/*
* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chia-I Wu <olv@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Ian Elliott <ian@LunarG.com>
* Author: Ian Elliott <ianelliott@google.com>
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Gwan-gyeong Mun <elongbug@gmail.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Bill Hollings <bill.hollings@brenwill.com>
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <signal.h>
#if defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_XCB_KHR)
#include <X11/Xutil.h>
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
#include <linux/input.h>
#endif
#ifdef _WIN32
#pragma comment(linker, "/subsystem:windows")
#define APP_NAME_STR_LEN 80
#endif // _WIN32
#if defined(VK_USE_PLATFORM_MIR_KHR)
#warning "Cube does not have code for Mir at this time"
#endif
#ifdef ANDROID
#include "vulkan_wrapper.h"
#else
#include <vulkan/vulkan.h>
#endif
#include <vulkan/vk_sdk_platform.h>
#include "linmath.h"
#include "gettime.h"
#include "inttypes.h"
#define MILLION 1000000L
#define BILLION 1000000000L
#define DEMO_TEXTURE_COUNT 1
#define APP_SHORT_NAME "cube"
#define APP_LONG_NAME "The Vulkan Cube Demo Program"
// Allow a maximum of two outstanding presentation operations.
#define FRAME_LAG 2
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#if defined(NDEBUG) && defined(__GNUC__)
#define U_ASSERT_ONLY __attribute__((unused))
#else
#define U_ASSERT_ONLY
#endif
#if defined(__GNUC__)
#define UNUSED __attribute__((unused))
#else
#define UNUSED
#endif
#ifdef _WIN32
bool in_callback = false;
#define ERR_EXIT(err_msg, err_class) \
do { \
if (!demo->suppress_popups) MessageBox(NULL, err_msg, err_class, MB_OK); \
exit(1); \
} while (0)
void DbgMsg(char *fmt, ...) {
va_list va;
va_start(va, fmt);
printf(fmt, va);
fflush(stdout);
va_end(va);
}
#elif defined __ANDROID__
#include <android/log.h>
#define ERR_EXIT(err_msg, err_class) \
do { \
((void)__android_log_print(ANDROID_LOG_INFO, "Cube", err_msg)); \
exit(1); \
} while (0)
#ifdef VARARGS_WORKS_ON_ANDROID
void DbgMsg(const char *fmt, ...) {
va_list va;
va_start(va, fmt);
__android_log_print(ANDROID_LOG_INFO, "Cube", fmt, va);
va_end(va);
}
#else // VARARGS_WORKS_ON_ANDROID
#define DbgMsg(fmt, ...) \
do { \
((void)__android_log_print(ANDROID_LOG_INFO, "Cube", fmt, ##__VA_ARGS__)); \
} while (0)
#endif // VARARGS_WORKS_ON_ANDROID
#else
#define ERR_EXIT(err_msg, err_class) \
do { \
printf("%s\n", err_msg); \
fflush(stdout); \
exit(1); \
} while (0)
void DbgMsg(char *fmt, ...) {
va_list va;
va_start(va, fmt);
printf(fmt, va);
fflush(stdout);
va_end(va);
}
#endif
#define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \
{ \
demo->fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \
if (demo->fp##entrypoint == NULL) { \
ERR_EXIT("vkGetInstanceProcAddr failed to find vk" #entrypoint, "vkGetInstanceProcAddr Failure"); \
} \
}
static PFN_vkGetDeviceProcAddr g_gdpa = NULL;
#define GET_DEVICE_PROC_ADDR(dev, entrypoint) \
{ \
if (!g_gdpa) g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(demo->inst, "vkGetDeviceProcAddr"); \
demo->fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \
if (demo->fp##entrypoint == NULL) { \
ERR_EXIT("vkGetDeviceProcAddr failed to find vk" #entrypoint, "vkGetDeviceProcAddr Failure"); \
} \
}
/*
* structure to track all objects related to a texture.
*/
struct texture_object {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkMemoryAllocateInfo mem_alloc;
VkDeviceMemory mem;
VkImageView view;
int32_t tex_width, tex_height;
};
static char *tex_files[] = {"lunarg.ppm"};
static int validation_error = 0;
struct vktexcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12 * 3][4];
float attr[12 * 3][4];
};
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
// clang-format off
static const float g_vertex_buffer_data[] = {
-1.0f,-1.0f,-1.0f, // -X side
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Z side
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Y side
1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, // +Y side
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f, // +X side
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f, // +Z side
-1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
};
static const float g_uv_buffer_data[] = {
0.0f, 1.0f, // -X side
1.0f, 1.0f,
1.0f, 0.0f,
1.0f, 0.0f,
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f, // -Z side
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f, // -Y side
1.0f, 1.0f,
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f, // +Y side
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f, // +X side
0.0f, 0.0f,
0.0f, 1.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 0.0f, // +Z side
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
};
// clang-format on
void dumpMatrix(const char *note, mat4x4 MVP) {
int i;
printf("%s: \n", note);
for (i = 0; i < 4; i++) {
printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]);
}
printf("\n");
fflush(stdout);
}
void dumpVec4(const char *note, vec4 vector) {
printf("%s: \n", note);
printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]);
printf("\n");
fflush(stdout);
}
VKAPI_ATTR VkBool32 VKAPI_CALL BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject,
size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg,
void *pUserData) {
#ifndef WIN32
raise(SIGTRAP);
#else
DebugBreak();
#endif
return false;
}
typedef struct {
VkImage image;
VkCommandBuffer cmd;
VkCommandBuffer graphics_to_present_cmd;
VkImageView view;
VkBuffer uniform_buffer;
VkDeviceMemory uniform_memory;
VkFramebuffer framebuffer;
VkDescriptorSet descriptor_set;
} SwapchainImageResources;
struct demo {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
#define APP_NAME_STR_LEN 80
HINSTANCE connection; // hInstance - Windows Instance
char name[APP_NAME_STR_LEN]; // Name to put on the window/icon
HWND window; // hWnd - window handle
POINT minsize; // minimum window size
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
Display *display;
Window xlib_window;
Atom xlib_wm_delete_window;
#elif defined(VK_USE_PLATFORM_XCB_KHR)
Display *display;
xcb_connection_t *connection;
xcb_screen_t *screen;
xcb_window_t xcb_window;
xcb_intern_atom_reply_t *atom_wm_delete_window;
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
struct wl_display *display;
struct wl_registry *registry;
struct wl_compositor *compositor;
struct wl_surface *window;
struct wl_shell *shell;
struct wl_shell_surface *shell_surface;
struct wl_seat *seat;
struct wl_pointer *pointer;
struct wl_keyboard *keyboard;
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
ANativeWindow *window;
#elif (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK))
void *window;
#endif
VkSurfaceKHR surface;
bool prepared;
bool use_staging_buffer;
bool separate_present_queue;
bool VK_KHR_incremental_present_enabled;
bool VK_GOOGLE_display_timing_enabled;
bool syncd_with_actual_presents;
uint64_t refresh_duration;
uint64_t refresh_duration_multiplier;
uint64_t target_IPD; // image present duration (inverse of frame rate)
uint64_t prev_desired_present_time;
uint32_t next_present_id;
uint32_t last_early_id; // 0 if no early images
uint32_t last_late_id; // 0 if no late images
VkInstance inst;
VkPhysicalDevice gpu;
VkDevice device;
VkQueue graphics_queue;
VkQueue present_queue;
uint32_t graphics_queue_family_index;
uint32_t present_queue_family_index;
VkSemaphore image_acquired_semaphores[FRAME_LAG];
VkSemaphore draw_complete_semaphores[FRAME_LAG];
VkSemaphore image_ownership_semaphores[FRAME_LAG];
VkPhysicalDeviceProperties gpu_props;
VkQueueFamilyProperties *queue_props;
VkPhysicalDeviceMemoryProperties memory_properties;
uint32_t enabled_extension_count;
uint32_t enabled_layer_count;
char *extension_names[64];
char *enabled_layers[64];
int width, height;
VkFormat format;
VkColorSpaceKHR color_space;
PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR;
PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR;
PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR;
PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR;
PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR;
PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR;
PFN_vkQueuePresentKHR fpQueuePresentKHR;
PFN_vkGetRefreshCycleDurationGOOGLE fpGetRefreshCycleDurationGOOGLE;
PFN_vkGetPastPresentationTimingGOOGLE fpGetPastPresentationTimingGOOGLE;
uint32_t swapchainImageCount;
VkSwapchainKHR swapchain;
SwapchainImageResources *swapchain_image_resources;
VkPresentModeKHR presentMode;
VkFence fences[FRAME_LAG];
int frame_index;
VkCommandPool cmd_pool;
VkCommandPool present_cmd_pool;
struct {
VkFormat format;
VkImage image;
VkMemoryAllocateInfo mem_alloc;
VkDeviceMemory mem;
VkImageView view;
} depth;
struct texture_object textures[DEMO_TEXTURE_COUNT];
struct texture_object staging_texture;
VkCommandBuffer cmd; // Buffer for initialization commands
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout desc_layout;
VkPipelineCache pipelineCache;
VkRenderPass render_pass;
VkPipeline pipeline;
mat4x4 projection_matrix;
mat4x4 view_matrix;
mat4x4 model_matrix;
float spin_angle;
float spin_increment;
bool pause;
VkShaderModule vert_shader_module;
VkShaderModule frag_shader_module;
VkDescriptorPool desc_pool;
bool quit;
int32_t curFrame;
int32_t frameCount;
bool validate;
bool validate_checks_disabled;
bool use_break;
bool suppress_popups;
PFN_vkCreateDebugReportCallbackEXT CreateDebugReportCallback;
PFN_vkDestroyDebugReportCallbackEXT DestroyDebugReportCallback;
VkDebugReportCallbackEXT msg_callback;
PFN_vkDebugReportMessageEXT DebugReportMessage;
uint32_t current_buffer;
uint32_t queue_family_count;
};
VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject, size_t location,
int32_t msgCode, const char *pLayerPrefix, const char *pMsg, void *pUserData) {
// clang-format off
char *message = (char *)malloc(strlen(pMsg) + 100);
assert(message);
if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
sprintf(message, "INFORMATION: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
} else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
sprintf(message, "WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
} else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) {
sprintf(message, "PERFORMANCE WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
} else if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
sprintf(message, "ERROR: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
} else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
sprintf(message, "DEBUG: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
} else {
sprintf(message, "INFORMATION: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
validation_error = 1;
}
#ifdef _WIN32
in_callback = true;
struct demo *demo = (struct demo*) pUserData;
if (!demo->suppress_popups)
MessageBox(NULL, message, "Alert", MB_OK);
in_callback = false;
#elif defined(ANDROID)
if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
__android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message);
} else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
__android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message);
} else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) {
__android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message);
} else if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
__android_log_print(ANDROID_LOG_ERROR, APP_SHORT_NAME, "%s", message);
} else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
__android_log_print(ANDROID_LOG_DEBUG, APP_SHORT_NAME, "%s", message);
} else {
__android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message);
}
#else
printf("%s\n", message);
fflush(stdout);
#endif
free(message);
// clang-format on
/*
* false indicates that layer should not bail-out of an
* API call that had validation failures. This may mean that the
* app dies inside the driver due to invalid parameter(s).
* That's what would happen without validation layers, so we'll
* keep that behavior here.
