#include "rs_core.rsh" #include "rs_f16_util.h" extern float2 __attribute__((overloadable)) convert_float2(int2 c); extern float3 __attribute__((overloadable)) convert_float3(int3 c); extern float4 __attribute__((overloadable)) convert_float4(int4 c); extern int2 __attribute__((overloadable)) convert_int2(float2 c); extern int3 __attribute__((overloadable)) convert_int3(float3 c); extern int4 __attribute__((overloadable)) convert_int4(float4 c); extern float __attribute__((overloadable)) fmin(float v, float v2); extern float2 __attribute__((overloadable)) fmin(float2 v, float v2); extern float3 __attribute__((overloadable)) fmin(float3 v, float v2); extern float4 __attribute__((overloadable)) fmin(float4 v, float v2); extern float __attribute__((overloadable)) fmax(float v, float v2); extern float2 __attribute__((overloadable)) fmax(float2 v, float v2); extern float3 __attribute__((overloadable)) fmax(float3 v, float v2); extern float4 __attribute__((overloadable)) fmax(float4 v, float v2); // Float ops, 6.11.2 #define FN_FUNC_FN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v) { \ float2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v) { \ float3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v) { \ float4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define IN_FUNC_FN(fnc) \ extern int2 __attribute__((overloadable)) fnc(float2 v) { \ int2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern int3 __attribute__((overloadable)) fnc(float3 v) { \ int3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern int4 __attribute__((overloadable)) fnc(float4 v) { \ int4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define FN_FUNC_FN_FN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, float2 v2) { \ float2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, float3 v2) { \ float3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, float4 v2) { \ float4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define FN_FUNC_FN_F(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, float v2) { \ float2 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, float v2) { \ float3 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, float v2) { \ float4 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ r.w = fnc(v1.w, v2); \ return r; \ } #define FN_FUNC_FN_IN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 v2) { \ float2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 v2) { \ float3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 v2) { \ float4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define FN_FUNC_FN_I(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int v2) { \ float2 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int v2) { \ float3 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int v2) { \ float4 r; \ r.x = fnc(v1.x, v2); \ r.y = fnc(v1.y, v2); \ r.z = fnc(v1.z, v2); \ r.w = fnc(v1.w, v2); \ return r; \ } #define FN_FUNC_FN_PFN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 *v2) { \ float2 r; \ float t[2]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ v2->x = t[0]; \ v2->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 *v2) { \ float3 r; \ float t[3]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 *v2) { \ float4 r; \ float t[4]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ r.w = fnc(v1.w, &t[3]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ v2->w = t[3]; \ return r; \ } #define FN_FUNC_FN_PIN(fnc) \ extern float2 __attribute__((overloadable)) fnc(float2 v1, int2 *v2) { \ float2 r; \ int t[2]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ v2->x = t[0]; \ v2->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) fnc(float3 v1, int3 *v2) { \ float3 r; \ int t[3]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) fnc(float4 v1, int4 *v2) { \ float4 r; \ int t[4]; \ r.x = fnc(v1.x, &t[0]); \ r.y = fnc(v1.y, &t[1]); \ r.z = fnc(v1.z, &t[2]); \ r.w = fnc(v1.w, &t[3]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ v2->w = t[3]; \ return r; \ } #define FN_FUNC_FN_FN_FN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 v2, float2 v3) { \ float2 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 v2, float3 v3) { \ float3 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ r.z = fnc(v1.z, v2.z, v3.z); \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 v2, float4 v3) { \ float4 r; \ r.x = fnc(v1.x, v2.x, v3.x); \ r.y = fnc(v1.y, v2.y, v3.y); \ r.z = fnc(v1.z, v2.z, v3.z); \ r.w = fnc(v1.w, v2.w, v3.w); \ return r; \ } #define FN_FUNC_FN_FN_PIN(fnc) \ extern float2 __attribute__((overloadable)) \ fnc(float2 v1, float2 v2, int2 *v3) { \ float2 r; \ int t[2]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ v3->x = t[0]; \ v3->y = t[1]; \ return r; \ } \ extern float3 __attribute__((overloadable)) \ fnc(float3 v1, float3 v2, int3 *v3) { \ float3 r; \ int t[3]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ r.z = fnc(v1.z, v2.z, &t[2]); \ v3->x = t[0]; \ v3->y = t[1]; \ v3->z = t[2]; \ return r; \ } \ extern float4 __attribute__((overloadable)) \ fnc(float4 v1, float4 v2, int4 *v3) { \ float4 r; \ int t[4]; \ r.x = fnc(v1.x, v2.x, &t[0]); \ r.y = fnc(v1.y, v2.y, &t[1]); \ r.z = fnc(v1.z, v2.z, &t[2]); \ r.w = fnc(v1.w, v2.w, &t[3]); \ v3->x = t[0]; \ v3->y = t[1]; \ v3->z = t[2]; \ v3->w = t[3]; \ return r; \ } static const unsigned int iposinf = 0x7f800000; static const unsigned int ineginf = 0xff800000; static float posinf() { float f = *((float*)&iposinf); return f; } static unsigned int float_bits(float f) { /* TODO(jeanluc) Use this better approach once the Mac(SDK) build issues are fixed. // Get the bits while following the strict aliasing rules. unsigned int result; memcpy(&result, &f, sizeof(f)); return result; */ return *(unsigned int*)(char*)(&f); } static bool isinf(float f) { unsigned int i = float_bits(f); return (i == iposinf) || (i == ineginf); } static bool isnan(float f) { unsigned int i = float_bits(f); return (((i & 0x7f800000) == 0x7f800000) && (i & 0x007fffff)); } static bool isposzero(float f) { return (float_bits(f) == 0x00000000); } static bool isnegzero(float f) { return (float_bits(f) == 0x80000000); } static bool iszero(float f) { return isposzero(f) || isnegzero(f); } extern float __attribute__((overloadable)) SC_acosf(float); float __attribute__((overloadable)) acos(float v) { return SC_acosf(v); } FN_FUNC_FN(acos) extern float __attribute__((overloadable)) SC_acoshf(float); float __attribute__((overloadable)) acosh(float v) { return SC_acoshf(v); } FN_FUNC_FN(acosh) extern float __attribute__((overloadable)) acospi(float v) { return acos(v) / M_PI; } FN_FUNC_FN(acospi) extern float __attribute__((overloadable)) SC_asinf(float); float __attribute__((overloadable)) asin(float v) { return SC_asinf(v); } FN_FUNC_FN(asin) extern float __attribute__((overloadable)) SC_asinhf(float); float __attribute__((overloadable)) asinh(float v) { return SC_asinhf(v); } FN_FUNC_FN(asinh) extern float __attribute__((overloadable)) asinpi(float v) { return asin(v) / M_PI; } FN_FUNC_FN(asinpi) extern float __attribute__((overloadable)) SC_atanf(float); float __attribute__((overloadable)) atan(float v) { return SC_atanf(v); } FN_FUNC_FN(atan) extern float __attribute__((overloadable)) SC_atan2f(float, float); float __attribute__((overloadable)) atan2(float v1, float v2) { return SC_atan2f(v1, v2); } FN_FUNC_FN_FN(atan2) extern