadable)) fn(half3 v) { \
return fn(convert_float3(v)); \
} \
extern half __attribute__((overloadable)) fn(half4 v) { \
return fn(convert_float4(v)); \
}
/* Define f16 functions of the form
* half output = fn(HN input1, HN input2)
* where HN is a scalar or vector half type.
*/
#define H_FUNC_HN_HN(fn) \
extern half __attribute__((overloadable)) fn(half h1, half h2) { \
return (half) fn((float) h1, (float) h2); \
} \
extern half __attribute__((overloadable)) fn(half2 v1, half2 v2) { \
return fn(convert_float2(v1), convert_float2(v2)); \
} \
extern half __attribute__((overloadable)) fn(half3 v1, half3 v2) { \
return fn(convert_float3(v1), convert_float3(v2)); \
} \
extern half __attribute__((overloadable)) fn(half4 v1, half4 v2) { \
return fn(convert_float4(v1), convert_float4(v2)); \
}
#define SCALARIZE_HN_FUNC_HN_PHN(fnc) \
extern half2 __attribute__((overloadable)) fnc(half2 v1, half2 *v2) { \
half2 ret; \
half t[2]; \
ret.x = fnc(v1.x, &t[0]); \
ret.y = fnc(v1.y, &t[1]); \
v2->x = t[0]; \
v2->y = t[1]; \
return ret; \
} \
extern half3 __attribute__((overloadable)) fnc(half3 v1, half3 *v2) { \
half3 ret; \
half t[3]; \
ret.x = fnc(v1.x, &t[0]); \
ret.y = fnc(v1.y, &t[1]); \
ret.z = fnc(v1.z, &t[2]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
return ret; \
} \
extern half4 __attribute__((overloadable)) fnc(half4 v1, half4 *v2) { \
half4 ret; \
half t[4]; \
ret.x = fnc(v1.x, &t[0]); \
ret.y = fnc(v1.y, &t[1]); \
ret.z = fnc(v1.z, &t[2]); \
ret.w = fnc(v1.w, &t[3]); \
v2->x = t[0]; \
v2->y = t[1]; \
v2->z = t[2]; \
v2->w = t[3]; \
return ret; \
}
/* Define f16 functions of the form
* HN output = fn(HN input1, HN input2)
* where HN is a vector half type. The functions are defined to call the
* scalar function of the same name.
*/
#define SCALARIZE_HN_FUNC_HN_HN(fn) \
extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \
half2 ret; \
ret.x = fn(v1.x, v2.x); \
ret.y = fn(v1.y, v2.y); \
return ret; \
} \
extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \
half3 ret; \
ret.x = fn(v1.x, v2.x); \
ret.y = fn(v1.y, v2.y); \
ret.z = fn(v1.z, v2.z); \
return ret; \
} \
extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \
half4 ret; \
ret.x = fn(v1.x, v2.x); \
ret.y = fn(v1.y, v2.y); \
ret.z = fn(v1.z, v2.z); \
ret.w = fn(v1.w, v2.w); \
return ret; \
} \
HN_FUNC_HN(acos);
HN_FUNC_HN(acosh);
HN_FUNC_HN(acospi);
HN_FUNC_HN(asin);
HN_FUNC_HN(asinh);
HN_FUNC_HN(asinpi);
HN_FUNC_HN(atan);
HN_FUNC_HN(atanh);
HN_FUNC_HN(atanpi);
HN_FUNC_HN_HN(atan2);
HN_FUNC_HN_HN(atan2pi);
HN_FUNC_HN(cbrt);
HN_FUNC_HN(ceil);
extern half __attribute__((overloadable)) copysign(half x, half y);
SCALARIZE_HN_FUNC_HN_HN(copysign);
HN_FUNC_HN(cos);
HN_FUNC_HN(cosh);
HN_FUNC_HN(cospi);
extern half3 __attribute__((overloadable)) cross(half3 lhs, half3 rhs) {
half3 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
return r;
}
extern half4 __attribute__((overloadable)) cross(half4 lhs, half4 rhs) {
half4 r;
r.x = lhs.y * rhs.z - lhs.z * rhs.y;
r.y = lhs.z * rhs.x - lhs.x * rhs.z;
r.z = lhs.x * rhs.y - lhs.y * rhs.x;
r.w = 0.f;
return r;
}
HN_FUNC_HN(degrees);
H_FUNC_HN_HN(distance);
H_FUNC_HN_HN(dot);
HN_FUNC_HN(erf);
HN_FUNC_HN(erfc);
HN_FUNC_HN(exp);
HN_FUNC_HN(exp10);
HN_FUNC_HN(exp2);
HN_FUNC_HN(expm1);
HN_FUNC_HN(fabs);
HN_FUNC_HN_HN(fdim);
HN_FUNC_HN(floor);
HN_FUNC_HN_HN_HN(fma);
HN_FUNC_HN_HN(fmax);