*/
return false;
}
bool ActualTimeLate(uint64_t desired, uint64_t actual, uint64_t rdur) {
// The desired time was the earliest time that the present should have
// occured. In almost every case, the actual time should be later than the
// desired time. We should only consider the actual time "late" if it is
// after "desired + rdur".
if (actual <= desired) {
// The actual time was before or equal to the desired time. This will
// probably never happen, but in case it does, return false since the
// present was obviously NOT late.
return false;
}
uint64_t deadline = actual + rdur;
if (actual > deadline) {
return true;
} else {
return false;
}
}
bool CanPresentEarlier(uint64_t earliest,
uint64_t actual,
uint64_t margin,
uint64_t rdur) {
if (earliest < actual) {
// Consider whether this present could have occured earlier. Make sure
// that earliest time was at least 2msec earlier than actual time, and
// that the margin was at least 2msec:
uint64_t diff = actual - earliest;
if ((diff >= (2 * MILLION)) && (margin >= (2 * MILLION))) {
// This present could have occured earlier because both: 1) the
// earliest time was at least 2 msec before actual time, and 2) the
// margin was at least 2msec.
return true;
}
}
return false;
}
// Forward declaration:
static void demo_resize(struct demo *demo);
static bool memory_type_from_properties(struct demo *demo, uint32_t typeBits,
VkFlags requirements_mask,
uint32_t *typeIndex) {
// Search memtypes to find first index with those properties
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((demo->memory_properties.memoryTypes[i].propertyFlags &
requirements_mask) == requirements_mask) {
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return false;
}
static void demo_flush_init_cmd(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
// This function could get called twice if the texture uses a staging buffer
// In that case the second call should be ignored
if (demo->cmd == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(demo->cmd);
assert(!err);
VkFence fence;
VkFenceCreateInfo fence_ci = {.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.pNext = NULL,
.flags = 0};
err = vkCreateFence(demo->device, &fence_ci, NULL, &fence);
assert(!err);
const VkCommandBuffer cmd_bufs[] = {demo->cmd};
VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = NULL,
.waitSemaphoreCount = 0,
.pWaitSemaphores = NULL,
.pWaitDstStageMask = NULL,
.commandBufferCount = 1,
.pCommandBuffers = cmd_bufs,
.signalSemaphoreCount = 0,
.pSignalSemaphores = NULL};
err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info, fence);
assert(!err);
err = vkWaitForFences(demo->device, 1, &fence, VK_TRUE, UINT64_MAX);
assert(!err);
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, cmd_bufs);
vkDestroyFence(demo->device, fence, NULL);
demo->cmd = VK_NULL_HANDLE;
}
static void demo_set_image_layout(struct demo *demo, VkImage image,
VkImageAspectFlags aspectMask,
VkImageLayout old_image_layout,
VkImageLayout new_image_layout,
VkAccessFlagBits srcAccessMask,
VkPipelineStageFlags src_stages,
VkPipelineStageFlags dest_stages) {
assert(demo->cmd);
VkImageMemoryBarrier image_memory_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = srcAccessMask,
.dstAccessMask = 0,
.oldLayout = old_image_layout,
.newLayout = new_image_layout,
.image = image,
.subresourceRange = {aspectMask, 0, 1, 0, 1}};
switch (new_image_layout) {
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
/* Make sure anything that was copying from this image has completed */
image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
image_memory_barrier.dstAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
image_memory_barrier.dstAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
image_memory_barrier.dstAccessMask =
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
image_memory_barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
break;
default:
image_memory_barrier.dstAccessMask = 0;
break;
}
VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier;
vkCmdPipelineBarrier(demo->cmd, src_stages, dest_stages, 0, 0, NULL, 0,
NULL, 1, pmemory_barrier);
}
static void demo_draw_build_cmd(struct demo *demo, VkCommandBuffer cmd_buf) {
const VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
.pInheritanceInfo = NULL,
};
const VkClearValue clear_values[2] = {
[0] = {.color.float32 = {0.2f, 0.2f, 0.2f, 0.2f}},
[1] = {.depthStencil = {1.0f, 0}},
};
const VkRenderPassBeginInfo rp_begin = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.framebuffer = demo->swapchain_image_resources[demo->current_buffer].framebuffer,
.renderArea.offset.x = 0,
.renderArea.offset.y = 0,
.renderArea.extent.width = demo->width,
.renderArea.extent.height = demo->height,
.clearValueCount = 2,
.pClearValues = clear_values,
};
VkResult U_ASSERT_ONLY err;
err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info);
assert(!err);
vkCmdBeginRenderPass(cmd_buf, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline);
vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS,
demo->pipeline_layout, 0, 1,
&demo->swapchain_image_resources[demo->current_buffer].descriptor_set,
0, NULL);
VkViewport viewport;
memset(&viewport, 0, sizeof(viewport));
viewport.height = (float)demo->height;
viewport.width = (float)demo->width;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
vkCmdSetViewport(cmd_buf, 0, 1, &viewport);
VkRect2D scissor;
memset(&scissor, 0, sizeof(scissor));
scissor.extent.width = demo->width;
scissor.extent.height = demo->height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(cmd_buf, 0, 1, &scissor);
vkCmdDraw(cmd_buf, 12 * 3, 1, 0, 0);
// Note that ending the renderpass changes the image's layout from
// COLOR_ATTACHMENT_OPTIMAL to PRESENT_SRC_KHR
vkCmdEndRenderPass(cmd_buf);
if (demo->separate_present_queue) {
// We have to transfer ownership from the graphics queue family to the
// present queue family to be able to present. Note that we don't have
// to transfer from present queue family back to graphics queue family at
// the start of the next frame because we don't care about the image's
// contents at that point.
VkImageMemoryBarrier image_ownership_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.srcQueueFamilyIndex = demo->graphics_queue_family_index,
.dstQueueFamilyIndex = demo->present_queue_family_index,
.image = demo->swapchain_image_resources[demo->current_buffer].image,
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}};
vkCmdPipelineBarrier(cmd_buf,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0,
0, NULL, 0, NULL, 1, &image_ownership_barrier);
}
err = vkEndCommandBuffer(cmd_buf);
assert(!err);
}
void demo_build_image_ownership_cmd(struct demo *demo, int i) {
VkResult U_ASSERT_ONLY err;
const VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
.pInheritanceInfo = NULL,
};
err = vkBeginCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd,
&cmd_buf_info);
assert(!err);
VkImageMemoryBarrier image_ownership_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.srcQueueFamilyIndex = demo->graphics_queue_family_index,
.dstQueueFamilyIndex = demo->present_queue_family_index,
.image = demo->swapchain_image_resources[i].image,
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}};
vkCmdPipelineBarrier(demo->swapchain_image_resources[i].graphics_to_present_cmd,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0,
NULL, 0, NULL, 1, &image_ownership_barrier);
err = vkEndCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd);
assert(!err);
}
void demo_update_data_buffer(struct demo *demo) {
mat4x4 MVP, Model, VP;
int matrixSize = sizeof(MVP);
uint8_t *pData;
VkResult U_ASSERT_ONLY err;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
// Rotate around the Y axis
mat4x4_dup(Model, demo->model_matrix);
mat4x4_rotate(demo->model_matrix, Model, 0.0f, 1.0f, 0.0f,
(float)degreesToRadians(demo->spin_angle));
mat4x4_mul(MVP, VP, demo->model_matrix);
err = vkMapMemory(demo->device,
demo->swapchain_image_resources[demo->current_buffer].uniform_memory, 0,
VK_WHOLE_SIZE, 0, (void **)&pData);
assert(!err);
memcpy(pData, (const void *)&MVP[0][0], matrixSize);
vkUnmapMemory(demo->device, demo->swapchain_image_resources[demo->current_buffer].uniform_memory);
}
void DemoUpdateTargetIPD(struct demo *demo) {
// Look at what happened to previous presents, and make appropriate
// adjustments in timing:
VkResult U_ASSERT_ONLY err;
VkPastPresentationTimingGOOGLE* past = NULL;
uint32_t count = 0;
err = demo->fpGetPastPresentationTimingGOOGLE(demo->device,
demo->swapchain,
&count,
NULL);
assert(!err);
if (count) {
past = (VkPastPresentationTimingGOOGLE*) malloc(sizeof(VkPastPresentationTimingGOOGLE) * count);
assert(past);
err = demo->fpGetPastPresentationTimingGOOGLE(demo->device,
demo->swapchain,
&count,
past);
assert(!err);
bool early = false;
bool late = false;
bool calibrate_next = false;
for (uint32_t i = 0 ; i < count ; i++) {
if (!demo->syncd_with_actual_presents) {
// This is the first time that we've received an
// actualPresentTime for this swapchain. In order to not
// perceive these early frames as "late", we need to sync-up
// our future desiredPresentTime's with the
// actualPresentTime(s) that we're receiving now.
calibrate_next = true;
// So that we don't suspect any pending presents as late,
// record them all as suspected-late presents:
demo->last_late_id = demo->next_present_id - 1;
demo->last_early_id = 0;
demo->syncd_with_actual_presents = true;
break;
} else if (CanPresentEarlier(past[i].earliestPresentTime,
past[i].actualPresentTime,
past[i].presentMargin,
demo->refresh_duration)) {
// This image could have been presented earlier. We don't want
// to decrease the target_IPD until we've seen early presents
// for at least two seconds.
if (demo->last_early_id == past[i].presentID) {
// We've now seen two seconds worth of early presents.
// Flag it as such, and reset the counter:
early = true;
demo->last_early_id = 0;
} else if (demo->last_early_id == 0) {
// This is the first early present we've seen.
// Calculate the presentID for two seconds from now.
uint64_t lastEarlyTime =
past[i].actualPresentTime + (2 * BILLION);
uint32_t howManyPresents =
(uint32_t)((lastEarlyTime - past[i].actualPresentTime) / demo->target_IPD);
demo->last_early_id = past[i].presentID + howManyPresents;
} else {
// We are in the midst of a set of early images,
// and so we won't do anything.
}
late = false;
demo->last_late_id = 0;
} else if (ActualTimeLate(past[i].desiredPresentTime,
past[i].actualPresentTime,
demo->refresh_duration)) {
// This image was presented after its desired time. Since
// there's a delay between calling vkQueuePresentKHR and when
// we get the timing data, several presents may have been late.
// Thus, we need to threat all of the outstanding presents as
// being likely late, so that we only increase the target_IPD
// once for all of those presents.
if ((demo->last_late_id == 0) ||
(demo->last_late_id < past[i].presentID)) {
late = true;
// Record the last suspected-late present:
demo->last_late_id = demo->next_present_id - 1;
} else {
// We are in the midst of a set of likely-late images,
// and so we won't do anything.
}
early = false;
demo->last_early_id = 0;
} else {
// Since this image was not presented early or late, reset
// any sets of early or late presentIDs:
early = false;
late = false;
calibrate_next = true;
demo->last_early_id = 0;
demo->last_late_id = 0;
}
}
if (early) {
// Since we've seen at least two-seconds worth of presnts that
// could have occured earlier than desired, let's decrease the
// target_IPD (i.e. increase the frame rate):
//
// TODO(ianelliott): Try to calculate a better target_IPD based
// on the most recently-seen present (this is overly-simplistic).
demo->refresh_duration_multiplier--;
if (demo->refresh_duration_multiplier == 0) {
// This should never happen, but in case it does, don't
// try to go faster.
demo->refresh_duration_multiplier = 1;
}
demo->target_IPD =
demo->refresh_duration * demo->refresh_duration_multiplier;
}
if (late) {
// Since we found a new instance of a late present, we want to
// increase the target_IPD (i.e. decrease the frame rate):
//
// TODO(ianelliott): Try to calculate a better target_IPD based
// on the most recently-seen present (this is overly-simplistic).
demo->refresh_duration_multiplier++;
demo->target_IPD =
demo->refresh_duration * demo->refresh_duration_multiplier;
}
if (calibrate_next) {
int64_t multiple = demo->next_present_id - past[count-1].presentID;
demo->prev_desired_present_time =
(past[count-1].actualPresentTime +
(multiple * demo->target_IPD));
}
}
}
static void demo_draw(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
// Ensure no more than FRAME_LAG renderings are outstanding
vkWaitForFences(demo->device, 1, &demo->fences[demo->frame_index], VK_TRUE, UINT64_MAX);
vkResetFences(demo->device, 1, &demo->fences[demo->frame_index]);
do {
// Get the index of the next available swapchain image:
err = demo->fpAcquireNextImageKHR(demo->device, demo->swapchain, UINT64_MAX,
demo->image_acquired_semaphores[demo->frame_index],
VK_NULL_HANDLE, &demo->current_buffer);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// demo->swapchain is out of date (e.g. the window was resized) and
// must be recreated:
demo_resize(demo);
} else if (err == VK_SUBOPTIMAL_KHR) {
// demo->swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
break;
} else {
assert(!err);
}
} while (err != VK_SUCCESS);
demo_update_data_buffer(demo);
if (demo->VK_GOOGLE_display_timing_enabled) {
// Look at what happened to previous presents, and make appropriate
// adjustments in timing:
DemoUpdateTargetIPD(demo);
// Note: a real application would position its geometry to that it's in
// the correct locatoin for when the next image is presented. It might
// also wait, so that there's less latency between any input and when
// the next image is rendered/presented. This demo program is so
// simple that it doesn't do either of those.