float __attribute__((overloadable)) SC_atanhf(float); float __attribute__((overloadable)) atanh(float v) { return SC_atanhf(v); } FN_FUNC_FN(atanh) extern float __attribute__((overloadable)) atanpi(float v) { return atan(v) / M_PI; } FN_FUNC_FN(atanpi) extern float __attribute__((overloadable)) atan2pi(float y, float x) { return atan2(y, x) / M_PI; } FN_FUNC_FN_FN(atan2pi) extern float __attribute__((overloadable)) SC_cbrtf(float); float __attribute__((overloadable)) cbrt(float v) { return SC_cbrtf(v); } FN_FUNC_FN(cbrt) extern float __attribute__((overloadable)) SC_ceilf(float); float __attribute__((overloadable)) ceil(float v) { return SC_ceilf(v); } FN_FUNC_FN(ceil) extern float __attribute__((overloadable)) SC_copysignf(float, float); float __attribute__((overloadable)) copysign(float v1, float v2) { return SC_copysignf(v1, v2); } FN_FUNC_FN_FN(copysign) extern float __attribute__((overloadable)) SC_cosf(float); float __attribute__((overloadable)) cos(float v) { return SC_cosf(v); } FN_FUNC_FN(cos) extern float __attribute__((overloadable)) SC_coshf(float); float __attribute__((overloadable)) cosh(float v) { return SC_coshf(v); } FN_FUNC_FN(cosh) extern float __attribute__((overloadable)) cospi(float v) { return cos(v * M_PI); } FN_FUNC_FN(cospi) extern float __attribute__((overloadable)) SC_erfcf(float); float __attribute__((overloadable)) erfc(float v) { return SC_erfcf(v); } FN_FUNC_FN(erfc) extern float __attribute__((overloadable)) SC_erff(float); float __attribute__((overloadable)) erf(float v) { return SC_erff(v); } FN_FUNC_FN(erf) extern float __attribute__((overloadable)) SC_expf(float); float __attribute__((overloadable)) exp(float v) { return SC_expf(v); } FN_FUNC_FN(exp) extern float __attribute__((overloadable)) SC_exp2f(float); float __attribute__((overloadable)) exp2(float v) { return SC_exp2f(v); } FN_FUNC_FN(exp2) extern float __attribute__((overloadable)) pow(float, float); extern float __attribute__((overloadable)) exp10(float v) { return exp2(v * 3.321928095f); } FN_FUNC_FN(exp10) extern float __attribute__((overloadable)) SC_expm1f(float); float __attribute__((overloadable)) expm1(float v) { return SC_expm1f(v); } FN_FUNC_FN(expm1) extern float __attribute__((overloadable)) fabs(float v) { int i = *((int*)(void*)&v) & 0x7fffffff; return *((float*)(void*)&i); } FN_FUNC_FN(fabs) extern float __attribute__((overloadable)) SC_fdimf(float, float); float __attribute__((overloadable)) fdim(float v1, float v2) { return SC_fdimf(v1, v2); } FN_FUNC_FN_FN(fdim) extern float __attribute__((overloadable)) SC_floorf(float); float __attribute__((overloadable)) floor(float v) { return SC_floorf(v); } FN_FUNC_FN(floor) extern float __attribute__((overloadable)) SC_fmaf(float, float, float); float __attribute__((overloadable)) fma(float v1, float v2, float v3) { return SC_fmaf(v1, v2, v3); } FN_FUNC_FN_FN_FN(fma) extern float __attribute__((overloadable)) SC_fminf(float, float); extern float __attribute__((overloadable)) SC_fmodf(float, float); float __attribute__((overloadable)) fmod(float v1, float v2) { return SC_fmodf(v1, v2); } FN_FUNC_FN_FN(fmod) extern float __attribute__((overloadable)) fract(float v, float *iptr) { int i = (int)floor(v); if (iptr) { iptr[0] = i; } return fmin(v - i, 0x1.fffffep-1f); } FN_FUNC_FN_PFN(fract) extern float __attribute__((const, overloadable)) fract(float v) { float unused; return fract(v, &unused); } FN_FUNC_FN(fract) extern float __attribute__((overloadable)) SC_frexpf(float, int *); float __attribute__((overloadable)) frexp(float v1, int* v2) { return SC_frexpf(v1, v2); } FN_FUNC_FN_PIN(frexp) extern float __attribute__((overloadable)) SC_hypotf(float, float); float __attribute__((overloadable)) hypot(float v1, float v2) { return SC_hypotf(v1, v2); } FN_FUNC_FN_FN(hypot) extern int __attribute__((overloadable)) SC_ilogbf(float); int __attribute__((overloadable)) ilogb(float v) { return SC_ilogbf(v); } IN_FUNC_FN(ilogb) extern float __attribute__((overloadable)) SC_ldexpf(float, int); float __attribute__((overloadable)) ldexp(float v1, int v2) { return SC_ldexpf(v1, v2); } FN_FUNC_FN_IN(ldexp) FN_FUNC_FN_I(ldexp) extern float __attribute__((overloadable)) SC_lgammaf(float); float __attribute__((overloadable)) lgamma(float v) { return SC_lgammaf(v); } FN_FUNC_FN(lgamma) extern float __attribute__((overloadable)) SC_lgammaf_r(float, int*); float __attribute__((overloadable)) lgamma(float v, int* ptr) { return SC_lgammaf_r(v, ptr); } FN_FUNC_FN_PIN(lgamma) extern float __attribute__((overloadable)) SC_logf(float); float __attribute__((overloadable)) log(float v) { return SC_logf(v); } FN_FUNC_FN(log) extern float __attribute__((overloadable)) SC_log10f(float); float __attribute__((overloadable)) log10(float v) { return SC_log10f(v); } FN_FUNC_FN(log10) extern float __attribute__((overloadable)) log2(float v) { return log10(v) * 3.321928095f; } FN_FUNC_FN(log2) extern float __attribute__((overloadable)) SC_log1pf(float); float __attribute__((overloadable)) log1p(float v) { return SC_log1pf(v); } FN_FUNC_FN(log1p) extern float __attribute__((overloadable)) SC_logbf(float); float __attribute__((overloadable)) logb(float v) { return SC_logbf(v); } FN_FUNC_FN(logb) extern float __attribute__((overloadable)) mad(float a, float b, float c) { return a * b + c; } extern float2 __attribute__((overloadable)) mad(float2 a, float2 b, float2 c) { return a * b + c; } extern float3 __attribute__((overloadable)) mad(float3 a, float3 b, float3 c) { return a * b + c; } extern float4 __attribute__((overloadable)) mad(float4 a, float4 b, float4 c) { return a * b + c; } extern float __attribute__((overloadable)) SC_modff(float, float *); float __attribute__((overloadable)) modf(float v1, float *v2) { return SC_modff(v1, v2); } FN_FUNC_FN_PFN(modf); extern float __attribute__((overloadable)) nan(uint v) { float f[1]; uint32_t *ip = (uint32_t *)f; *ip = v | 0x7fc00000; return f[0]; } extern float __attribute__((overloadable)) SC_nextafterf(float, float); float __attribute__((overloadable)) nextafter(float v1, float v2) { return SC_nextafterf(v1, v2); } FN_FUNC_FN_FN(nextafter) // This function must be defined here if we're compiling with debug info // (libclcore_g.bc), because we need a C source to get debug information. // Otherwise the implementation can be found in IR. #if defined(RS_G_RUNTIME) extern float __attribute__((overloadable)) SC_powf(float, float); float __attribute__((overloadable)) pow(float v1, float v2) { return SC_powf(v1, v2); } #endif // defined(RS_G_RUNTIME) FN_FUNC_FN_FN(pow) extern float __attribute__((overloadable)) pown(float v, int p) { /* The mantissa of a float has fewer bits than an int (24 effective vs. 31). * For very large ints, we'll lose whether the exponent is even or odd, making * the selection of a correct sign incorrect. We correct this. Use copysign * to handle the negative zero case. */ float sign = (p & 0x1) ? copysign(1.f, v) : 1.f; float f = pow(v, (float)p); return copysign(f, sign); } FN_FUNC_FN_IN(pown) extern float __attribute__((overloadable)) powr(float v, float p) { return pow(v, p); } extern float2 __attribute__((overloadable)) powr(float2 v, float2 p) { return pow(v, p); } extern float3 __attribute__((overloadable)) powr(float3 v, float3 p) { return pow(v, p); } extern float4 __attribute__((overloadable)) powr(float4 v, float4 p) { return pow(v, p); } extern float __attribute__((overloadable)) SC_remainderf(float, float); float __attribute__((overloadable)) remainder(float v1, float v2) { return SC_remainderf(v1, v2); } FN_FUNC_FN_FN(remainder) extern float __attribute__((overloadable)) SC_remquof(float, float, int *); float __attribute__((overloadable)) remquo(float v1, float v2, int *v3) { return SC_remquof(v1, v2, v3); } FN_FUNC_FN_FN_PIN(remquo) extern float __attribute__((overloadable)) SC_rintf(float); float __attribute__((overloadable)) rint(float v) { return SC_rintf(v); } FN_FUNC_FN(rint) extern float __attribute__((overloadable)) rootn(float v, int r) { if (r == 0) { return posinf(); } if (iszero(v)) { if (r < 0) { if (r & 1) { return copysign(posinf(), v); } else { return posinf(); } } else { if (r & 1) { return copysign(0.f, v); } else { return 0.f; } } } if (!isinf(v) && !isnan(v) && (v < 0.f)) { if (r & 1) { return (-1.f * pow(-1.f * v, 1.f / r)); } else { return nan(0); } } return pow(v, 1.f / r); } FN_FUNC_FN_IN(rootn); extern float __attribute__((overloadable)) SC_roundf(float); float __attribute__((overloadable)) round(float v) { return SC_roundf(v); } FN_FUNC_FN(round) extern float __attribute__((overloadable)) SC_randf2(float, float); float __attribute__((overloadable)) rsRand(float min, float max) { return SC_randf2(min, max); } extern float __attribute__((overloadable)) rsqrt(float v) { return 1.f / sqrt(v); } #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) // These functions must be defined here if we are not using the SSE // implementation, which includes when we are built as part of the // debug runtime (libclcore_debug.bc) or compiling with debug info. #if defined(RS_G_RUNTIME) extern float __attribute__((overloadable)) SC_sqrtf(float); float __attribute__((overloadable)) sqrt(float v) { return SC_sqrtf(v); } #endif // defined(RS_G_RUNTIME) FN_FUNC_FN(sqrt) #else extern float2 __attribute__((overloadable)) sqrt(float2); extern float3 __attribute__((overloadable)) sqrt(float3); extern float4 __attribute__((overloadable)) sqrt(float4); #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) FN_FUNC_FN(rsqrt) extern float __attribute__((overloadable)) SC_sinf(float); float __attribute__((overloadable)) sin(float v) { return SC_sinf(v); } FN_FUNC_FN(sin) extern float __attribute__((overloadable)) sincos(float v, float *cosptr) { *cosptr = cos(v); return sin(v); } extern float2 __attribute__((overloadable)) sincos(float2 v, float2 *cosptr) { *cosptr = cos(v); return sin(v); } extern float3 __attribute__((overloadable)) sincos(float3 v, float3 *cosptr) { *cosptr = cos(v); return sin(v); } extern float4 __attribute__((overloadable)) sincos(float4 v, float4 *cosptr) { *cosptr = cos(v); return sin(v); } extern float __attribute__((overloadable)) SC_sinhf(float); float __attribute__((overloadable)) sinh(float v) { return SC_sinhf(v); } FN_FUNC_FN(sinh) extern float __attribute__((overloadable)) sinpi(float v) { return sin(v * M_PI); } FN_FUNC_FN(sinpi) extern float __attribute__((overloadable)) SC_tanf(float); float __attribute__((overloadable)) tan(float v) { return SC_tanf(v); } FN_FUNC_FN(tan) extern float __attribute__((overloadable)) SC_tanhf(float); float __attribute__((overloadable)) tanh(float v) { return SC_tanhf(v); } FN_FUNC_FN(tanh) extern float __attribute__((overloadable)) tanpi(float v) { return tan(v * M_PI); } FN_FUNC_FN(tanpi) extern float __attribute__((overloadable)) SC_tgammaf(float); float __attribute__((overloadable)) tgamma(float v) { return SC_tgammaf(v); } FN_FUNC_FN(tgamma) extern float __attribute__((overloadable)) SC_truncf(float); float __attribute__((overloadable)) trunc(float v) { return SC_truncf(v); } FN_FUNC_FN(trunc) // Int ops (partial), 6.11.3 #define XN_FUNC_YN(typeout, fnc, typein) \ extern typeout __attribute__((overloadable)) fnc(typein); \ extern typeout##2 __attribute__((overloadable)) fnc(typein##2 v) { \ typeout##2 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ return r; \ } \ extern typeout##3 __attribute__((overloadable)) fnc(typein##3 v) { \ typeout##3 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ return r; \ } \ extern typeout##4 __attribute__((overloadable)) fnc(typein##4 v) { \ typeout##4 r; \ r.x = fnc(v.x); \ r.y = fnc(v.y); \ r.z = fnc(v.z); \ r.w = fnc(v.w); \ return r; \ } #define UIN_FUNC_IN(fnc) \ XN_FUNC_YN(uchar, fnc, char) \ XN_FUNC_YN(ushort, fnc, short) \ XN_FUNC_YN(uint, fnc, int) #define IN_FUNC_IN(fnc) \ XN_FUNC_YN(uchar, fnc, uchar) \ XN_FUNC_YN(char, fnc, char) \ XN_FUNC_YN(ushort, fnc, ushort) \ XN_FUNC_YN(short, fnc, short) \ XN_FUNC_YN(uint, fnc, uint) \ XN_FUNC_YN(int, fnc, int) #define XN_FUNC_XN_XN_BODY(type, fnc, body) \ extern type __attribute__((overloadable)) \ fnc(type v1, type v2) { \ return body; \ } \ extern type##2 __attribute__((overloadable)) \ fnc(type##2 v1, type##2 v2) { \ type##2 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ return r; \ } \ extern type##3 __attribute__((overloadable)) \ fnc(type##3 v1, type##3 v2) { \ type##3 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ return r; \ } \ extern type##4 __attribute__((overloadable)) \ fnc(type##4 v1, type##4 v2) { \ type##4 r; \ r.x = fnc(v1.x, v2.x); \ r.y = fnc(v1.y, v2.y); \ r.z = fnc(v1.z, v2.z); \ r.w = fnc(v1.w, v2.w); \ return r; \ } #define IN_FUNC_IN_IN_BODY(fnc, body) \ XN_FUNC_XN_XN_BODY(uchar, fnc, body) \ XN_FUNC_XN_XN_BODY(char, fnc, body) \ XN_FUNC_XN_XN_BODY(ushort, fnc, body) \ XN_FUNC_XN_XN_BODY(short, fnc, body) \ XN_FUNC_XN_XN_BODY(uint, fnc, body) \ XN_FUNC_XN_XN_BODY(int, fnc, body) \ XN_FUNC_XN_XN_BODY(float, fnc, body) /** * abs */ extern uint32_t __attribute__((overloadable)) abs(int32_t v) { if (v < 0) return -v; return v; } extern uint16_t __attribute__((overloadable)) abs(int16_t v) { if (v < 0) return -v; return v; } extern uint8_t __attribute__((overloadable)) abs(int8_t v) { if (v < 0) return -v; return v; } /** * clz * __builtin_clz only accepts a 32-bit unsigned int, so every input will be * expanded to 32 bits. For our smaller data types, we need to subtract off * these unused top bits (that will be always be composed of zeros). */ extern uint32_t __attribute__((overloadable)) clz(uint32_t v) { return __builtin_clz(v); } extern uint16_t __attribute__((overloadable)) clz(uint16_t v) { return __builtin_clz(v) - 16; } extern uint8_t __attribute__((overloadable)) clz(uint8_t v) { return __builtin_clz(v) - 24; } extern int32_t __attribute__((overloadable)) clz(int32_t v) { return __builtin_clz(v); } extern int16_t __attribute__((overloadable)) clz(int16_t v) { return __builtin_clz(((uint32_t)v) & 0x0000ffff) - 16; } extern int8_t __attribute__((overloadable)) clz(int8_t v) { return __builtin_clz(((uint32_t)v) & 0x000000ff) - 24; } UIN_FUNC_IN(abs) IN_FUNC_IN(clz) // 6.11.4 extern float __attribute__((overloadable)) degrees(float radians) { return radians * (180.f / M_PI); } extern float2 __attribute__((overloadable)) degrees(float2 radians) { return radians * (180.f / M_PI); } extern float3 __attribute__((overloadable)) degrees(float3 radians) { return radians * (180.f / M_PI); } extern float4 __attribute__((overloadable)) degrees(float4 radians) { return radians * (180.f / M_PI); } extern float __attribute__((overloadable)) mix(float start, float stop, float amount) { return start + (stop - start) * amount; } extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float2 amount) { return start + (stop - start) * amount; } extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float3 amount) { return start + (stop - start) * amount; } extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float4 amount) { return start + (stop - start) * amount; } extern float2 __attribute__((overloadable)) mix(float2 start, float2 stop, float amount) { return start + (stop - start) * amount; } extern float3 __attribute__((overloadable)) mix(float3 start, float3 stop, float amount) { return start + (stop - start) * amount; } extern float4 __attribute__((overloadable)) mix(float4 start, float4 stop, float amount) { return start + (stop - start) * amount; } extern float __attribute__((overloadable)) radians(float degrees) { return degrees * (M_PI / 180.f); } extern float2 __attribute__((overloadable)) radians(float2 degrees) { return degrees * (M_PI / 180.f); } extern float3 __attribute__((overloadable)) radians(float3 degrees) { return degrees * (M_PI / 180.f); } extern float4 __attribute__((overloadable)) radians(float4 degrees) { return degrees * (M_PI / 180.f); } extern float __attribute__((overloadable)) step(float edge, float v) { return (v < edge) ? 0.f : 1.f; } extern float2 __attribute__((overloadable)) step(float2 edge, float2 v) { float2 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float3 edge, float3 v) { float3 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float4 edge, float4 v) { float4 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; r.w = (v.w < edge.w) ? 0.f : 1.f; return r; } extern float2 __attribute__((overloadable)) step(float2 edge, float v) { float2 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float3 edge, float v) { float3 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float4 edge, float v) { float4 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; r.w = (v < edge.w) ? 0.f : 1.f; return r; } extern float2 __attribute__((overloadable)) step(float edge, float2 v) { float2 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; return r; } extern float3 __attribute__((overloadable)) step(float edge, float3 v) { float3 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; return r; } extern float4 __attribute__((overloadable)) step(float edge, float4 v) { float4 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; r.w = (v.w < edge) ? 0.f : 1.f; return r; } extern float __attribute__((overloadable)) sign(float v) { if (v > 0) return 1.f; if (v < 0) return -1.f; return v; } FN_FUNC_FN(sign) // 6.11.5 extern float3 __attribute__((overloadable)) cross(float3 lhs, float3 rhs) { float3 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; return r; } extern float4 __attribute__((overloadable)) cross(float4 lhs, float4 rhs) { float4 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; r.w = 0.f; return r; } #if !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) // These functions must be defined here if we are not using the SSE // implementation, which includes when we are built as part of the // debug runtime (libclcore_debug.bc) or compiling with debug info. extern float __attribute__((overloadable)) dot(float lhs, float rhs) { return lhs * rhs; } extern float __attribute__((overloadable)) dot(float2 lhs, float2 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y; } extern float __attribute__((overloadable)) dot(float3 lhs, float3 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; } extern float __attribute__((overloadable)) dot(float4 lhs, float4 rhs) { return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z + lhs.w*rhs.w; } extern float __attribute__((overloadable)) length(float v) { return fabs(v); } extern float __attribute__((overloadable)) length(float2 v) { return sqrt(v.x*v.x + v.y*v.y); } extern float __attribute__((overloadable)) length(float3 v) { return sqrt(v.x*v.x + v.y*v.y + v.z*v.z); } extern float __attribute__((overloadable)) length(float4 v) { return sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); } #else extern float __attribute__((overloadable)) length(float v); extern float __attribute__((overloadable)) length(float2 v); extern float __attribute__((overloadable)) length(float3 v); extern float __attribute__((overloadable)) length(float4 v); #endif // !defined(ARCH_X86_HAVE_SSSE3) || defined(RS_DEBUG_RUNTIME) || defined(RS_G_RUNTIME) extern float __attribute__((overloadable)) distance(float lhs, float rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float2 lhs, float2 rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float3 lhs, float3 rhs) { return length(lhs - rhs); } extern float __attribute__((overloadable)) distance(float4 lhs, float4 rhs) { return length(lhs - rhs); } /* For the normalization functions, vectors of length 0 should simply be * returned (i.e. all the components of that vector are 0). */ extern float __attribute__((overloadable)) normalize(float v) { if (v == 0.0f) { return 0.0f; } else if (v < 0.0f) { return -1.0f; } else { return 1.0f; } } extern float2 __attribute__((overloadable)) normalize(float2 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float3 __attribute__((overloadable)) normalize(float3 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float4 __attribute__((overloadable)) normalize(float4 v) { float l = length(v); return l == 0.0f ? v : v / l; } extern float __attribute__((overloadable)) half_sqrt(float v) { return sqrt(v); } FN_FUNC_FN(half_sqrt) extern float __attribute__((overloadable)) fast_length(float v) { return fabs(v); } extern float __attribute__((overloadable)) fast_length(float2 v) { return half_sqrt(v.x*v.x + v.y*v.y); } extern float __attribute__((overloadable)) fast_length(float3 v) { return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z); } extern float __attribute__((overloadable)) fast_length(float4 v) { return half_sqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); } extern float __attribute__((overloadable)) fast_distance(float lhs, float rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float2 lhs, float2 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float3 lhs, float3 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) fast_distance(float4 lhs, float4 rhs) { return fast_length(lhs - rhs); } extern float __attribute__((overloadable)) half_rsqrt(float); /* For the normalization functions, vectors of length 0 should simply be * returned (i.e. all the components of that vector are 0). */ extern float __attribute__((overloadable)) fast_normalize(float v) { if (v == 0.0f) { return 0.0f; } else if (v < 0.0f) { return -1.0f; } else { return 1.0f; } } // If the length is 0, then rlength should be NaN. extern float2 __attribute__((overloadable)) fast_normalize(float2 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y); return (rlength == rlength) ? v * rlength : v; } extern float3 __attribute__((overloadable)) fast_normalize(float3 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z); return (rlength == rlength) ? v * rlength : v; } extern float4 __attribute__((overloadable)) fast_normalize(float4 v) { float rlength = half_rsqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); return (rlength == rlength) ? v * rlength : v; } extern float __attribute__((overloadable)) half_recip(float v) { return 1.f / v; } /* extern float __attribute__((overloadable)) approx_atan(float x) { if (x == 0.f) return 0.f; if (x < 0.f) return -1.f * approx_atan(-1.f * x); if (x > 1.f) return M_PI_2 - approx_atan(approx_recip(x)); return x * approx_recip(1.f + 0.28f * x*x); } FN_FUNC_FN(approx_atan) */ typedef union { float fv; int32_t iv; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.fv = (d); \ (i) = gf_u.iv; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.iv = (i); \ (d) = sf_u.fv; \ } while (0) // Valid -125 to 125 extern float __attribute__((overloadable)) native_exp2(float v) { int32_t iv = (int)v; int32_t x = iv + (iv >> 31); // ~floor(v) float r = (v - x); float fo; SET_FLOAT_WORD(fo, (x + 127) << 23); r *= 0.694f; // ~ log(e) / log(2) float r2 = r*r; float adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float2 __attribute__((overloadable)) native_exp2(float2 v) { int2 iv = convert_int2(v); int2 x = iv + (iv >> (int2)31);//floor(v); float2 r = (v - convert_float2(x)); x += 127; float2 fo = (float2)(x << (int2)23); r *= 0.694f; // ~ log(e) / log(2) float2 r2 = r*r; float2 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float4 __attribute__((overloadable)) native_exp2(float4 v) { int4 iv = convert_int4(v); int4 x = iv + (iv >> (int4)31);//floor(v); float4 r = (v - convert_float4(x)); x += 127; float4 fo = (float4)(x << (int4)23); r *= 0.694f; // ~ log(e) / log(2) float4 r2 = r*r; float4 adj = 1.f + r + (r2 * 0.5f) + (r2*r * 0.166666f) + (r2*r2 * 0.0416666f); return fo * adj; } extern float3 __attribute__((overloadable)) native_exp2(float3 v) { float4 t = 1.f; t.xyz = v; return native_exp2(t).xyz; } extern float __attribute__((overloadable)) native_exp(float v) { return native_exp2(v * 1.442695041f); } extern float2 __attribute__((overloadable)) native_exp(float2 v) { return native_exp2(v * 1.442695041f); } extern float3 __attribute__((overloadable)) native_exp(float3 v) { return native_exp2(v * 1.442695041f); } extern float4 __attribute__((overloadable)) native_exp(float4 v) { return native_exp2(v * 1.442695041f); } extern float __attribute__((overloadable)) native_exp10(float v) { return native_exp2(v * 3.321928095f); } extern float2 __attribute__((overloadable)) native_exp10(float2 v) { return native_exp2(v * 3.321928095f); } extern float3 __attribute__((overloadable)) native_exp10(float3 v) { return native_exp2(v * 3.321928095f); } extern float4 __attribute__((overloadable)) native_exp10(float4 v) { return native_exp2(v * 3.321928095f); } extern float __attribute__((overloadable)) native_log2(float v) { int32_t ibits; GET_FLOAT_WORD(ibits, v); int32_t e = (ibits >> 23) & 0xff; ibits &= 0x7fffff; ibits |= 127 << 23; float ir; SET_FLOAT_WORD(ir, ibits); ir -= 1.5f; float ir2 = ir*ir; float adj2 = (0.405465108f / 0.693147181f) + ((0.666666667f / 0.693147181f) * ir) - ((0.222222222f / 0.693147181f) * ir2) + ((0.098765432f / 0.693147181f) * ir*ir2) - ((0.049382716f / 0.693147181f) * ir2*ir2) + ((0.026337449f / 0.693147181f) * ir*ir2*ir2) - ((0.014631916f / 0.693147181f) * ir2*ir2*ir2); return (float)(e - 127) + adj2; } extern float2 __attribute__((overloadable)) native_log2(float2 v) { float2 v2 = {native_log2(v.x), native_log2(v.y)}; return v2; } extern float3 __attribute__((overloadable)) native_log2(float3 v) { float3 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z)}; return v2; } extern float4 __attribute__((overloadable)) native_log2(float4 v) { float4 v2 = {native_log2(v.x), native_log2(v.y), native_log2(v.z), native_log2(v.w)}; return v2; } extern float __attribute__((overloadable)) native_log(float v) { return native_log2(v) * (1.f / 1.442695041f); } extern float2 __attribute__((overloadable)) native_log(float2 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float3 __attribute__((overloadable)) native_log(float3 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float4 __attribute__((overloadable)) native_log(float4 v) { return native_log2(v) * (1.f / 1.442695041f); } extern float __attribute__((overloadable)) native_log10(float v) { return native_log2(v) * (1.f / 3.321928095f); } extern float2 __attribute__((overloadable)) native_log10(float2 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float3 __attribute__((overloadable)) native_log10(float3 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float4 __attribute__((overloadable)) native_log10(float4 v) { return native_log2(v) * (1.f / 3.321928095f); } extern float __attribute__((overloadable)) native_powr(float v, float y) { float v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float2 __attribute__((overloadable)) native_powr(float2 v, float2 y) { float2 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float3 __attribute__((overloadable)) native_powr(float3 v, float3 y) { float3 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern float4 __attribute__((overloadable)) native_powr(float4 v, float4 y) { float4 v2 = native_log2(v); v2 = fmax(v2 * y, -125.f); return native_exp2(v2); } extern double __attribute__((overloadable)) min(double v1, double v2) { return v1 < v2 ? v1 : v2; } extern double2 __attribute__((overloadable)) min(double2 v1, double2 v2) { double2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern double3 __attribute__((overloadable)) min(double3 v1, double3 v2) { double3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern double4 __attribute__((overloadable)) min(double4 v1, double4 v2) { double4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern long __attribute__((overloadable)) min(long v1, long v2) { return v1 < v2 ? v1 : v2; } extern long2 __attribute__((overloadable)) min(long2 v1, long2 v2) { long2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern long3 __attribute__((overloadable)) min(long3 v1, long3 v2) { long3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern long4 __attribute__((overloadable)) min(long4 v1, long4 v2) { long4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern ulong __attribute__((overloadable)) min(ulong v1, ulong v2) { return v1 < v2 ? v1 : v2; } extern ulong2 __attribute__((overloadable)) min(ulong2 v1, ulong2 v2) { ulong2 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; return r; } extern ulong3 __attribute__((overloadable)) min(ulong3 v1, ulong3 v2) { ulong3 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; return r; } extern ulong4 __attribute__((overloadable)) min(ulong4 v1, ulong4 v2) { ulong4 r; r.x = v1.x < v2.x ? v1.x : v2.x; r.y = v1.y < v2.y ? v1.y : v2.y; r.z = v1.z < v2.z ? v1.z : v2.z; r.w = v1.w < v2.w ? v1.w : v2.w; return r; } extern double __attribute__((overloadable)) max(double v1, double v2) { return v1 > v2 ? v1 : v2; } extern double2 __attribute__((overloadable)) max(double2 v1, double2 v2) { double2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern double3 __attribute__((overloadable)) max(double3 v1, double3 v2) { double3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern double4 __attribute__((overloadable)) max(double4 v1, double4 v2) { double4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } extern long __attribute__((overloadable)) max(long v1, long v2) { return v1 > v2 ? v1 : v2; } extern long2 __attribute__((overloadable)) max(long2 v1, long2 v2) { long2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern long3 __attribute__((overloadable)) max(long3 v1, long3 v2) { long3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern long4 __attribute__((overloadable)) max(long4 v1, long4 v2) { long4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } extern ulong __attribute__((overloadable)) max(ulong