HN_FUNC_HN_H(fmax);
HN_FUNC_HN_HN(fmin);
HN_FUNC_HN_H(fmin);
HN_FUNC_HN_HN(fmod);
extern half __attribute__((overloadable)) fract(half v, half *iptr) {
// maxLessThanOne = 0.99951171875, the largest value < 1.0
half maxLessThanOne;
SET_HALF_WORD(maxLessThanOne, 0x3bff);
int i = (int) floor(v);
if (iptr) {
*iptr = i;
}
// return v - floor(v), if strictly less than one
return fmin(v - i, maxLessThanOne);
}
SCALARIZE_HN_FUNC_HN_PHN(fract);
extern half __attribute__((const, overloadable)) fract(half v) {
half unused;
return fract(v, &unused);
}
extern half2 __attribute__((const, overloadable)) fract(half2 v) {
half2 unused;
return fract(v, &unused);
}
extern half3 __attribute__((const, overloadable)) fract(half3 v) {
half3 unused;
return fract(v, &unused);
}
extern half4 __attribute__((const, overloadable)) fract(half4 v) {
half4 unused;
return fract(v, &unused);
}
extern half __attribute__((overloadable)) frexp(half x, int *eptr);
extern half2 __attribute__((overloadable)) frexp(half2 v1, int2 *eptr) {
half2 ret;
int e[2];
ret.x = frexp(v1.x, &e[0]);
ret.y = frexp(v1.y, &e[1]);
eptr->x = e[0];
eptr->y = e[1];
return ret;
}
extern half3 __attribute__((overloadable)) frexp(half3 v1, int3 *eptr) {
half3 ret;
int e[3];
ret.x = frexp(v1.x, &e[0]);
ret.y = frexp(v1.y, &e[1]);
ret.z = frexp(v1.z, &e[2]);
eptr->x = e[0];
eptr->y = e[1];
eptr->z = e[2];
return ret;
}
extern half4 __attribute__((overloadable)) frexp(half4 v1, int4 *eptr) {
half4 ret;
int e[4];
ret.x = frexp(v1.x, &e[0]);
ret.y = frexp(v1.y, &e[1]);
ret.z = frexp(v1.z, &e[2]);
ret.w = frexp(v1.w, &e[3]);
eptr->x = e[0];
eptr->y = e[1];
eptr->z = e[2];
eptr->w = e[3];
return ret;
}
HN_FUNC_HN_HN(hypot);
extern int __attribute__((overloadable)) ilogb(half x);
extern int2 __attribute__((overloadable)) ilogb(half2 v) {
int2 ret;
ret.x = ilogb(v.x);
ret.y = ilogb(v.y);
return ret;
}
extern int3 __attribute__((overloadable)) ilogb(half3 v) {
int3 ret;
ret.x = ilogb(v.x);
ret.y = ilogb(v.y);
ret.z = ilogb(v.z);
return ret;
}
extern int4 __attribute__((overloadable)) ilogb(half4 v) {
int4 ret;
ret.x = ilogb(v.x);
ret.y = ilogb(v.y);
ret.z = ilogb(v.z);
ret.w = ilogb(v.w);
return ret;
}
HN_FUNC_HN_IN(ldexp);
extern half2 __attribute__((overloadable)) ldexp(half2 v, int exponent) {
return convert_half2(ldexp(convert_float2(v), exponent));
}
extern half3 __attribute__((overloadable)) ldexp(half3 v, int exponent) {
return convert_half3(ldexp(convert_float3(v), exponent));
}
extern half4 __attribute__((overloadable)) ldexp(half4 v, int exponent) {
return convert_half4(ldexp(convert_float4(v), exponent));
}
H_FUNC_HN(length);
HN_FUNC_HN(lgamma);
extern half __attribute__((overloadable)) lgamma(half h, int *signp) {
return (half) lgamma((float) h, signp);
}
extern half2 __attribute__((overloadable)) lgamma(half2 v, int2 *signp) {
return convert_half2(lgamma(convert_float2(v), signp));
}
extern half3 __attribute__((overloadable)) lgamma(half3 v, int3 *signp) {
return convert_half3(lgamma(convert_float3(v), signp));
}
extern half4 __attribute__((overloadable)) lgamma(half4 v, int4 *signp) {
return convert_half4(lgamma(convert_float4(v), signp));
}
HN_FUNC_HN(log);
HN_FUNC_HN(log10);
HN_FUNC_HN(log1p);
HN_FUNC_HN(log2);
HN_FUNC_HN(logb);
HN_FUNC_HN_HN_HN(mad);
HN_FUNC_HN_HN(max);
HN_FUNC_HN_H(max); // TODO can this be arch-specific similar to _Z3maxDv2_ff?