}
// Wait for the image acquired semaphore to be signaled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
VkPipelineStageFlags pipe_stage_flags;
VkSubmitInfo submit_info;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.pNext = NULL;
submit_info.pWaitDstStageMask = &pipe_stage_flags;
pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &demo->image_acquired_semaphores[demo->frame_index];
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &demo->swapchain_image_resources[demo->current_buffer].cmd;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &demo->draw_complete_semaphores[demo->frame_index];
err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info,
demo->fences[demo->frame_index]);
assert(!err);
if (demo->separate_present_queue) {
// If we are using separate queues, change image ownership to the
// present queue before presenting, waiting for the draw complete
// semaphore and signalling the ownership released semaphore when finished
VkFence nullFence = VK_NULL_HANDLE;
pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &demo->draw_complete_semaphores[demo->frame_index];
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers =
&demo->swapchain_image_resources[demo->current_buffer].graphics_to_present_cmd;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &demo->image_ownership_semaphores[demo->frame_index];
err = vkQueueSubmit(demo->present_queue, 1, &submit_info, nullFence);
assert(!err);
}
// If we are using separate queues we have to wait for image ownership,
// otherwise wait for draw complete
VkPresentInfoKHR present = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.pNext = NULL,
.waitSemaphoreCount = 1,
.pWaitSemaphores = (demo->separate_present_queue)
? &demo->image_ownership_semaphores[demo->frame_index]
: &demo->draw_complete_semaphores[demo->frame_index],
.swapchainCount = 1,
.pSwapchains = &demo->swapchain,
.pImageIndices = &demo->current_buffer,
};
if (demo->VK_KHR_incremental_present_enabled) {
// If using VK_KHR_incremental_present, we provide a hint of the region
// that contains changed content relative to the previously-presented
// image. The implementation can use this hint in order to save
// work/power (by only copying the region in the hint). The
// implementation is free to ignore the hint though, and so we must
// ensure that the entire image has the correctly-drawn content.
uint32_t eighthOfWidth = demo->width / 8;
uint32_t eighthOfHeight = demo->height / 8;
VkRectLayerKHR rect = {
.offset.x = eighthOfWidth,
.offset.y = eighthOfHeight,
.extent.width = eighthOfWidth * 6,
.extent.height = eighthOfHeight * 6,
.layer = 0,
};
VkPresentRegionKHR region = {
.rectangleCount = 1,
.pRectangles = &rect,
};
VkPresentRegionsKHR regions = {
.sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR,
.pNext = present.pNext,
.swapchainCount = present.swapchainCount,
.pRegions = ®ion,
};
present.pNext = ®ions;
}
if (demo->VK_GOOGLE_display_timing_enabled) {
VkPresentTimeGOOGLE ptime;
if (demo->prev_desired_present_time == 0) {
// This must be the first present for this swapchain.
//
// We don't know where we are relative to the presentation engine's
// display's refresh cycle. We also don't know how long rendering
// takes. Let's make a grossly-simplified assumption that the
// desiredPresentTime should be half way between now and
// now+target_IPD. We will adjust over time.
uint64_t curtime = getTimeInNanoseconds();
if (curtime == 0) {
// Since we didn't find out the current time, don't give a
// desiredPresentTime:
ptime.desiredPresentTime = 0;
} else {
ptime.desiredPresentTime = curtime + (demo->target_IPD >> 1);
}
} else {
ptime.desiredPresentTime = (demo->prev_desired_present_time +
demo->target_IPD);
}
ptime.presentID = demo->next_present_id++;
demo->prev_desired_present_time = ptime.desiredPresentTime;
VkPresentTimesInfoGOOGLE present_time = {
.sType = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE,
.pNext = present.pNext,
.swapchainCount = present.swapchainCount,
.pTimes = &ptime,
};
if (demo->VK_GOOGLE_display_timing_enabled) {
present.pNext = &present_time;
}
}
err = demo->fpQueuePresentKHR(demo->present_queue, &present);
demo->frame_index += 1;
demo->frame_index %= FRAME_LAG;
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// demo->swapchain is out of date (e.g. the window was resized) and
// must be recreated:
demo_resize(demo);
} else if (err == VK_SUBOPTIMAL_KHR) {
// demo->swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
} else {
assert(!err);
}
}
static void demo_prepare_buffers(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
VkSwapchainKHR oldSwapchain = demo->swapchain;
// Check the surface capabilities and formats
VkSurfaceCapabilitiesKHR surfCapabilities;
err = demo->fpGetPhysicalDeviceSurfaceCapabilitiesKHR(
demo->gpu, demo->surface, &surfCapabilities);
assert(!err);
uint32_t presentModeCount;
err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR(
demo->gpu, demo->surface, &presentModeCount, NULL);
assert(!err);
VkPresentModeKHR *presentModes =
(VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));
assert(presentModes);
err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR(
demo->gpu, demo->surface, &presentModeCount, presentModes);
assert(!err);
VkExtent2D swapchainExtent;
// width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF.
if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) {
// If the surface size is undefined, the size is set to the size
// of the images requested, which must fit within the minimum and
// maximum values.
swapchainExtent.width = demo->width;
swapchainExtent.height = demo->height;
if (swapchainExtent.width < surfCapabilities.minImageExtent.width) {
swapchainExtent.width = surfCapabilities.minImageExtent.width;
} else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) {
swapchainExtent.width = surfCapabilities.maxImageExtent.width;
}
if (swapchainExtent.height < surfCapabilities.minImageExtent.height) {
swapchainExtent.height = surfCapabilities.minImageExtent.height;
} else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) {
swapchainExtent.height = surfCapabilities.maxImageExtent.height;
}
} else {
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCapabilities.currentExtent;
demo->width = surfCapabilities.currentExtent.width;
demo->height = surfCapabilities.currentExtent.height;
}
// The FIFO present mode is guaranteed by the spec to be supported
// and to have no tearing. It's a great default present mode to use.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
// There are times when you may wish to use another present mode. The
// following code shows how to select them, and the comments provide some
// reasons you may wish to use them.
//
// It should be noted that Vulkan 1.0 doesn't provide a method for
// synchronizing rendering with the presentation engine's display. There
// is a method provided for throttling rendering with the display, but
// there are some presentation engines for which this method will not work.
// If an application doesn't throttle its rendering, and if it renders much
// faster than the refresh rate of the display, this can waste power on
// mobile devices. That is because power is being spent rendering images
// that may never be seen.
// VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about
// tearing, or have some way of synchronizing their rendering with the
// display.
// VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that
// generally render a new presentable image every refresh cycle, but are
// occasionally early. In this case, the application wants the new image
// to be displayed instead of the previously-queued-for-presentation image
// that has not yet been displayed.
// VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally
// render a new presentable image every refresh cycle, but are occasionally
// late. In this case (perhaps because of stuttering/latency concerns),
// the application wants the late image to be immediately displayed, even
// though that may mean some tearing.
if (demo->presentMode != swapchainPresentMode) {
for (size_t i = 0; i < presentModeCount; ++i) {
if (presentModes[i] == demo->presentMode) {
swapchainPresentMode = demo->presentMode;
break;
}
}
}
if (swapchainPresentMode != demo->presentMode) {
ERR_EXIT("Present mode specified is not supported\n", "Present mode unsupported");
}
// Determine the number of VkImages to use in the swap chain.
// Application desires to acquire 3 images at a time for triple
// buffering
uint32_t desiredNumOfSwapchainImages = 3;
if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) {
desiredNumOfSwapchainImages = surfCapabilities.minImageCount;
}
// If maxImageCount is 0, we can ask for as many images as we want;
// otherwise we're limited to maxImageCount
if ((surfCapabilities.maxImageCount > 0) &&
(desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumOfSwapchainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagsKHR preTransform;
if (surfCapabilities.supportedTransforms &
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
} else {
preTransform = surfCapabilities.currentTransform;
}
// Find a supported composite alpha mode - one of these is guaranteed to be set
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = {
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
};
for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) {
if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) {
compositeAlpha = compositeAlphaFlags[i];
break;
}
}
VkSwapchainCreateInfoKHR swapchain_ci = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = NULL,
.surface = demo->surface,
.minImageCount = desiredNumOfSwapchainImages,
.imageFormat = demo->format,
.imageColorSpace = demo->color_space,
.imageExtent =
{
.width = swapchainExtent.width, .height = swapchainExtent.height,
},
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.preTransform = preTransform,
.compositeAlpha = compositeAlpha,
.imageArrayLayers = 1,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.presentMode = swapchainPresentMode,
.oldSwapchain = oldSwapchain,
.clipped = true,
};
uint32_t i;
err = demo->fpCreateSwapchainKHR(demo->device, &swapchain_ci, NULL,
&demo->swapchain);
assert(!err);
// If we just re-created an existing swapchain, we should destroy the old
// swapchain at this point.
// Note: destroying the swapchain also cleans up all its associated
// presentable images once the platform is done with them.
if (oldSwapchain != VK_NULL_HANDLE) {
demo->fpDestroySwapchainKHR(demo->device, oldSwapchain, NULL);
}
err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain,
&demo->swapchainImageCount, NULL);
assert(!err);
VkImage *swapchainImages =
(VkImage *)malloc(demo->swapchainImageCount * sizeof(VkImage));
assert(swapchainImages);
err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain,
&demo->swapchainImageCount,
swapchainImages);
assert(!err);
demo->swapchain_image_resources = (SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) *
demo->swapchainImageCount);
assert(demo->swapchain_image_resources);
for (i = 0; i < demo->swapchainImageCount; i++) {
VkImageViewCreateInfo color_image_view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.format = demo->format,
.components =
{
.r = VK_COMPONENT_SWIZZLE_R,
.g = VK_COMPONENT_SWIZZLE_G,
.b = VK_COMPONENT_SWIZZLE_B,
.a = VK_COMPONENT_SWIZZLE_A,
},
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1},
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.flags = 0,
};
demo->swapchain_image_resources[i].image = swapchainImages[i];
color_image_view.image = demo->swapchain_image_resources[i].image;
err = vkCreateImageView(demo->device, &color_image_view, NULL,
&demo->swapchain_image_resources[i].view);
assert(!err);
}
if (demo->VK_GOOGLE_display_timing_enabled) {
VkRefreshCycleDurationGOOGLE rc_dur;
err = demo->fpGetRefreshCycleDurationGOOGLE(demo->device,
demo->swapchain,
&rc_dur);
assert(!err);
demo->refresh_duration = rc_dur.refreshDuration;
demo->syncd_with_actual_presents = false;
// Initially target 1X the refresh duration:
demo->target_IPD = demo->refresh_duration;
demo->refresh_duration_multiplier = 1;