v1, ulong v2) { return v1 > v2 ? v1 : v2; } extern ulong2 __attribute__((overloadable)) max(ulong2 v1, ulong2 v2) { ulong2 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; return r; } extern ulong3 __attribute__((overloadable)) max(ulong3 v1, ulong3 v2) { ulong3 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; return r; } extern ulong4 __attribute__((overloadable)) max(ulong4 v1, ulong4 v2) { ulong4 r; r.x = v1.x > v2.x ? v1.x : v2.x; r.y = v1.y > v2.y ? v1.y : v2.y; r.z = v1.z > v2.z ? v1.z : v2.z; r.w = v1.w > v2.w ? v1.w : v2.w; return r; } #define THUNK_NATIVE_F(fn) \ float __attribute__((overloadable)) native_##fn(float v) { return fn(v);} \ float2 __attribute__((overloadable)) native_##fn(float2 v) { return fn(v);} \ float3 __attribute__((overloadable)) native_##fn(float3 v) { return fn(v);} \ float4 __attribute__((overloadable)) native_##fn(float4 v) { return fn(v);} #define THUNK_NATIVE_F_F(fn) \ float __attribute__((overloadable)) native_##fn(float v1, float v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 v2) { return fn(v1, v2);} #define THUNK_NATIVE_F_FP(fn) \ float __attribute__((overloadable)) native_##fn(float v1, float *v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, float2 *v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, float3 *v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, float4 *v2) { return fn(v1, v2);} #define THUNK_NATIVE_F_I(fn) \ float __attribute__((overloadable)) native_##fn(float v1, int v2) { return fn(v1, v2);} \ float2 __attribute__((overloadable)) native_##fn(float2 v1, int2 v2) { return fn(v1, v2);} \ float3 __attribute__((overloadable)) native_##fn(float3 v1, int3 v2) { return fn(v1, v2);} \ float4 __attribute__((overloadable)) native_##fn(float4 v1, int4 v2) { return fn(v1, v2);} THUNK_NATIVE_F(acos) THUNK_NATIVE_F(acosh) THUNK_NATIVE_F(acospi) THUNK_NATIVE_F(asin) THUNK_NATIVE_F(asinh) THUNK_NATIVE_F(asinpi) THUNK_NATIVE_F(atan) THUNK_NATIVE_F_F(atan2) THUNK_NATIVE_F(atanh) THUNK_NATIVE_F(atanpi) THUNK_NATIVE_F_F(atan2pi) THUNK_NATIVE_F(cbrt) THUNK_NATIVE_F(cos) THUNK_NATIVE_F(cosh) THUNK_NATIVE_F(cospi) THUNK_NATIVE_F(expm1) THUNK_NATIVE_F_F(hypot) THUNK_NATIVE_F(log1p) THUNK_NATIVE_F_I(rootn) THUNK_NATIVE_F(rsqrt) THUNK_NATIVE_F(sqrt) THUNK_NATIVE_F(sin) THUNK_NATIVE_F_FP(sincos) THUNK_NATIVE_F(sinh) THUNK_NATIVE_F(sinpi) THUNK_NATIVE_F(tan) THUNK_NATIVE_F(tanh) THUNK_NATIVE_F(tanpi) #undef THUNK_NATIVE_F #undef THUNK_NATIVE_F_F #undef THUNK_NATIVE_F_I #undef THUNK_NATIVE_F_FP float __attribute__((overloadable)) native_normalize(float v) { return fast_normalize(v);} float2 __attribute__((overloadable)) native_normalize(float2 v) { return fast_normalize(v);} float3 __attribute__((overloadable)) native_normalize(float3 v) { return fast_normalize(v);} float4 __attribute__((overloadable)) native_normalize(float4 v) { return fast_normalize(v);} float __attribute__((overloadable)) native_distance(float v1, float v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float2 v1, float2 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float3 v1, float3 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_distance(float4 v1, float4 v2) { return fast_distance(v1, v2);} float __attribute__((overloadable)) native_length(float v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float2 v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float3 v) { return fast_length(v);} float __attribute__((overloadable)) native_length(float4 v) { return fast_length(v);} float __attribute__((overloadable)) native_divide(float v1, float v2) { return v1 / v2;} float2 __attribute__((overloadable)) native_divide(float2 v1, float2 v2) { return v1 / v2;} float3 __attribute__((overloadable)) native_divide(float3 v1, float3 v2) { return v1 / v2;} float4 __attribute__((overloadable)) native_divide(float4 v1, float4 v2) { return v1 / v2;} float __attribute__((overloadable)) native_recip(float v) { return 1.f / v;} float2 __attribute__((overloadable)) native_recip(float2 v) { return ((float2)1.f) / v;} float3 __attribute__((overloadable)) native_recip(float3 v) { return ((float3)1.f) / v;} float4 __attribute__((overloadable)) native_recip(float4 v) { return ((float4)1.f) / v;} #undef FN_FUNC_FN #undef IN_FUNC_FN #undef FN_FUNC_FN_FN #undef FN_FUNC_FN_F #undef FN_FUNC_FN_IN #undef FN_FUNC_FN_I #undef FN_FUNC_FN_PFN #undef FN_FUNC_FN_PIN #undef FN_FUNC_FN_FN_FN #undef FN_FUNC_FN_FN_PIN #undef XN_FUNC_YN #undef UIN_FUNC_IN #undef IN_FUNC_IN #undef XN_FUNC_XN_XN_BODY #undef IN_FUNC_IN_IN_BODY static const unsigned short kHalfPositiveInfinity = 0x7c00; /* Define f16 functions of the form * HN output = fn(HN input) * where HN is scalar or vector half type */ #define HN_FUNC_HN(fn) \ extern half __attribute__((overloadable)) fn(half h) { \ return (half) fn((float) h); \ } \ extern half2 __attribute__((overloadable)) fn(half2 v) { \ return convert_half2(fn(convert_float2(v))); \ } \ extern half3 __attribute__((overloadable)) fn(half3 v) { \ return convert_half3(fn(convert_float3(v))); \ } \ extern half4 __attribute__((overloadable)) fn(half4 v) { \ return convert_half4(fn(convert_float4(v))); \ } /* Define f16 functions of the form * HN output = fn(HN input1, HN input2) * where HN is scalar or vector half type */ #define HN_FUNC_HN_HN(fn) \ extern half __attribute__((overloadable)) fn(half h1, half h2) { \ return (half) fn((float) h1, (float) h2); \ } \ extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ return convert_half2(fn(convert_float2(v1), \ convert_float2(v2))); \ } \ extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ return convert_half3(fn(convert_float3(v1), \ convert_float3(v2))); \ } \ extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ return convert_half4(fn(convert_float4(v1), \ convert_float4(v2))); \ } /* Define f16 functions of the form * HN output = fn(HN input1, half input2) * where HN is scalar or vector half type */ #define HN_FUNC_HN_H(fn) \ extern half2 __attribute__((overloadable)) fn(half2 v1, half v2) { \ return convert_half2(fn(convert_float2(v1), (float) v2)); \ } \ extern half3 __attribute__((overloadable)) fn(half3 v1, half v2) { \ return convert_half3(fn(convert_float3(v1), (float) v2)); \ } \ extern half4 __attribute__((overloadable)) fn(half4 v1, half v2) { \ return convert_half4(fn(convert_float4(v1), (float) v2)); \ } /* Define f16 functions of the form * HN output = fn(HN input1, HN input2, HN input3) * where HN is scalar or vector half type */ #define HN_FUNC_HN_HN_HN(fn) \ extern half __attribute__((overloadable)) fn(half h1, half h2, half h3) { \ return (half) fn((float) h1, (float) h2, (float) h3); \ } \ extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2, half2 v3) { \ return convert_half2(fn(convert_float2(v1), \ convert_float2(v2), \ convert_float2(v3))); \ } \ extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2, half3 v3) { \ return convert_half3(fn(convert_float3(v1), \ convert_float3(v2), \ convert_float3(v3))); \ } \ extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2, half4 v3) { \ return convert_half4(fn(convert_float4(v1), \ convert_float4(v2), \ convert_float4(v3))); \ } /* Define f16 functions of the form * HN output = fn(HN input1, IN input2) * where HN is scalar or vector half type and IN the equivalent integer type * of same vector length. */ #define HN_FUNC_HN_IN(fn) \ extern half __attribute__((overloadable)) fn(half h1, int