HN_FUNC_HN_HN(min);
HN_FUNC_HN_H(min); // TODO can this be arch-specific similar to _Z3minDv2_ff?
extern half __attribute__((overloadable)) mix(half start, half stop, half amount) {
return start + (stop - start) * amount;
}
extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half2 amount) {
return start + (stop - start) * amount;
}
extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half3 amount) {
return start + (stop - start) * amount;
}
extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half4 amount) {
return start + (stop - start) * amount;
}
extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half amount) {
return start + (stop - start) * amount;
}
extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half amount) {
return start + (stop - start) * amount;
}
extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half amount) {
return start + (stop - start) * amount;
}
extern half __attribute__((overloadable)) modf(half x, half *iptr);
SCALARIZE_HN_FUNC_HN_PHN(modf);
half __attribute__((overloadable)) nan_half() {
unsigned short nan_short = kHalfPositiveInfinity | 0x0200;
half nan;
SET_HALF_WORD(nan, nan_short);
return nan;
}
HN_FUNC_HN(normalize);
extern half __attribute__((overloadable)) nextafter(half x, half y);
SCALARIZE_HN_FUNC_HN_HN(nextafter);
HN_FUNC_HN_HN(pow);
HN_FUNC_HN_IN(pown);
HN_FUNC_HN_HN(powr);
HN_FUNC_HN(radians);
HN_FUNC_HN_HN(remainder);
extern half __attribute__((overloadable)) remquo(half n, half d, int *quo) {
return (float) remquo((float) n, (float) d, quo);
}
extern half2 __attribute__((overloadable)) remquo(half2 n, half2 d, int2 *quo) {
return convert_half2(remquo(convert_float2(d), convert_float2(n), quo));
}
extern half3 __attribute__((overloadable)) remquo(half3 n, half3 d, int3 *quo) {
return convert_half3(remquo(convert_float3(d), convert_float3(n), quo));
}
extern half4 __attribute__((overloadable)) remquo(half4 n, half4 d, int4 *quo) {
return convert_half4(remquo(convert_float4(d), convert_float4(n), quo));
}
HN_FUNC_HN(rint);
HN_FUNC_HN_IN(rootn);
HN_FUNC_HN(round);
HN_FUNC_HN(rsqrt);
extern half __attribute__((overloadable)) sign(half h) {
if (h > 0) return (half) 1.f;
if (h < 0) return (half) -1.f;
return h;
}
extern half2 __attribute__((overloadable)) sign(half2 v) {
half2 ret;
ret.x = sign(v.x);
ret.y = sign(v.y);
return ret;
}
extern half3 __attribute__((overloadable)) sign(half3 v) {
half3 ret;
ret.x = sign(v.x);
ret.y = sign(v.y);
ret.z = sign(v.z);
return ret;
}
extern half4 __attribute__((overloadable)) sign(half4 v) {
half4 ret;
ret.x = sign(v.x);
ret.y = sign(v.y);
ret.z = sign(v.z);
ret.w = sign(v.w);
return ret;
}
HN_FUNC_HN(sin);
extern half __attribute__((overloadable)) sincos(half v, half *cosptr) {
*cosptr = cos(v);
return sin(v);
}
// TODO verify if LLVM eliminates the duplicate convert_float2
extern half2 __attribute__((overloadable)) sincos(half2 v, half2 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern half3 __attribute__((overloadable)) sincos(half3 v, half3 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
extern half4 __attribute__((overloadable)) sincos(half4 v, half4 *cosptr) {
*cosptr = cos(v);
return sin(v);
}
HN_FUNC_HN(sinh);
HN_FUNC_HN(sinpi);
HN_FUNC_HN(sqrt);
extern half __attribute__((overloadable)) step(half edge, half v) {
return (v < edge) ? 0.f : 1.f;
}
extern half2 __attribute__((overloadable)) step(half2 edge, half2 v) {
half2 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
return r;
}
extern half3 __attribute__((overloadable)) step(half3 edge, half3 v) {
half3 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
return r;
}
extern half4 __attribute__((overloadable)) step(half4 edge, half4 v) {
half4 r;
r.x = (v.x < edge.x) ? 0.f : 1.f;
r.y = (v.y < edge.y) ? 0.f : 1.f;
r.z = (v.z < edge.z) ? 0.f : 1.f;
r.w = (v.w < edge.w) ? 0.f : 1.f;
return r;
}
extern half2 __attribute__((overloadable)) step(half2 edge, half v) {
half2 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
return r;
}
extern half3 __attribute__((overloadable)) step(half3 edge, half v) {
half3 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
return r;
}
extern half4 __attribute__((overloadable)) step(half4 edge, half v) {
half4 r;
r.x = (v < edge.x) ? 0.f : 1.f;
r.y = (v < edge.y) ? 0.f : 1.f;
r.z = (v < edge.z) ? 0.f : 1.f;
r.w = (v < edge.w) ? 0.f : 1.f;
return r;
}
extern half2 __attribute__((overloadable)) step(half edge, half2 v) {
half2 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
return r;
}
extern half3 __attribute__((overloadable)) step(half edge, half3 v) {
half3 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
return r;
}
extern half4 __attribute__((overloadable)) step(half edge, half4 v) {
half4 r;
r.x = (v.x < edge) ? 0.f : 1.f;
r.y = (v.y < edge) ? 0.f : 1.f;
r.z = (v.z < edge) ? 0.f : 1.f;
r.w = (v.w < edge) ? 0.f : 1.f;
return r;
}
HN_FUNC_HN(tan);
HN_FUNC_HN(tanh);
HN_FUNC_HN(tanpi);
HN_FUNC_HN(tgamma);
HN_FUNC_HN(trunc); // TODO: rethink: needs half-specific implementation?