demo->prev_desired_present_time = 0;
demo->next_present_id = 1;
}
if (NULL != presentModes) {
free(presentModes);
}
}
static void demo_prepare_depth(struct demo *demo) {
const VkFormat depth_format = VK_FORMAT_D16_UNORM;
const VkImageCreateInfo image = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = depth_format,
.extent = {demo->width, demo->height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
.flags = 0,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.format = depth_format,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1},
.flags = 0,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
};
VkMemoryRequirements mem_reqs;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
demo->depth.format = depth_format;
/* create image */
err = vkCreateImage(demo->device, &image, NULL, &demo->depth.image);
assert(!err);
vkGetImageMemoryRequirements(demo->device, demo->depth.image, &mem_reqs);
assert(!err);
demo->depth.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
demo->depth.mem_alloc.pNext = NULL;
demo->depth.mem_alloc.allocationSize = mem_reqs.size;
demo->depth.mem_alloc.memoryTypeIndex = 0;
pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&demo->depth.mem_alloc.memoryTypeIndex);
assert(pass);
/* allocate memory */
err = vkAllocateMemory(demo->device, &demo->depth.mem_alloc, NULL,
&demo->depth.mem);
assert(!err);
/* bind memory */
err =
vkBindImageMemory(demo->device, demo->depth.image, demo->depth.mem, 0);
assert(!err);
/* create image view */
view.image = demo->depth.image;
err = vkCreateImageView(demo->device, &view, NULL, &demo->depth.view);
assert(!err);
}
/* Load a ppm file into memory */
bool loadTexture(const char *filename, uint8_t *rgba_data,
VkSubresourceLayout *layout, int32_t *width, int32_t *height) {
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK))
filename =[[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent: @(filename)].UTF8String;
#endif
#ifdef __ANDROID__
#include <lunarg.ppm.h>
char *cPtr;
cPtr = (char*)lunarg_ppm;
if ((unsigned char*)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "P6\n", 3)) {
return false;
}
while(strncmp(cPtr++, "\n", 1));
sscanf(cPtr, "%u %u", width, height);
if (rgba_data == NULL) {
return true;
}
while(strncmp(cPtr++, "\n", 1));
if ((unsigned char*)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "255\n", 4)) {
return false;
}
while(strncmp(cPtr++, "\n", 1));
for (int y = 0; y < *height; y++) {
uint8_t *rowPtr = rgba_data;
for (int x = 0; x < *width; x++) {
memcpy(rowPtr, cPtr, 3);
rowPtr[3] = 255; /* Alpha of 1 */
rowPtr += 4;
cPtr += 3;
}
rgba_data += layout->rowPitch;
}
return true;
#else
FILE *fPtr = fopen(filename, "rb");
char header[256], *cPtr, *tmp;
if (!fPtr)
return false;
cPtr = fgets(header, 256, fPtr); // P6
if (cPtr == NULL || strncmp(header, "P6\n", 3)) {
fclose(fPtr);
return false;
}
do {
cPtr = fgets(header, 256, fPtr);
if (cPtr == NULL) {
fclose(fPtr);
return false;
}
} while (!strncmp(header, "#", 1));
sscanf(header, "%u %u", width, height);
if (rgba_data == NULL) {
fclose(fPtr);
return true;
}
tmp = fgets(header, 256, fPtr); // Format
(void)tmp;
if (cPtr == NULL || strncmp(header, "255\n", 3)) {
fclose(fPtr);
return false;
}
for (int y = 0; y < *height; y++) {
uint8_t *rowPtr = rgba_data;
for (int x = 0; x < *width; x++) {
size_t s = fread(rowPtr, 3, 1, fPtr);
(void)s;
rowPtr[3] = 255; /* Alpha of 1 */
rowPtr += 4;
}
rgba_data += layout->rowPitch;
}
fclose(fPtr);
return true;
#endif
}
static void demo_prepare_texture_image(struct demo *demo, const char *filename,
struct texture_object *tex_obj,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkFlags required_props) {
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
int32_t tex_width;
int32_t tex_height;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height)) {
ERR_EXIT("Failed to load textures", "Load Texture Failure");
}
tex_obj->tex_width = tex_width;
tex_obj->tex_height = tex_height;
const VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = tex_format,
.extent = {tex_width, tex_height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = tiling,
.usage = usage,
.flags = 0,
.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED,
};
VkMemoryRequirements mem_reqs;
err =
vkCreateImage(demo->device, &image_create_info, NULL, &tex_obj->image);
assert(!err);
vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs);
tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
tex_obj->mem_alloc.pNext = NULL;
tex_obj->mem_alloc.allocationSize = mem_reqs.size;
tex_obj->mem_alloc.memoryTypeIndex = 0;
pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits,
required_props,
&tex_obj->mem_alloc.memoryTypeIndex);
assert(pass);
/* allocate memory */
err = vkAllocateMemory(demo->device, &tex_obj->mem_alloc, NULL,
&(tex_obj->mem));
assert(!err);
/* bind memory */
err = vkBindImageMemory(demo->device, tex_obj->image, tex_obj->mem, 0);
assert(!err);
if (required_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
const VkImageSubresource subres = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.arrayLayer = 0,
};
VkSubresourceLayout layout;
void *data;
vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres,
&layout);
err = vkMapMemory(demo->device, tex_obj->mem, 0,
tex_obj->mem_alloc.allocationSize, 0, &data);
assert(!err);
if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) {
fprintf(stderr, "Error loading texture: %s\n", filename);
}
vkUnmapMemory(demo->device, tex_obj->mem);
}
tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
static void demo_destroy_texture_image(struct demo *demo,
struct texture_object *tex_objs) {
/* clean up staging resources */
vkFreeMemory(demo->device, tex_objs->mem, NULL);
vkDestroyImage(demo->device, tex_objs->image, NULL);
}
static void demo_prepare_textures(struct demo *demo) {
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
VkFormatProperties props;
uint32_t i;
vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
VkResult U_ASSERT_ONLY err;
if ((props.linearTilingFeatures &
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) &&
!demo->use_staging_buffer) {
/* Device can texture using linear textures */
demo_prepare_texture_image(
demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Nothing in the pipeline needs to be complete to start, and don't allow fragment
// shader to run until layout transition completes
demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED, demo->textures[i].imageLayout,
0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
demo->staging_texture.image = 0;
} else if (props.optimalTilingFeatures &
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) {
/* Must use staging buffer to copy linear texture to optimized */
memset(&demo->staging_texture, 0, sizeof(demo->staging_texture));
demo_prepare_texture_image(
demo, tex_files[i], &demo->staging_texture, VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
demo_prepare_texture_image(
demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_OPTIMAL,
(VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
demo_set_image_layout(demo, demo->staging_texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
0,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
0,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
VkImageCopy copy_region = {
.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
.srcOffset = {0, 0, 0},
.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
.dstOffset = {0, 0, 0},
.extent = {demo->staging_texture.tex_width,
demo->staging_texture.tex_height, 1},
};
vkCmdCopyImage(
demo->cmd, demo->staging_texture.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, demo->textures[i].image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
demo->textures[i].imageLayout,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
} else {
/* Can't support VK_FORMAT_R8G8B8A8_UNORM !? */
assert(!"No support for R8G8B8A8_UNORM as texture image format");
}
const VkSamplerCreateInfo sampler = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipLodBias = 0.0f,
.anisotropyEnable = VK_FALSE,
.maxAnisotropy = 1,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
.unnormalizedCoordinates = VK_FALSE,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = tex_format,
.components =
{
VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A,
},
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
.flags = 0,
};
/* create sampler */
err = vkCreateSampler(demo->device, &sampler, NULL,
&demo->textures[i].sampler);
assert(!err);
/* create image view */
view.image = demo->textures[i].image;
err = vkCreateImageView(demo->device, &view, NULL,
&demo->textures[i].view);
assert(!err);
}
}
void demo_prepare_cube_data_buffers(struct demo *demo) {
VkBufferCreateInfo buf_info;
VkMemoryRequirements mem_reqs;
VkMemoryAllocateInfo mem_alloc;
uint8_t *pData;
mat4x4 MVP, VP;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
struct vktexcube_vs_uniform data;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
mat4x4_mul(MVP, VP, demo->model_matrix);
memcpy(data.mvp, MVP, sizeof(MVP));
// dumpMatrix("MVP", MVP);
for (unsigned int i = 0; i < 12 * 3; i++) {
data.position[i][0] = g_vertex_buffer_data[i * 3];
data.position[i][1] = g_vertex_buffer_data[i * 3 + 1];
data.position[i][2] = g_vertex_buffer_data[i * 3 + 2];
data.position[i][3] = 1.0f;
data.attr[i][0] = g_uv_buffer_data[2 * i];
data.attr[i][1] = g_uv_buffer_data[2 * i + 1];
data.attr[i][2] = 0;
data.attr[i][3] = 0;
}
memset(&buf_info, 0, sizeof(buf_info));
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buf_info.size = sizeof(data);
for (unsigned int i = 0; i < demo->swapchainImageCount; i++) {
err =
vkCreateBuffer(demo->device, &buf_info, NULL,
&demo->swapchain_image_resources[i].uniform_buffer);
assert(!err);
vkGetBufferMemoryRequirements(demo->device,
demo->swapchain_image_resources[i].uniform_buffer,
&mem_reqs);
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.memoryTypeIndex = 0;
pass = memory_type_from_properties(
demo, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&mem_alloc.memoryTypeIndex);
assert(pass);
err = vkAllocateMemory(demo->device, &mem_alloc, NULL,
&demo->swapchain_image_resources[i].uniform_memory);
assert(!err);
err = vkMapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, 0,
VK_WHOLE_SIZE, 0, (void **)&pData);
assert(!err);
memcpy(pData, &data, sizeof data);
vkUnmapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory);
err = vkBindBufferMemory(demo->device, demo->swapchain_image_resources[i].uniform_buffer,
demo->swapchain_image_resources[i].uniform_memory, 0);
assert(!err);
}
}
static void demo_prepare_descriptor_layout(struct demo *demo) {
const VkDescriptorSetLayoutBinding layout_bindings[2] = {
[0] =
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
.pImmutableSamplers = NULL,
},
[1] =
{
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = DEMO_TEXTURE_COUNT,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL,
},
};
const VkDescriptorSetLayoutCreateInfo descriptor_layout = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = NULL,
.bindingCount = 2,
.pBindings = layout_bindings,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorSetLayout(demo->device, &descriptor_layout, NULL,
&demo->desc_layout);
assert(!err);
const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = NULL,
.setLayoutCount = 1,
.pSetLayouts = &demo->desc_layout,
};
err = vkCreatePipelineLayout(demo->device, &pPipelineLayoutCreateInfo, NULL,
&demo->pipeline_layout);
assert(!err);
}
static void demo_prepare_render_pass(struct demo *demo) {
// The initial layout for the color and depth attachments will be LAYOUT_UNDEFINED
// because at the start of the renderpass, we don't care about their contents.
// At the start of the subpass, the color attachment's layout will be transitioned
// to LAYOUT_COLOR_ATTACHMENT_OPTIMAL and the depth stencil attachment's layout
// will be transitioned to LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL. At the end of
// the renderpass, the color attachment's layout will be transitioned to
// LAYOUT_PRESENT_SRC_KHR to be ready to present. This is all done as part of
// the renderpass, no barriers are necessary.