v) { \ return (half) fn((float) h1, v); \ } \ extern half2 __attribute__((overloadable)) fn(half2 v1, int2 v2) { \ return convert_half2(fn(convert_float2(v1), v2)); \ } \ extern half3 __attribute__((overloadable)) fn(half3 v1, int3 v2) { \ return convert_half3(fn(convert_float3(v1), v2)); \ } \ extern half4 __attribute__((overloadable)) fn(half4 v1, int4 v2) { \ return convert_half4(fn(convert_float4(v1), v2)); \ } /* Define f16 functions of the form * half output = fn(HN input1) * where HN is a scalar or vector half type. */ #define H_FUNC_HN(fn) \ extern half __attribute__((overloadable)) fn(half h) { \ return (half) fn((float) h); \ } \ extern half __attribute__((overloadable)) fn(half2 v) { \ return fn(convert_float2(v)); \ } \ extern half __attribute__((overloadable)) fn(half3 v) { \ return fn(convert_float3(v)); \ } \ extern half __attribute__((overloadable)) fn(half4 v) { \ return fn(convert_float4(v)); \ } /* Define f16 functions of the form * half output = fn(HN input1, HN input2) * where HN is a scalar or vector half type. */ #define H_FUNC_HN_HN(fn) \ extern half __attribute__((overloadable)) fn(half h1, half h2) { \ return (half) fn((float) h1, (float) h2); \ } \ extern half __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ return fn(convert_float2(v1), convert_float2(v2)); \ } \ extern half __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ return fn(convert_float3(v1), convert_float3(v2)); \ } \ extern half __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ return fn(convert_float4(v1), convert_float4(v2)); \ } #define SCALARIZE_HN_FUNC_HN_PHN(fnc) \ extern half2 __attribute__((overloadable)) fnc(half2 v1, half2 *v2) { \ half2 ret; \ half t[2]; \ ret.x = fnc(v1.x, &t[0]); \ ret.y = fnc(v1.y, &t[1]); \ v2->x = t[0]; \ v2->y = t[1]; \ return ret; \ } \ extern half3 __attribute__((overloadable)) fnc(half3 v1, half3 *v2) { \ half3 ret; \ half t[3]; \ ret.x = fnc(v1.x, &t[0]); \ ret.y = fnc(v1.y, &t[1]); \ ret.z = fnc(v1.z, &t[2]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ return ret; \ } \ extern half4 __attribute__((overloadable)) fnc(half4 v1, half4 *v2) { \ half4 ret; \ half t[4]; \ ret.x = fnc(v1.x, &t[0]); \ ret.y = fnc(v1.y, &t[1]); \ ret.z = fnc(v1.z, &t[2]); \ ret.w = fnc(v1.w, &t[3]); \ v2->x = t[0]; \ v2->y = t[1]; \ v2->z = t[2]; \ v2->w = t[3]; \ return ret; \ } /* Define f16 functions of the form * HN output = fn(HN input1, HN input2) * where HN is a vector half type. The functions are defined to call the * scalar function of the same name. */ #define SCALARIZE_HN_FUNC_HN_HN(fn) \ extern half2 __attribute__((overloadable)) fn(half2 v1, half2 v2) { \ half2 ret; \ ret.x = fn(v1.x, v2.x); \ ret.y = fn(v1.y, v2.y); \ return ret; \ } \ extern half3 __attribute__((overloadable)) fn(half3 v1, half3 v2) { \ half3 ret; \ ret.x = fn(v1.x, v2.x); \ ret.y = fn(v1.y, v2.y); \ ret.z = fn(v1.z, v2.z); \ return ret; \ } \ extern half4 __attribute__((overloadable)) fn(half4 v1, half4 v2) { \ half4 ret; \ ret.x = fn(v1.x, v2.x); \ ret.y = fn(v1.y, v2.y); \ ret.z = fn(v1.z, v2.z); \ ret.w = fn(v1.w, v2.w); \ return ret; \ } \ HN_FUNC_HN(acos); HN_FUNC_HN(acosh); HN_FUNC_HN(acospi); HN_FUNC_HN(asin); HN_FUNC_HN(asinh); HN_FUNC_HN(asinpi); HN_FUNC_HN(atan); HN_FUNC_HN(atanh); HN_FUNC_HN(atanpi); HN_FUNC_HN_HN(atan2); HN_FUNC_HN_HN(atan2pi); HN_FUNC_HN(cbrt); HN_FUNC_HN(ceil); extern half __attribute__((overloadable)) copysign(half x, half y); SCALARIZE_HN_FUNC_HN_HN(copysign); HN_FUNC_HN(cos); HN_FUNC_HN(cosh); HN_FUNC_HN(cospi); extern half3 __attribute__((overloadable)) cross(half3 lhs, half3 rhs) { half3 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; return r; } extern half4 __attribute__((overloadable)) cross(half4 lhs, half4 rhs) { half4 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; r.w = 0.f; return r; } HN_FUNC_HN(degrees); H_FUNC_HN_HN(distance); H_FUNC_HN_HN(dot); HN_FUNC_HN(erf); HN_FUNC_HN(erfc); HN_FUNC_HN(exp); HN_FUNC_HN(exp10); HN_FUNC_HN(exp2); HN_FUNC_HN(expm1); HN_FUNC_HN(fabs); HN_FUNC_HN_HN(fdim); HN_FUNC_HN(floor); HN_FUNC_HN_HN_HN(fma); HN_FUNC_HN_HN(fmax); HN_FUNC_HN_H(fmax); HN_FUNC_HN_HN(fmin); HN_FUNC_HN_H(fmin); HN_FUNC_HN_HN(fmod); extern half __attribute__((overloadable)) fract(half v, half *iptr) { // maxLessThanOne = 0.99951171875, the largest value < 1.0 half maxLessThanOne; SET_HALF_WORD(maxLessThanOne, 0x3bff); int i = (int) floor(v); if (iptr) { *iptr = i; } // return v - floor(v), if strictly less than one return fmin(v - i, maxLessThanOne); } SCALARIZE_HN_FUNC_HN_PHN(fract); extern half __attribute__((const, overloadable)) fract(half v) { half unused; return fract(v, &unused); } extern half2 __attribute__((const, overloadable)) fract(half2 v) { half2 unused; return fract(v, &unused); } extern half3 __attribute__((const, overloadable)) fract(half3 v) { half3 unused; return fract(v, &unused); } extern half4 __attribute__((const, overloadable)) fract(half4 v) { half4 unused; return fract(v, &unused); } extern half __attribute__((overloadable)) frexp(half x, int *eptr); extern half2 __attribute__((overloadable)) frexp(half2 v1, int2 *eptr) { half2 ret; int e[2]; ret.x = frexp(v1.x, &e[0]); ret.y = frexp(v1.y, &e[1]); eptr->x = e[0]; eptr->y = e[1]; return ret; } extern half3 __attribute__((overloadable)) frexp(half3 v1, int3 *eptr) { half3 ret; int e[3]; ret.x = frexp(v1.x, &e[0]); ret.y = frexp(v1.y, &e[1]); ret.z = frexp(v1.z, &e[2]); eptr->x = e[0]; eptr->y = e[1]; eptr->z = e[2]; return ret; } extern half4 __attribute__((overloadable)) frexp(half4 v1, int4 *eptr) { half4 ret; int e[4]; ret.x = frexp(v1.x, &e[0]); ret.y = frexp(v1.y, &e[1]); ret.z = frexp(v1.z, &e[2]); ret.w = frexp(v1.w, &e[3]); eptr->x = e[0]; eptr->y = e[1]; eptr->z = e[2]; eptr->w = e[3]; return ret; } HN_FUNC_HN_HN(hypot); extern int __attribute__((overloadable)) ilogb(half x); extern int2 __attribute__((overloadable)) ilogb(half2 v) { int2 ret; ret.x = ilogb(v.x); ret.y = ilogb(v.y); return ret; } extern int3 __attribute__((overloadable)) ilogb(half3 v) { int3 ret; ret.x = ilogb(v.x); ret.y = ilogb(v.y); ret.z = ilogb(v.z); return ret; } extern int4 __attribute__((overloadable)) ilogb(half4 v) { int4 ret; ret.x = ilogb(v.x); ret.y = ilogb(v.y); ret.z = ilogb(v.z); ret.w = ilogb(v.w); return ret; } HN_FUNC_HN_IN(ldexp); extern half2 __attribute__((overloadable)) ldexp(half2 v, int exponent) { return convert_half2(ldexp(convert_float2(v), exponent)); } extern half3 __attribute__((overloadable)) ldexp(half3 v, int exponent) { return convert_half3(ldexp(convert_float3(v), exponent)); } extern half4 __attribute__((overloadable)) ldexp(half4 v, int exponent) { return convert_half4(ldexp(convert_float4(v), exponent)); } H_FUNC_HN(length); HN_FUNC_HN(lgamma); extern half __attribute__((overloadable)) lgamma(half h, int *signp) { return (half) lgamma((float) h, signp); } extern half2 __attribute__((overloadable)) lgamma(half2 v, int2 *signp) { return convert_half2(lgamma(convert_float2(v), signp)); } extern half3 __attribute__((overloadable)) lgamma(half3 v, int3 *signp) { return convert_half3(lgamma(convert_float3(v), signp)); } extern half4 __attribute__((overloadable)) lgamma(half4 v, int4 *signp) { return convert_half4(lgamma(convert_float4(v), signp)); } HN_FUNC_HN(log); HN_FUNC_HN(log10); HN_FUNC_HN(log1p); HN_FUNC_HN(log2); HN_FUNC_HN(logb); HN_FUNC_HN_HN_HN(mad); HN_FUNC_HN_HN(max); HN_FUNC_HN_H(max); // TODO