HN_FUNC_HN(native_acos);
HN_FUNC_HN(native_acosh);
HN_FUNC_HN(native_acospi);
HN_FUNC_HN(native_asin);
HN_FUNC_HN(native_asinh);
HN_FUNC_HN(native_asinpi);
HN_FUNC_HN(native_atan);
HN_FUNC_HN(native_atanh);
HN_FUNC_HN(native_atanpi);
HN_FUNC_HN_HN(native_atan2);
HN_FUNC_HN_HN(native_atan2pi);
HN_FUNC_HN(native_cbrt);
HN_FUNC_HN(native_cos);
HN_FUNC_HN(native_cosh);
HN_FUNC_HN(native_cospi);
H_FUNC_HN_HN(native_distance);
HN_FUNC_HN_HN(native_divide);
HN_FUNC_HN(native_exp);
HN_FUNC_HN(native_exp10);
HN_FUNC_HN(native_exp2);
HN_FUNC_HN(native_expm1);
HN_FUNC_HN_HN(native_hypot);
H_FUNC_HN(native_length);
HN_FUNC_HN(native_log);
HN_FUNC_HN(native_log10);
HN_FUNC_HN(native_log1p);
HN_FUNC_HN(native_log2);
HN_FUNC_HN(native_normalize);
HN_FUNC_HN_HN(native_powr); // TODO are parameter limits different for half?
HN_FUNC_HN(native_recip);
HN_FUNC_HN_IN(native_rootn);
HN_FUNC_HN(native_rsqrt);
HN_FUNC_HN(native_sin);
extern half __attribute__((overloadable)) native_sincos(half v, half *cosptr) {
return sincos(v, cosptr);
}
extern half2 __attribute__((overloadable)) native_sincos(half2 v, half2 *cosptr) {
return sincos(v, cosptr);
}
extern half3 __attribute__((overloadable)) native_sincos(half3 v, half3 *cosptr) {
return sincos(v, cosptr);
}
extern half4 __attribute__((overloadable)) native_sincos(half4 v, half4 *cosptr) {
return sincos(v, cosptr);
}
HN_FUNC_HN(native_sinh);
HN_FUNC_HN(native_sinpi);
HN_FUNC_HN(native_sqrt);
HN_FUNC_HN(native_tan);
HN_FUNC_HN(native_tanh);
HN_FUNC_HN(native_tanpi);
#undef HN_FUNC_HN
#undef HN_FUNC_HN_HN
#undef HN_FUNC_HN_H
#undef HN_FUNC_HN_HN_HN
#undef HN_FUNC_HN_IN
#undef H_FUNC_HN
#undef H_FUNC_HN_HN
#undef SCALARIZE_HN_FUNC_HN_HN
// exports unavailable mathlib functions to compat lib
#ifdef RS_COMPATIBILITY_LIB
// !!! DANGER !!!
// These functions are potentially missing on older Android versions.
// Work around the issue by supplying our own variants.
// !!! DANGER !!!
// The logbl() implementation is taken from the latest bionic/, since
// double == long double on Android.
extern "C" long double logbl(long double x) { return logb(x); }
// __aeabi_idiv0 is a missing function in libcompiler_rt.so, so we just
// pick the simplest implementation based on the ARM EABI doc.
extern "C" int __aeabi_idiv0(int v) { return v; }
#endif // compatibility lib