const VkAttachmentDescription attachments[2] = {
[0] =
{
.format = demo->format,
.flags = 0,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
},
[1] =
{
.format = demo->depth.format,
.flags = 0,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout =
VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
};
const VkAttachmentReference color_reference = {
.attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkAttachmentReference depth_reference = {
.attachment = 1,
.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
};
const VkSubpassDescription subpass = {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.flags = 0,
.inputAttachmentCount = 0,
.pInputAttachments = NULL,
.colorAttachmentCount = 1,
.pColorAttachments = &color_reference,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &depth_reference,
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
};
const VkRenderPassCreateInfo rp_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.attachmentCount = 2,
.pAttachments = attachments,
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = NULL,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateRenderPass(demo->device, &rp_info, NULL, &demo->render_pass);
assert(!err);
}
static VkShaderModule demo_prepare_shader_module(struct demo *demo, const uint32_t *code, size_t size) {
VkShaderModule module;
VkShaderModuleCreateInfo moduleCreateInfo;
VkResult U_ASSERT_ONLY err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.flags = 0;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = code;
err = vkCreateShaderModule(demo->device, &moduleCreateInfo, NULL, &module);
assert(!err);
return module;
}
static void demo_prepare_vs(struct demo *demo) {
const uint32_t vs_code[] = {
#include "cube.vert.inc"
};
demo->vert_shader_module = demo_prepare_shader_module(demo, vs_code, sizeof(vs_code));
}
static void demo_prepare_fs(struct demo *demo) {
const uint32_t fs_code[] = {
#include "cube.frag.inc"
};
demo->frag_shader_module = demo_prepare_shader_module(demo, fs_code, sizeof(fs_code));
}
static void demo_prepare_pipeline(struct demo *demo) {
VkGraphicsPipelineCreateInfo pipeline;
VkPipelineCacheCreateInfo pipelineCache;
VkPipelineVertexInputStateCreateInfo vi;
VkPipelineInputAssemblyStateCreateInfo ia;
VkPipelineRasterizationStateCreateInfo rs;
VkPipelineColorBlendStateCreateInfo cb;
VkPipelineDepthStencilStateCreateInfo ds;
VkPipelineViewportStateCreateInfo vp;
VkPipelineMultisampleStateCreateInfo ms;
VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
VkPipelineDynamicStateCreateInfo dynamicState;
VkResult U_ASSERT_ONLY err;
memset(dynamicStateEnables, 0, sizeof dynamicStateEnables);
memset(&dynamicState, 0, sizeof dynamicState);
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pDynamicStates = dynamicStateEnables;
memset(&pipeline, 0, sizeof(pipeline));
pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline.layout = demo->pipeline_layout;
memset(&vi, 0, sizeof(vi));
vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_BACK_BIT;
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rs.depthClampEnable = VK_FALSE;
rs.rasterizerDiscardEnable = VK_FALSE;
rs.depthBiasEnable = VK_FALSE;
rs.lineWidth = 1.0f;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState att_state[1];
memset(att_state, 0, sizeof(att_state));
att_state[0].colorWriteMask = 0xf;
att_state[0].blendEnable = VK_FALSE;
cb.attachmentCount = 1;
cb.pAttachments = att_state;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] =
VK_DYNAMIC_STATE_VIEWPORT;
vp.scissorCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] =
VK_DYNAMIC_STATE_SCISSOR;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
ds.depthBoundsTestEnable = VK_FALSE;
ds.back.failOp = VK_STENCIL_OP_KEEP;
ds.back.passOp = VK_STENCIL_OP_KEEP;
ds.back.compareOp = VK_COMPARE_OP_ALWAYS;
ds.stencilTestEnable = VK_FALSE;
ds.front = ds.back;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms.pSampleMask = NULL;
ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
demo_prepare_vs(demo);
demo_prepare_fs(demo);
// Two stages: vs and fs
VkPipelineShaderStageCreateInfo shaderStages[2];
memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo));
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStages[0].module = demo->vert_shader_module;
shaderStages[0].pName = "main";
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStages[1].module = demo->frag_shader_module;
shaderStages[1].pName = "main";
memset(&pipelineCache, 0, sizeof(pipelineCache));
pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
err = vkCreatePipelineCache(demo->device, &pipelineCache, NULL,
&demo->pipelineCache);
assert(!err);
pipeline.pVertexInputState = &vi;
pipeline.pInputAssemblyState = &ia;
pipeline.pRasterizationState = &rs;
pipeline.pColorBlendState = &cb;
pipeline.pMultisampleState = &ms;
pipeline.pViewportState = &vp;
pipeline.pDepthStencilState = &ds;
pipeline.stageCount = ARRAY_SIZE(shaderStages);
pipeline.pStages = shaderStages;
pipeline.renderPass = demo->render_pass;
pipeline.pDynamicState = &dynamicState;
pipeline.renderPass = demo->render_pass;
err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1,
&pipeline, NULL, &demo->pipeline);
assert(!err);
vkDestroyShaderModule(demo->device, demo->frag_shader_module, NULL);
vkDestroyShaderModule(demo->device, demo->vert_shader_module, NULL);
}
static void demo_prepare_descriptor_pool(struct demo *demo) {
const VkDescriptorPoolSize type_counts[2] = {
[0] =
{
.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = demo->swapchainImageCount,
},
[1] =
{
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = demo->swapchainImageCount * DEMO_TEXTURE_COUNT,
},
};
const VkDescriptorPoolCreateInfo descriptor_pool = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.maxSets = demo->swapchainImageCount,
.poolSizeCount = 2,
.pPoolSizes = type_counts,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorPool(demo->device, &descriptor_pool, NULL,
&demo->desc_pool);
assert(!err);
}
static void demo_prepare_descriptor_set(struct demo *demo) {
VkDescriptorImageInfo tex_descs[DEMO_TEXTURE_COUNT];
VkWriteDescriptorSet writes[2];
VkResult U_ASSERT_ONLY err;
VkDescriptorSetAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = NULL,
.descriptorPool = demo->desc_pool,
.descriptorSetCount = 1,
.pSetLayouts = &demo->desc_layout};
VkDescriptorBufferInfo buffer_info;
buffer_info.offset = 0;
buffer_info.range = sizeof(struct vktexcube_vs_uniform);
memset(&tex_descs, 0, sizeof(tex_descs));
for (unsigned int i = 0; i < DEMO_TEXTURE_COUNT; i++) {
tex_descs[i].sampler = demo->textures[i].sampler;
tex_descs[i].imageView = demo->textures[i].view;
tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
memset(&writes, 0, sizeof(writes));
writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[0].descriptorCount = 1;
writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writes[0].pBufferInfo = &buffer_info;
writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[1].dstBinding = 1;
writes[1].descriptorCount = DEMO_TEXTURE_COUNT;
writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[1].pImageInfo = tex_descs;
for (unsigned int i = 0; i < demo->swapchainImageCount; i++) {
err = vkAllocateDescriptorSets(demo->device, &alloc_info, &demo->swapchain_image_resources[i].descriptor_set);
assert(!err);
buffer_info.buffer = demo->swapchain_image_resources[i].uniform_buffer;
writes[0].dstSet = demo->swapchain_image_resources[i].descriptor_set;
writes[1].dstSet = demo->swapchain_image_resources[i].descriptor_set;
vkUpdateDescriptorSets(demo->device, 2, writes, 0, NULL);
}
}
static void demo_prepare_framebuffers(struct demo *demo) {
VkImageView attachments[2];
attachments[1] = demo->depth.view;
const VkFramebufferCreateInfo fb_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.attachmentCount = 2,
.pAttachments = attachments,
.width = demo->width,
.height = demo->height,
.layers = 1,
};
VkResult U_ASSERT_ONLY err;
uint32_t i;
for (i = 0; i < demo->swapchainImageCount; i++) {
attachments[0] = demo->swapchain_image_resources[i].view;
err = vkCreateFramebuffer(demo->device, &fb_info, NULL,
&demo->swapchain_image_resources[i].framebuffer);
assert(!err);
}
}
static void demo_prepare(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
const VkCommandPoolCreateInfo cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = demo->graphics_queue_family_index,
.flags = 0,
};
err = vkCreateCommandPool(demo->device, &cmd_pool_info, NULL,
&demo->cmd_pool);
assert(!err);
const VkCommandBufferAllocateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = NULL,
.commandPool = demo->cmd_pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->cmd);
assert(!err);
VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = 0,
.pInheritanceInfo = NULL,
};
err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info);
assert(!err);
demo_prepare_buffers(demo);
demo_prepare_depth(demo);
demo_prepare_textures(demo);
demo_prepare_cube_data_buffers(demo);
demo_prepare_descriptor_layout(demo);
demo_prepare_render_pass(demo);
demo_prepare_pipeline(demo);
for (uint32_t i = 0; i < demo->swapchainImageCount; i++) {
err =
vkAllocateCommandBuffers(demo->device, &cmd, &demo->swapchain_image_resources[i].cmd);
assert(!err);
}
if (demo->separate_present_queue) {
const VkCommandPoolCreateInfo present_cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = demo->present_queue_family_index,
.flags = 0,
};
err = vkCreateCommandPool(demo->device, &present_cmd_pool_info, NULL,
&demo->present_cmd_pool);
assert(!err);
const VkCommandBufferAllocateInfo present_cmd_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = NULL,
.commandPool = demo->present_cmd_pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
for (uint32_t i = 0; i < demo->swapchainImageCount; i++) {
err = vkAllocateCommandBuffers(
demo->device, &present_cmd_info, &demo->swapchain_image_resources[i].graphics_to_present_cmd);
assert(!err);
demo_build_image_ownership_cmd(demo, i);
}
}
demo_prepare_descriptor_pool(demo);
demo_prepare_descriptor_set(demo);
demo_prepare_framebuffers(demo);
for (uint32_t i = 0; i < demo->swapchainImageCount; i++) {
demo->current_buffer = i;
demo_draw_build_cmd(demo, demo->swapchain_image_resources[i].cmd);
}
/*
* Prepare functions above may generate pipeline commands
* that need to be flushed before beginning the render loop.
*/
demo_flush_init_cmd(demo);
if (demo->staging_texture.image) {
demo_destroy_texture_image(demo, &demo->staging_texture);
}
demo->current_buffer = 0;
demo->prepared = true;
}
static void demo_cleanup(struct demo *demo) {
uint32_t i;
demo->prepared = false;
vkDeviceWaitIdle(demo->device);
// Wait for fences from present operations
for (i = 0; i < FRAME_LAG; i++) {
vkWaitForFences(demo->device, 1, &demo->fences[i], VK_TRUE, UINT64_MAX);
vkDestroyFence(demo->device, demo->fences[i], NULL);
vkDestroySemaphore(demo->device, demo->image_acquired_semaphores[i], NULL);
vkDestroySemaphore(demo->device, demo->draw_complete_semaphores[i], NULL);
if (demo->separate_present_queue) {
vkDestroySemaphore(demo->device, demo->image_ownership_semaphores[i], NULL);
}
}
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL);
}
vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL);
vkDestroyPipeline(demo->device, demo->pipeline, NULL);
vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL);
vkDestroyRenderPass(demo->device, demo->render_pass, NULL);
vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL);
vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyImageView(demo->device, demo->textures[i].view, NULL);
vkDestroyImage(demo->device, demo->textures[i].image, NULL);
vkFreeMemory(demo->device, demo->textures[i].mem, NULL);
vkDestroySampler(demo->device, demo->textures[i].sampler, NULL);
}
demo->fpDestroySwapchainKHR(demo->device, demo->swapchain, NULL);
vkDestroyImageView(demo->device, demo->depth.view, NULL);
vkDestroyImage(demo->device, demo->depth.image, NULL);
vkFreeMemory(demo->device, demo->depth.mem, NULL);
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL);
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1,
&demo->swapchain_image_resources[i].cmd);
vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL);
vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL);
}
free(demo->swapchain_image_resources);
free(demo->queue_props);
vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL);
if (demo->separate_present_queue) {
vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL);
}
vkDeviceWaitIdle(demo->device);
vkDestroyDevice(demo->device, NULL);
if (demo->validate) {
demo->DestroyDebugReportCallback(demo->inst, demo->msg_callback, NULL);
}
vkDestroySurfaceKHR(demo->inst, demo->surface, NULL);
#if defined(VK_USE_PLATFORM_XLIB_KHR)
XDestroyWindow(demo->display, demo->xlib_window);
XCloseDisplay(demo->display);
#elif defined(VK_USE_PLATFORM_XCB_KHR)
xcb_destroy_window(demo->connection, demo->xcb_window);
xcb_disconnect(demo->connection);
free(demo->atom_wm_delete_window);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
wl_keyboard_destroy(demo->keyboard);
wl_pointer_destroy(demo->pointer);
wl_seat_destroy(demo->seat);
wl_shell_surface_destroy(demo->shell_surface);
wl_surface_destroy(demo->window);
wl_shell_destroy(demo->shell);
wl_compositor_destroy(demo->compositor);
wl_registry_destroy(demo->registry);
wl_display_disconnect(demo->display);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#endif
vkDestroyInstance(demo->inst, NULL);
}
static void demo_resize(struct demo *demo) {
uint32_t i;
// Don't react to resize until after first initialization.
if (!demo->prepared) {
return;
}
// In order to properly resize the window, we must re-create the swapchain
// AND redo the command buffers, etc.
//
// First, perform part of the demo_cleanup() function:
demo->prepared = false;
vkDeviceWaitIdle(demo->device);
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL);
}
vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL);
vkDestroyPipeline(demo->device, demo->pipeline, NULL);
vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL);
vkDestroyRenderPass(demo->device, demo->render_pass, NULL);
vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL);
vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyImageView(demo->device, demo->textures[i].view, NULL);
vkDestroyImage(demo->device, demo->textures[i].image, NULL);
vkFreeMemory(demo->device, demo->textures[i].mem, NULL);
vkDestroySampler(demo->device, demo->textures[i].sampler, NULL);
}
vkDestroyImageView(demo->device, demo->depth.view, NULL);
vkDestroyImage(demo->device, demo->depth.image, NULL);
vkFreeMemory(demo->device, demo->depth.mem, NULL);
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL);
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1,
&demo->swapchain_image_resources[i].cmd);
vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL);
vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL);
}
vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL);
if (demo->separate_present_queue) {
vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL);
}
free(demo->swapchain_image_resources);
// Second, re-perform the demo_prepare() function, which will re-create the
// swapchain:
demo_prepare(demo);
}
// On MS-Windows, make this a global, so it's available to WndProc()
struct demo demo;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
static void demo_run(struct demo *demo) {
if (!demo->prepared)
return;
demo_draw(demo);
demo->curFrame++;
if (demo->frameCount != INT_MAX && demo->curFrame == demo->frameCount) {
PostQuitMessage(validation_error);
}
}
// MS-Windows event handling function:
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
switch (uMsg) {
case WM_CLOSE:
PostQuitMessage(validation_error);
break;
case WM_PAINT:
// The validation callback calls MessageBox which can generate paint
// events - don't make more Vulkan calls if we got here from the
// callback
if (!in_callback) {
demo_run(&demo);
}
break;
case WM_GETMINMAXINFO: // set window's minimum size
((MINMAXINFO*)lParam)->ptMinTrackSize = demo.minsize;
return 0;
case WM_SIZE:
// Resize the application to the new window size, except when
// it was minimized. Vulkan doesn't support images or swapchains
// with width=0 and height=0.