can this be arch-specific similar to _Z3maxDv2_ff? HN_FUNC_HN_HN(min); HN_FUNC_HN_H(min); // TODO can this be arch-specific similar to _Z3minDv2_ff? extern half __attribute__((overloadable)) mix(half start, half stop, half amount) { return start + (stop - start) * amount; } extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half2 amount) { return start + (stop - start) * amount; } extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half3 amount) { return start + (stop - start) * amount; } extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half4 amount) { return start + (stop - start) * amount; } extern half2 __attribute__((overloadable)) mix(half2 start, half2 stop, half amount) { return start + (stop - start) * amount; } extern half3 __attribute__((overloadable)) mix(half3 start, half3 stop, half amount) { return start + (stop - start) * amount; } extern half4 __attribute__((overloadable)) mix(half4 start, half4 stop, half amount) { return start + (stop - start) * amount; } extern half __attribute__((overloadable)) modf(half x, half *iptr); SCALARIZE_HN_FUNC_HN_PHN(modf); half __attribute__((overloadable)) nan_half() { unsigned short nan_short = kHalfPositiveInfinity | 0x0200; half nan; SET_HALF_WORD(nan, nan_short); return nan; } HN_FUNC_HN(normalize); extern half __attribute__((overloadable)) nextafter(half x, half y); SCALARIZE_HN_FUNC_HN_HN(nextafter); HN_FUNC_HN_HN(pow); HN_FUNC_HN_IN(pown); HN_FUNC_HN_HN(powr); HN_FUNC_HN(radians); HN_FUNC_HN_HN(remainder); extern half __attribute__((overloadable)) remquo(half n, half d, int *quo) { return (float) remquo((float) n, (float) d, quo); } extern half2 __attribute__((overloadable)) remquo(half2 n, half2 d, int2 *quo) { return convert_half2(remquo(convert_float2(d), convert_float2(n), quo)); } extern half3 __attribute__((overloadable)) remquo(half3 n, half3 d, int3 *quo) { return convert_half3(remquo(convert_float3(d), convert_float3(n), quo)); } extern half4 __attribute__((overloadable)) remquo(half4 n, half4 d, int4 *quo) { return convert_half4(remquo(convert_float4(d), convert_float4(n), quo)); } HN_FUNC_HN(rint); HN_FUNC_HN_IN(rootn); HN_FUNC_HN(round); HN_FUNC_HN(rsqrt); extern half __attribute__((overloadable)) sign(half h) { if (h > 0) return (half) 1.f; if (h < 0) return (half) -1.f; return h; } extern half2 __attribute__((overloadable)) sign(half2 v) { half2 ret; ret.x = sign(v.x); ret.y = sign(v.y); return ret; } extern half3 __attribute__((overloadable)) sign(half3 v) { half3 ret; ret.x = sign(v.x); ret.y = sign(v.y); ret.z = sign(v.z); return ret; } extern half4 __attribute__((overloadable)) sign(half4 v) { half4 ret; ret.x = sign(v.x); ret.y = sign(v.y); ret.z = sign(v.z); ret.w = sign(v.w); return ret; } HN_FUNC_HN(sin); extern half __attribute__((overloadable)) sincos(half v, half *cosptr) { *cosptr = cos(v); return sin(v); } // TODO verify if LLVM eliminates the duplicate convert_float2 extern half2 __attribute__((overloadable)) sincos(half2 v, half2 *cosptr) { *cosptr = cos(v); return sin(v); } extern half3 __attribute__((overloadable)) sincos(half3 v, half3 *cosptr) { *cosptr = cos(v); return sin(v); } extern half4 __attribute__((overloadable)) sincos(half4 v, half4 *cosptr) { *cosptr = cos(v); return sin(v); } HN_FUNC_HN(sinh); HN_FUNC_HN(sinpi); HN_FUNC_HN(sqrt); extern half __attribute__((overloadable)) step(half edge, half v) { return (v < edge) ? 0.f : 1.f; } extern half2 __attribute__((overloadable)) step(half2 edge, half2 v) { half2 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; return r; } extern half3 __attribute__((overloadable)) step(half3 edge, half3 v) { half3 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; return r; } extern half4 __attribute__((overloadable)) step(half4 edge, half4 v) { half4 r; r.x = (v.x < edge.x) ? 0.f : 1.f; r.y = (v.y < edge.y) ? 0.f : 1.f; r.z = (v.z < edge.z) ? 0.f : 1.f; r.w = (v.w < edge.w) ? 0.f : 1.f; return r; } extern half2 __attribute__((overloadable)) step(half2 edge, half v) { half2 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; return r; } extern half3 __attribute__((overloadable)) step(half3 edge, half v) { half3 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; return r; } extern half4 __attribute__((overloadable)) step(half4 edge, half v) { half4 r; r.x = (v < edge.x) ? 0.f : 1.f; r.y = (v < edge.y) ? 0.f : 1.f; r.z = (v < edge.z) ? 0.f : 1.f; r.w = (v < edge.w) ? 0.f : 1.f; return r; } extern half2 __attribute__((overloadable)) step(half edge, half2 v) { half2 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; return r; } extern half3 __attribute__((overloadable)) step(half edge, half3 v) { half3 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; return r; } extern half4 __attribute__((overloadable)) step(half edge, half4 v) { half4 r; r.x = (v.x < edge) ? 0.f : 1.f; r.y = (v.y < edge) ? 0.f : 1.f; r.z = (v.z < edge) ? 0.f : 1.f; r.w = (v.w < edge) ? 0.f : 1.f; return r; } HN_FUNC_HN(tan); HN_FUNC_HN(tanh); HN_FUNC_HN(tanpi); HN_FUNC_HN(tgamma); HN_FUNC_HN(trunc); // TODO: rethink: needs half-specific implementation? HN_FUNC_HN(native_acos); HN_FUNC_HN(native_acosh); HN_FUNC_HN(native_acospi); HN_FUNC_HN(native_asin); HN_FUNC_HN(native_asinh); HN_FUNC_HN(native_asinpi); HN_FUNC_HN(native_atan); HN_FUNC_HN(native_atanh); HN_FUNC_HN(native_atanpi); HN_FUNC_HN_HN(native_atan2); HN_FUNC_HN_HN(native_atan2pi); HN_FUNC_HN(native_cbrt); HN_FUNC_HN(native_cos); HN_FUNC_HN(native_cosh); HN_FUNC_HN(native_cospi); H_FUNC_HN_HN(native_distance); HN_FUNC_HN_HN(native_divide); HN_FUNC_HN(native_exp); HN_FUNC_HN(native_exp10); HN_FUNC_HN(native_exp2); HN_FUNC_HN(native_expm1); HN_FUNC_HN_HN(native_hypot); H_FUNC_HN(native_length); HN_FUNC_HN(native_log); HN_FUNC_HN(native_log10); HN_FUNC_HN(native_log1p); HN_FUNC_HN(native_log2); HN_FUNC_HN(native_normalize); HN_FUNC_HN_HN(native_powr); // TODO are parameter limits different for half? HN_FUNC_HN(native_recip); HN_FUNC_HN_IN(native_rootn); HN_FUNC_HN(native_rsqrt); HN_FUNC_HN(native_sin); extern half __attribute__((overloadable)) native_sincos(half v, half *cosptr) { return sincos(v, cosptr); } extern half2 __attribute__((overloadable)) native_sincos(half2 v, half2 *cosptr) { return sincos(v, cosptr); } extern half3 __attribute__((overloadable)) native_sincos(half3 v, half3 *cosptr) { return sincos(v, cosptr); } extern half4 __attribute__((overloadable)) native_sincos(half4 v, half4 *cosptr) { return sincos(v, cosptr); } HN_FUNC_HN(native_sinh); HN_FUNC_HN(native_sinpi); HN_FUNC_HN(native_sqrt); HN_FUNC_HN(native_tan); HN_FUNC_HN(native_tanh); HN_FUNC_HN(native_tanpi); #undef HN_FUNC_HN #undef HN_FUNC_HN_HN #undef HN_FUNC_HN_H #undef HN_FUNC_HN_HN_HN #undef HN_FUNC_HN_IN #undef H_FUNC_HN #undef H_FUNC_HN_HN #undef SCALARIZE_HN_FUNC_HN_HN // exports unavailable mathlib functions to compat lib #ifdef RS_COMPATIBILITY_LIB // !!! DANGER !!! // These functions are potentially missing on older Android versions. // Work around the issue by supplying our own variants. // !!! DANGER !!! // The logbl() implementation is taken from the latest bionic/, since // double == long double on Android. extern "C" long double logbl(long double x) { return logb(x); } // __aeabi_idiv0 is a missing function in libcompiler_rt.so, so we just // pick the simplest implementation based on the ARM EABI doc. extern "C" int __aeabi_idiv0(int v) { return v; } #endif // compatibility lib