if (wParam != SIZE_MINIMIZED) {
demo.width = lParam & 0xffff;
demo.height = (lParam & 0xffff0000) >> 16;
demo_resize(&demo);
}
break;
default:
break;
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
static void demo_create_window(struct demo *demo) {
WNDCLASSEX win_class;
// Initialize the window class structure:
win_class.cbSize = sizeof(WNDCLASSEX);
win_class.style = CS_HREDRAW | CS_VREDRAW;
win_class.lpfnWndProc = WndProc;
win_class.cbClsExtra = 0;
win_class.cbWndExtra = 0;
win_class.hInstance = demo->connection; // hInstance
win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION);
win_class.hCursor = LoadCursor(NULL, IDC_ARROW);
win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
win_class.lpszMenuName = NULL;
win_class.lpszClassName = demo->name;
win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
// Register window class:
if (!RegisterClassEx(&win_class)) {
// It didn't work, so try to give a useful error:
printf("Unexpected error trying to start the application!\n");
fflush(stdout);
exit(1);
}
// Create window with the registered class:
RECT wr = {0, 0, demo->width, demo->height};
AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
demo->window = CreateWindowEx(0,
demo->name, // class name
demo->name, // app name
WS_OVERLAPPEDWINDOW | // window style
WS_VISIBLE | WS_SYSMENU,
100, 100, // x/y coords
wr.right - wr.left, // width
wr.bottom - wr.top, // height
NULL, // handle to parent
NULL, // handle to menu
demo->connection, // hInstance
NULL); // no extra parameters
if (!demo->window) {
// It didn't work, so try to give a useful error:
printf("Cannot create a window in which to draw!\n");
fflush(stdout);
exit(1);
}
// Window client area size must be at least 1 pixel high, to prevent crash.
demo->minsize.x = GetSystemMetrics(SM_CXMINTRACK);
demo->minsize.y = GetSystemMetrics(SM_CYMINTRACK)+1;
}
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
static void demo_create_xlib_window(struct demo *demo) {
XInitThreads();
demo->display = XOpenDisplay(NULL);
long visualMask = VisualScreenMask;
int numberOfVisuals;
XVisualInfo vInfoTemplate={};
vInfoTemplate.screen = DefaultScreen(demo->display);
XVisualInfo *visualInfo = XGetVisualInfo(demo->display, visualMask,
&vInfoTemplate, &numberOfVisuals);
Colormap colormap = XCreateColormap(
demo->display, RootWindow(demo->display, vInfoTemplate.screen),
visualInfo->visual, AllocNone);
XSetWindowAttributes windowAttributes={};
windowAttributes.colormap = colormap;
windowAttributes.background_pixel = 0xFFFFFFFF;
windowAttributes.border_pixel = 0;
windowAttributes.event_mask =
KeyPressMask | KeyReleaseMask | StructureNotifyMask | ExposureMask;
demo->xlib_window = XCreateWindow(
demo->display, RootWindow(demo->display, vInfoTemplate.screen), 0, 0,
demo->width, demo->height, 0, visualInfo->depth, InputOutput,
visualInfo->visual,
CWBackPixel | CWBorderPixel | CWEventMask | CWColormap, &windowAttributes);
XSelectInput(demo->display, demo->xlib_window, ExposureMask | KeyPressMask);
XMapWindow(demo->display, demo->xlib_window);
XFlush(demo->display);
demo->xlib_wm_delete_window =
XInternAtom(demo->display, "WM_DELETE_WINDOW", False);
}
static void demo_handle_xlib_event(struct demo *demo, const XEvent *event) {
switch(event->type) {
case ClientMessage:
if ((Atom)event->xclient.data.l[0] == demo->xlib_wm_delete_window)
demo->quit = true;
break;
case KeyPress:
switch (event->xkey.keycode) {
case 0x9: // Escape
demo->quit = true;
break;
case 0x71: // left arrow key
demo->spin_angle -= demo->spin_increment;
break;
case 0x72: // right arrow key
demo->spin_angle += demo->spin_increment;
break;
case 0x41: // space bar
demo->pause = !demo->pause;
break;
}
break;
case ConfigureNotify:
if ((demo->width != event->xconfigure.width) ||
(demo->height != event->xconfigure.height)) {
demo->width = event->xconfigure.width;
demo->height = event->xconfigure.height;
demo_resize(demo);
}
break;
default:
break;
}
}
static void demo_run_xlib(struct demo *demo) {
while (!demo->quit) {
XEvent event;
if (demo->pause) {
XNextEvent(demo->display, &event);
demo_handle_xlib_event(demo, &event);
}
while (XPending(demo->display) > 0) {
XNextEvent(demo->display, &event);
demo_handle_xlib_event(demo, &event);
}
demo_draw(demo);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount)
demo->quit = true;
}
}
#elif defined(VK_USE_PLATFORM_XCB_KHR)
static void demo_handle_xcb_event(struct demo *demo,
const xcb_generic_event_t *event) {
uint8_t event_code = event->response_type & 0x7f;
switch (event_code) {
case XCB_EXPOSE:
// TODO: Resize window
break;
case XCB_CLIENT_MESSAGE:
if ((*(xcb_client_message_event_t *)event).data.data32[0] ==
(*demo->atom_wm_delete_window).atom) {
demo->quit = true;
}
break;
case XCB_KEY_RELEASE: {
const xcb_key_release_event_t *key =
(const xcb_key_release_event_t *)event;
switch (key->detail) {
case 0x9: // Escape
demo->quit = true;
break;
case 0x71: // left arrow key
demo->spin_angle -= demo->spin_increment;
break;
case 0x72: // right arrow key
demo->spin_angle += demo->spin_increment;
break;
case 0x41: // space bar
demo->pause = !demo->pause;
break;
}
} break;
case XCB_CONFIGURE_NOTIFY: {
const xcb_configure_notify_event_t *cfg =
(const xcb_configure_notify_event_t *)event;
if ((demo->width != cfg->width) || (demo->height != cfg->height)) {
demo->width = cfg->width;
demo->height = cfg->height;
demo_resize(demo);
}
} break;
default:
break;
}
}
static void demo_run_xcb(struct demo *demo) {
xcb_flush(demo->connection);
while (!demo->quit) {
xcb_generic_event_t *event;
if (demo->pause) {
event = xcb_wait_for_event(demo->connection);
}
else {
event = xcb_poll_for_event(demo->connection);
}
while (event) {
demo_handle_xcb_event(demo, event);
free(event);
event = xcb_poll_for_event(demo->connection);
}
demo_draw(demo);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount)
demo->quit = true;
}
}
static void demo_create_xcb_window(struct demo *demo) {
uint32_t value_mask, value_list[32];
demo->xcb_window = xcb_generate_id(demo->connection);
value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
value_list[0] = demo->screen->black_pixel;
value_list[1] = XCB_EVENT_MASK_KEY_RELEASE | XCB_EVENT_MASK_EXPOSURE |
XCB_EVENT_MASK_STRUCTURE_NOTIFY;
xcb_create_window(demo->connection, XCB_COPY_FROM_PARENT, demo->xcb_window,
demo->screen->root, 0, 0, demo->width, demo->height, 0,
XCB_WINDOW_CLASS_INPUT_OUTPUT, demo->screen->root_visual,
value_mask, value_list);
/* Magic code that will send notification when window is destroyed */
xcb_intern_atom_cookie_t cookie =
xcb_intern_atom(demo->connection, 1, 12, "WM_PROTOCOLS");
xcb_intern_atom_reply_t *reply =
xcb_intern_atom_reply(demo->connection, cookie, 0);
xcb_intern_atom_cookie_t cookie2 =
xcb_intern_atom(demo->connection, 0, 16, "WM_DELETE_WINDOW");
demo->atom_wm_delete_window =
xcb_intern_atom_reply(demo->connection, cookie2, 0);
xcb_change_property(demo->connection, XCB_PROP_MODE_REPLACE, demo->xcb_window,
(*reply).atom, 4, 32, 1,
&(*demo->atom_wm_delete_window).atom);
free(reply);
xcb_map_window(demo->connection, demo->xcb_window);
// Force the x/y coordinates to 100,100 results are identical in consecutive
// runs
const uint32_t coords[] = {100, 100};
xcb_configure_window(demo->connection, demo->xcb_window,
XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y, coords);
}
// VK_USE_PLATFORM_XCB_KHR
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
static void demo_run(struct demo *demo) {
while (!demo->quit) {
if (demo->pause) {
wl_display_dispatch(demo->display); // block and wait for input
} else {
wl_display_dispatch_pending(demo->display); // don't block
demo_draw(demo);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) demo->quit = true;
}
}
}
static void handle_ping(void *data UNUSED,
struct wl_shell_surface *shell_surface,
uint32_t serial) {
wl_shell_surface_pong(shell_surface, serial);
}
static void handle_configure(void *data UNUSED,
struct wl_shell_surface *shell_surface UNUSED,
uint32_t edges UNUSED, int32_t width UNUSED,
int32_t height UNUSED) {}
static void handle_popup_done(void *data UNUSED,
struct wl_shell_surface *shell_surface UNUSED) {}
static const struct wl_shell_surface_listener shell_surface_listener = {
handle_ping, handle_configure, handle_popup_done};
static void demo_create_window(struct demo *demo) {
demo->window = wl_compositor_create_surface(demo->compositor);
if (!demo->window) {
printf("Can not create wayland_surface from compositor!\n");
fflush(stdout);
exit(1);
}
demo->shell_surface = wl_shell_get_shell_surface(demo->shell, demo->window);
if (!demo->shell_surface) {
printf("Can not get shell_surface from wayland_surface!\n");
fflush(stdout);
exit(1);
}
wl_shell_surface_add_listener(demo->shell_surface, &shell_surface_listener,
demo);
wl_shell_surface_set_toplevel(demo->shell_surface);
wl_shell_surface_set_title(demo->shell_surface, APP_SHORT_NAME);
}
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
static void demo_run(struct demo *demo) {
if (!demo->prepared)
return;
demo_draw(demo);
demo->curFrame++;
}
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
static VkResult demo_create_display_surface(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
uint32_t display_count;
uint32_t mode_count;
uint32_t plane_count;
VkDisplayPropertiesKHR display_props;
VkDisplayKHR display;
VkDisplayModePropertiesKHR mode_props;
VkDisplayPlanePropertiesKHR *plane_props;
VkBool32 found_plane = VK_FALSE;
uint32_t plane_index;
VkExtent2D image_extent;
VkDisplaySurfaceCreateInfoKHR create_info;
// Get the first display
err = vkGetPhysicalDeviceDisplayPropertiesKHR(demo->gpu, &display_count, NULL);
assert(!err);
if (display_count == 0) {
printf("Cannot find any display!\n");
fflush(stdout);
exit(1);
}
display_count = 1;
err = vkGetPhysicalDeviceDisplayPropertiesKHR(demo->gpu, &display_count, &display_props);
assert(!err || (err == VK_INCOMPLETE));
display = display_props.display;
// Get the first mode of the display
err = vkGetDisplayModePropertiesKHR(demo->gpu, display, &mode_count, NULL);
assert(!err);
if (mode_count == 0) {
printf("Cannot find any mode for the display!\n");
fflush(stdout);
exit(1);
}
mode_count = 1;
err = vkGetDisplayModePropertiesKHR(demo->gpu, display, &mode_count, &mode_props);
assert(!err || (err == VK_INCOMPLETE));
// Get the list of planes
err = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(demo->gpu, &plane_count, NULL);
assert(!err);
if (plane_count == 0) {
printf("Cannot find any plane!\n");
fflush(stdout);
exit(1);
}
plane_props = malloc(sizeof(VkDisplayPlanePropertiesKHR) * plane_count);
assert(plane_props);
err = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(demo->gpu, &plane_count, plane_props);
assert(!err);
// Find a plane compatible with the display
for (plane_index = 0; plane_index < plane_count; plane_index++) {
uint32_t supported_count;
VkDisplayKHR *supported_displays;
// Disqualify planes that are bound to a different display
if ((plane_props[plane_index].currentDisplay != VK_NULL_HANDLE) &&
(plane_props[plane_index].currentDisplay != display)) {
continue;
}
err = vkGetDisplayPlaneSupportedDisplaysKHR(demo->gpu, plane_index, &supported_count, NULL);
assert(!err);
if (supported_count == 0) {
continue;
}
supported_displays = malloc(sizeof(VkDisplayKHR) * supported_count);
assert(supported_displays);
err = vkGetDisplayPlaneSupportedDisplaysKHR(demo->gpu, plane_index, &supported_count, supported_displays);
assert(!err);
for (uint32_t i = 0; i < supported_count; i++) {
if (supported_displays[i] == display) {
found_plane = VK_TRUE;
break;
}
}
free(supported_displays);
if (found_plane) {
break;
}
}
if (!found_plane) {
printf("Cannot find a plane compatible with the display!\n");
fflush(stdout);
exit(1);
}
free(plane_props);
VkDisplayPlaneCapabilitiesKHR planeCaps;
vkGetDisplayPlaneCapabilitiesKHR(demo->gpu, mode_props.displayMode, plane_index, &planeCaps);
// Find a supported alpha mode
VkDisplayPlaneAlphaFlagBitsKHR alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR;
VkDisplayPlaneAlphaFlagBitsKHR alphaModes[4] = {
VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR,
VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR,
VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR,
VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR,
};
for (uint32_t i = 0; i < sizeof(alphaModes); i++) {
if (planeCaps.supportedAlpha & alphaModes[i]) {
alphaMode = alphaModes[i];
break;
}
}
image_extent.width = mode_props.parameters.visibleRegion.width;
image_extent.height = mode_props.parameters.visibleRegion.height;
create_info.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR;
create_info.pNext = NULL;
create_info.flags = 0;
create_info.displayMode = mode_props.displayMode;
create_info.planeIndex = plane_index;
create_info.planeStackIndex = plane_props[plane_index].currentStackIndex;
create_info.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
create_info.alphaMode = alphaMode;
create_info.globalAlpha = 1.0f;
create_info.imageExtent = image_extent;
return vkCreateDisplayPlaneSurfaceKHR(demo->inst, &create_info, NULL, &demo->surface);
}
static void demo_run_display(struct demo *demo)
{
while (!demo->quit) {
demo_draw(demo);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) {
demo->quit = true;
}
}
}
#endif
/*
* Return 1 (true) if all layer names specified in check_names
* can be found in given layer properties.
*/
static VkBool32 demo_check_layers(uint32_t check_count, char **check_names,
uint32_t layer_count,
VkLayerProperties *layers) {
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(check_names[i], layers[j].layerName)) {
found = 1;
break;
}
}
if (!found) {
fprintf(stderr, "Cannot find layer: %s\n", check_names[i]);
return 0;
}
}
return 1;
}
static void demo_init_vk(struct demo *demo) {
VkResult err;
uint32_t instance_extension_count = 0;
uint32_t instance_layer_count = 0;
uint32_t validation_layer_count = 0;
char **instance_validation_layers = NULL;
demo->enabled_extension_count = 0;
demo->enabled_layer_count = 0;
char *instance_validation_layers_alt1[] = {
"VK_LAYER_LUNARG_standard_validation"
};
char *instance_validation_layers_alt2[] = {
"VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation",
"VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation",
"VK_LAYER_GOOGLE_unique_objects"
};
/* Look for validation layers */
VkBool32 validation_found = 0;
if (demo->validate) {
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL);
assert(!err);
instance_validation_layers = instance_validation_layers_alt1;
if (instance_layer_count > 0) {
VkLayerProperties *instance_layers =
malloc(sizeof (VkLayerProperties) * instance_layer_count);
err = vkEnumerateInstanceLayerProperties(&instance_layer_count,
instance_layers);
assert(!err);
validation_found = demo_check_layers(
ARRAY_SIZE(instance_validation_layers_alt1),
instance_validation_layers, instance_layer_count,
instance_layers);
if (validation_found) {
demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt1);
demo->enabled_layers[0] = "VK_LAYER_LUNARG_standard_validation";
validation_layer_count = 1;
} else {
// use alternative set of validation layers
instance_validation_layers = instance_validation_layers_alt2;
demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt2);
validation_found = demo_check_layers(
ARRAY_SIZE(instance_validation_layers_alt2),
instance_validation_layers, instance_layer_count,
instance_layers);
validation_layer_count =
ARRAY_SIZE(instance_validation_layers_alt2);
for (uint32_t i = 0; i < validation_layer_count; i++) {
demo->enabled_layers[i] = instance_validation_layers[i];
}
}
free(instance_layers);
}
if (!validation_found) {
ERR_EXIT("vkEnumerateInstanceLayerProperties failed to find "
"required validation layer.\n\n"
"Please look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
}
/* Look for instance extensions */
VkBool32 surfaceExtFound = 0;
VkBool32 platformSurfaceExtFound = 0;
memset(demo->extension_names, 0, sizeof(demo->extension_names));
err = vkEnumerateInstanceExtensionProperties(
NULL, &instance_extension_count, NULL);
assert(!err);
if (instance_extension_count > 0) {
VkExtensionProperties *instance_extensions =
malloc(sizeof(VkExtensionProperties) * instance_extension_count);
err = vkEnumerateInstanceExtensionProperties(
NULL, &instance_extension_count, instance_extensions);
assert(!err);
for (uint32_t i = 0; i < instance_extension_count; i++) {
if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
surfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_SURFACE_EXTENSION_NAME;
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (!strcmp(VK_KHR_WIN32_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_WIN32_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
if (!strcmp(VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_XLIB_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_XCB_KHR)
if (!strcmp(VK_KHR_XCB_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_XCB_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
if (!strcmp(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
if (!strcmp(VK_KHR_DISPLAY_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_DISPLAY_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
if (!strcmp(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_ANDROID_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_IOS_MVK)
if (!strcmp(VK_MVK_IOS_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] = VK_MVK_IOS_SURFACE_EXTENSION_NAME;
}
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
if (!strcmp(VK_MVK_MACOS_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) {
platformSurfaceExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] = VK_MVK_MACOS_SURFACE_EXTENSION_NAME;
}
#endif
if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
if (demo->validate) {
demo->extension_names[demo->enabled_extension_count++] =
VK_EXT_DEBUG_REPORT_EXTENSION_NAME;
}
}
assert(demo->enabled_extension_count < 64);
}
free(instance_extensions);
}
if (!surfaceExtFound) {
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
if (!platformSurfaceExtFound) {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_WIN32_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_IOS_MVK)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the "
VK_MVK_IOS_SURFACE_EXTENSION_NAME" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the "
VK_MVK_MACOS_SURFACE_EXTENSION_NAME" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_XCB_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_XCB_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_DISPLAY_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_ANDROID_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find "
"the " VK_KHR_XLIB_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#endif
}
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pApplicationName = APP_SHORT_NAME,
.applicationVersion = 0,
.pEngineName = APP_SHORT_NAME,
.engineVersion = 0,
.apiVersion = VK_API_VERSION_1_0,
};
VkInstanceCreateInfo inst_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pNext = NULL,
.pApplicationInfo = &app,
.enabledLayerCount = demo->enabled_layer_count,
.ppEnabledLayerNames = (const char *const *)instance_validation_layers,
.enabledExtensionCount = demo->enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)demo->extension_names,
};
/*
* This is info for a temp callback to use during CreateInstance.
* After the instance is created, we use the instance-based
* function to register the final callback.
*/
VkDebugReportCallbackCreateInfoEXT dbgCreateInfoTemp;
VkValidationFlagsEXT val_flags;
if (demo->validate) {
dbgCreateInfoTemp.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfoTemp.pNext = NULL;
dbgCreateInfoTemp.pfnCallback = demo->use_break ? BreakCallback : dbgFunc;
dbgCreateInfoTemp.pUserData = demo;
dbgCreateInfoTemp.flags =
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
if (demo->validate_checks_disabled) {
val_flags.sType = VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT;
val_flags.pNext = NULL;
val_flags.disabledValidationCheckCount = 1;
VkValidationCheckEXT disabled_check = VK_VALIDATION_CHECK_ALL_EXT;
val_flags.pDisabledValidationChecks = &disabled_check;
dbgCreateInfoTemp.pNext = (void*)&val_flags;
}
inst_info.pNext = &dbgCreateInfoTemp;
}
uint32_t gpu_count;
err = vkCreateInstance(&inst_info, NULL, &demo->inst);
if (err == VK_ERROR_INCOMPATIBLE_DRIVER) {
ERR_EXIT("Cannot find a compatible Vulkan installable client driver "
"(ICD).\n\nPlease look at the Getting Started guide for "
"additional information.\n",
"vkCreateInstance Failure");
} else if (err == VK_ERROR_EXTENSION_NOT_PRESENT) {
ERR_EXIT("Cannot find a specified extension library"
".\nMake sure your layers path is set appropriately.\n",
"vkCreateInstance Failure");
} else if (err) {
ERR_EXIT("vkCreateInstance failed.\n\nDo you have a compatible Vulkan "
"installable client driver (ICD) installed?\nPlease look at "
"the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
/* Make initial call to query gpu_count, then second call for gpu info*/
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, NULL);
assert(!err && gpu_count > 0);
if (gpu_count > 0) {
VkPhysicalDevice *physical_devices = malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, physical_devices);
assert(!err);
/* For cube demo we just grab the first physical device */
demo->gpu = physical_devices[0];
free(physical_devices);
} else {
ERR_EXIT("vkEnumeratePhysicalDevices reported zero accessible devices.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) "
"installed?\nPlease look at the Getting Started guide for "
"additional information.\n",
"vkEnumeratePhysicalDevices Failure");
}
/* Look for device extensions */
uint32_t device_extension_count = 0;
VkBool32 swapchainExtFound = 0;
demo->enabled_extension_count = 0;
memset(demo->extension_names, 0, sizeof(demo->extension_names));
err = vkEnumerateDeviceExtensionProperties(demo->gpu, NULL,
&device_extension_count, NULL);
assert(!err);
if (device_extension_count > 0) {
VkExtensionProperties *device_extensions =
malloc(sizeof(VkExtensionProperties) * device_extension_count);
err = vkEnumerateDeviceExtensionProperties(
demo->gpu, NULL, &device_extension_count, device_extensions);
assert(!err);
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME,
device_extensions[i].extensionName)) {
swapchainExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_SWAPCHAIN_EXTENSION_NAME;
}
assert(demo->enabled_extension_count < 64);
}
if (demo->VK_KHR_incremental_present_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
demo->VK_KHR_incremental_present_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME,
device_extensions[i].extensionName)) {
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME;
demo->VK_KHR_incremental_present_enabled = true;
DbgMsg("VK_KHR_incremental_present extension enabled\n");
}
assert(demo->enabled_extension_count < 64);
}
if (!demo->VK_KHR_incremental_present_enabled) {
DbgMsg("VK_KHR_incremental_present extension NOT AVAILABLE\n");
}
}
if (demo->VK_GOOGLE_display_timing_enabled) {
// Even though the user "enabled" the extension via the command
// line, we must make sure that it's enumerated for use with the
// device. Therefore, disable it here, and re-enable it again if
// enumerated.
demo->VK_GOOGLE_display_timing_enabled = false;
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME,
device_extensions[i].extensionName)) {
demo->extension_names[demo->enabled_extension_count++] =
VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME;
demo->VK_GOOGLE_display_timing_enabled = true;
DbgMsg("VK_GOOGLE_display_timing extension enabled\n");
}
assert(demo->enabled_extension_count < 64);
}
if (!demo->VK_GOOGLE_display_timing_enabled) {
DbgMsg("VK_GOOGLE_display_timing extension NOT AVAILABLE\n");
}
}
free(device_extensions);
}
if (!swapchainExtFound) {
ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find "
"the " VK_KHR_SWAPCHAIN_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
if (demo->validate) {
demo->CreateDebugReportCallback =
(PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(
demo->inst, "vkCreateDebugReportCallbackEXT");
demo->DestroyDebugReportCallback =
(PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(
demo->inst, "vkDestroyDebugReportCallbackEXT");
if (!demo->CreateDebugReportCallback) {
ERR_EXIT(
"GetProcAddr: Unable to find vkCreateDebugReportCallbackEXT\n",
"vkGetProcAddr Failure");
}
if (!demo->DestroyDebugReportCallback) {
ERR_EXIT(
"GetProcAddr: Unable to find vkDestroyDebugReportCallbackEXT\n",
"vkGetProcAddr Failure");
}
demo->DebugReportMessage =
(PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(
demo->inst, "vkDebugReportMessageEXT");
if (!demo->DebugReportMessage) {
ERR_EXIT("GetProcAddr: Unable to find vkDebugReportMessageEXT\n",
"vkGetProcAddr Failure");
}
VkDebugReportCallbackCreateInfoEXT dbgCreateInfo;
PFN_vkDebugReportCallbackEXT callback;
callback = demo->use_break ? BreakCallback : dbgFunc;
dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfo.pNext = NULL;
dbgCreateInfo.pfnCallback = callback;
dbgCreateInfo.pUserData = demo;
dbgCreateInfo.flags =
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
err = demo->CreateDebugReportCallback(demo->inst, &dbgCreateInfo, NULL,
&demo->msg_callback);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_EXIT("CreateDebugReportCallback: out of host memory\n",
"CreateDebugReportCallback Failure");
break;
default:
ERR_EXIT("CreateDebugReportCallback: unknown failure\n",
"CreateDebugReportCallback Failure");
break;
}
}
vkGetPhysicalDeviceProperties(demo->gpu, &demo->gpu_props);
/* Call with NULL data to get count */
vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu,
&demo->queue_family_count, NULL);
assert(demo->queue_family_count >= 1);
demo->queue_props = (VkQueueFamilyProperties *)malloc(
demo->queue_family_count * sizeof(VkQueueFamilyProperties));
vkGetPhysicalDeviceQueueFamilyProperties(
demo->gpu, &demo->queue_family_count, demo->queue_props);
// Query fine-grained feature support for this device.
// If app has specific feature requirements it should check supported
// features based on this query
VkPhysicalDeviceFeatures physDevFeatures;
vkGetPhysicalDeviceFeatures(demo->gpu, &physDevFeatures);
GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceSupportKHR);
GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceFormatsKHR);
GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfacePresentModesKHR);
GET_INSTANCE_PROC_ADDR(demo->inst, GetSwapchainImagesKHR);
}
static void demo_create_device(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
float queue_priorities[1] = {0.0};
VkDeviceQueueCreateInfo queues[2];
queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[0].pNext = NULL;
queues[0].queueFamilyIndex = demo->graphics_queue_family_index;
queues[0].queueCount = 1;
queues[0].pQueuePriorities = queue_priorities;
queues[0].flags = 0;
VkDeviceCreateInfo device = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = NULL,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = queues,
.enabledLayerCount = 0,
.ppEnabledLayerNames = NULL,
.enabledExtensionCount = demo->enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)demo->extension_names,
.pEnabledFeatures =
NULL, // If specific features are required, pass them in here
};
if (demo->separate_present_queue) {
queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queues[1].pNext = NULL;
queues[1].queueFamilyIndex = demo->present_queue_family_index;
queues[1].queueCount = 1;
queues[1].pQueuePriorities = queue_priorities;
queues[1].flags = 0;
device.queueCreateInfoCount = 2;
}
err = vkCreateDevice(demo->gpu, &device, NULL, &demo->device);
assert(!err);
}
static void demo_init_vk_swapchain(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
// Create a WSI surface for the window:
#if defined(VK_USE_PLATFORM_WIN32_KHR)
VkWin32SurfaceCreateInfoKHR createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.pNext = NULL;
createInfo.flags = 0;
createInfo.hinstance = demo->connection;
createInfo.hwnd = demo->window;
err =
vkCreateWin32SurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
VkWaylandSurfaceCreateInfoKHR createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR;
createInfo.pNext = NULL;
createInfo.flags = 0;
createInfo.display = demo->display;
createInfo.surface = demo->window;
err = vkCreateWaylandSurfaceKHR(demo->inst, &createInfo, NULL,
&demo->surface);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
VkAndroidSurfaceCreateInfoKHR createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
createInfo.pNext = NULL;
createInfo.flags = 0;
createInfo.window = (ANativeWindow*)(demo->window);
err = vkCreateAndroidSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
VkXlibSurfaceCreateInfoKHR createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
createInfo.pNext = NULL;
createInfo.flags = 0;
createInfo.dpy = demo->display;
createInfo.window = demo->xlib_window;
err = vkCreateXlibSurfaceKHR(demo->inst, &createInfo, NULL,
&demo->surface);
#elif defined(VK_USE_PLATFORM_XCB_KHR)
VkXcbSurfaceCreateInfoKHR createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
createInfo.pNext = NULL;
createInfo.flags = 0;
createInfo.connection = demo->connection;
createInfo.window = demo->xcb_window;
err = vkCreateXcbSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface);
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
err = demo_create_display_surface(demo);
#elif defined(VK_USE_PLATFORM_IOS_MVK)
VkIOSSurfaceCreateInfoMVK surface;
surface.sType = VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK;
surface.pNext = NULL;
surface.flags = 0;
surface.pView = demo->window;
err = vkCreateIOSSurfaceMVK(demo->inst, &surface, NULL, &demo->surface);
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
VkMacOSSurfaceCreateInfoMVK surface;
surface.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK;
surface.pNext = NULL;
surface.flags = 0;
surface.pView = demo->window;
err = vkCreateMacOSSurfaceMVK(demo->inst, &surface, NULL, &demo->surface);
#endif
assert(!err);
// Iterate over each queue to learn whether it supports presenting:
VkBool32 *supportsPresent =
(VkBool32 *)malloc(demo->queue_family_count * sizeof(VkBool32));
for (uint32_t i = 0; i < demo->queue_family_count; i++) {
demo->fpGetPhysicalDeviceSurfaceSupportKHR(demo->gpu, i, demo->surface,
&supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueFamilyIndex = UINT32_MAX;
uint32_t presentQueueFamilyIndex = UINT32_MAX;
for (uint32_t i = 0; i < demo->queue_family_count; i++) {
if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
if (graphicsQueueFamilyIndex == UINT32_MAX) {
graphicsQueueFamilyIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueFamilyIndex = i;
presentQueueFamilyIndex = i;
break;
}
}
}
if (presentQueueFamilyIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < demo->queue_family_count; ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueFamilyIndex = i;
break;
}
}
}
// Generate error if could not find both a graphics and a present queue
if (graphicsQueueFamilyIndex == UINT32_MAX ||
presentQueueFamilyIndex == UINT32_MAX) {
ERR_EXIT("Could not find both graphics and present queues\n",
"Swapchain Initialization Failure");
}
demo->graphics_queue_family_index = graphicsQueueFamilyIndex;
demo->present_queue_family_index = presentQueueFamilyIndex;
demo->separate_present_queue =
(demo->graphics_queue_family_index != demo->present_queue_family_index);
free(supportsPresent);
demo_create_device(demo);
GET_DEVICE_PROC_ADDR(demo->device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR(demo->device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR(demo->device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR(demo->device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR(demo->device, QueuePresentKHR);
if (demo->VK_GOOGLE_display_timing_enabled) {
GET_DEVICE_PROC_ADDR(demo->device, GetRefreshCycleDurationGOOGLE);
GET_DEVICE_PROC_ADDR(demo->device, GetPastPresentationTimingGOOGLE);
}
vkGetDeviceQueue(demo->device, demo->graphics_queue_family_index, 0,
&demo->graphics_queue);
if (!demo->separate_present_queue) {
demo->present_queue = demo->graphics_queue;
} else {
vkGetDeviceQueue(demo->device, demo->present_queue_family_index, 0,
&demo->present_queue);
}
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface,
&formatCount, NULL);
assert(!err);
VkSurfaceFormatKHR *surfFormats =
(VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface,
&formatCount, surfFormats);
assert(!err);
// If the format list includes just one entry of VK_FORMAT_UNDEFINED,
// the surface has no preferred format. Otherwise, at least one
// supported format will be returned.
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) {
demo->format = VK_FORMAT_B8G8R8A8_UNORM;
} else {
assert(formatCount >= 1);
demo->format = surfFormats[0].format;
}
demo->color_space = surfFormats[0].colorSpace;
demo->quit = false;
demo->curFrame = 0;
// Create semaphores to synchronize acquiring presentable buffers before
// rendering and waiting for drawing to be complete before presenting
VkSemaphoreCreateInfo semaphoreCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = NULL,
.flags = 0,
};
// Create fences that we can use to throttle if we get too far
// ahead of the image presents
VkFenceCreateInfo fence_ci = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.pNext = NULL,
.flags = VK_FENCE_CREATE_SIGNALED_BIT
};
for (uint32_t i = 0; i < FRAME_LAG; i++) {
err = vkCreateFence(demo->device, &fence_ci, NULL, &demo->fences[i]);
assert(!err);
err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL,
&demo->image_acquired_semaphores[i]);
assert(!err);
err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL,
&demo->draw_complete_semaphores[i]);
assert(!err);
if (demo->separate_present_queue) {
err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL,
&demo->image_ownership_semaphores[i]);
assert(!err);
}
}
demo->frame_index = 0;
// Get Memory information and properties
vkGetPhysicalDeviceMemoryProperties(demo->gpu, &demo->memory_properties);
}
#if defined(VK_USE_PLATFORM_WAYLAND_KHR)
static void pointer_handle_enter(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface, wl_fixed_t sx,
wl_fixed_t sy) {}
static void pointer_handle_leave(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface) {}
static void pointer_handle_motion(void *data, struct wl_pointer *pointer, uint32_t time, wl_fixed_t sx, wl_fixed_t sy) {}
static void pointer_handle_button(void *data, struct wl_pointer *wl_pointer, uint32_t serial, uint32_t time, uint32_t button,
uint32_t state) {
struct demo *demo = data;
if (button == BTN_LEFT && state == WL_POINTER_BUTTON_STATE_PRESSED) {
wl_shell_surface_move(demo->shell_surface, demo->seat, serial);
}
}
static void pointer_handle_axis(void *data, struct wl_pointer *wl_pointer, uint32_t time, uint32_t axis, wl_fixed_t value) {}
static const struct wl_pointer_listener pointer_listener = {
pointer_handle_enter, pointer_handle_leave, pointer_handle_motion, pointer_handle_button, pointer_handle_axis,
};
static void keyboard_handle_keymap(void *data, struct wl_keyboard *keyboard, uint32_t format, int fd, uint32_t size) {}
static void keyboard_handle_enter(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface,
struct wl_array *keys) {}
static void keyboard_handle_leave(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface) {}
static void keyboard_handle_key(void *data, struct wl_keyboard *keyboard, uint32_t serial, uint32_t time, uint32_t key,
uint32_t state) {
if (state != WL_KEYBOARD_KEY_STATE_RELEASED) return;
struct demo *demo = data;
switch (key) {
case KEY_ESC: // Escape
demo->quit = true;
break;
case KEY_LEFT: // left arrow key
demo->spin_angle -= demo->spin_increment;
break;
case KEY_RIGHT: // right arrow key
demo->spin_angle += demo->spin_increment;
break;
case KEY_SPACE: // space bar
demo->pause = !demo->pause;
break;
}
}
static void keyboard_handle_modifiers(void *data, struct wl_keyboard *keyboard, uint32_t serial, uint32_t mods_depressed,
uint32_t mods_latched, uint32_t mods_locked, uint32_t group) {}
static const struct wl_keyboard_listener keyboard_listener = {
keyboard_handle_keymap, keyboard_handle_enter, keyboard_handle_leave, keyboard_handle_key, keyboard_handle_modifiers,
};
static void seat_handle_capabilities(void *data, struct wl_seat *seat, enum wl_seat_capability caps) {
// Subscribe to pointer events
struct demo *demo = data;
if ((caps & WL_SEAT_CAPABILITY_POINTER) && !demo->pointer) {
demo->pointer = wl_seat_get_pointer(seat);
wl_pointer_add_listener(demo->pointer, &pointer_listener, demo);
} else if (!(caps & WL_SEAT_CAPABILITY_POINTER) && demo->pointer) {
wl_pointer_destroy(demo->pointer);
demo->pointer = NULL;
}
// Subscribe to keyboard events
if (caps & WL_SEAT_CAPABILITY_KEYBOARD) {
demo->keyboard = wl_seat_get_keyboard(seat);
wl_keyboard_add_listener(demo->keyboard, &keyboard_listener, demo);
} else if (!(caps & WL_SEAT_CAPABILITY_KEYBOARD)) {
wl_keyboard_destroy(demo->keyboard);
demo->keyboard = NULL;
}
}
static const struct wl_seat_listener seat_listener = {
seat_handle_capabilities,
};
static void registry_handle_global(void *data, struct wl_registry *registry, uint32_t id, const char *interface,
uint32_t version UNUSED) {
struct demo *demo = data;
// pickup wayland objects when they appear
if (strcmp(interface, "wl_compositor") == 0) {
demo->compositor = wl_registry_bind(registry, id, &wl_compositor_interface, 1);
} else if (strcmp(interface, "wl_shell") == 0) {
demo->shell = wl_registry_bind(registry, id, &wl_shell_interface, 1);
} else if (strcmp(interface, "wl_seat") == 0) {
demo->seat = wl_registry_bind(registry, id, &wl_seat_interface, 1);
wl_seat_add_listener(demo->seat, &seat_listener, demo);
}
}
static void registry_handle_global_remove(void *data UNUSED,
struct wl_registry *registry UNUSED,
uint32_t name UNUSED) {}
static const struct wl_registry_listener registry_listener = {
registry_handle_global, registry_handle_global_remove};
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#endif
static void demo_init_connection(struct demo *demo) {
#if defined(VK_USE_PLATFORM_XCB_KHR)
const xcb_setup_t *setup;
xcb_screen_iterator_t iter;
int scr;
demo->connection = xcb_connect(NULL, &scr);
if (xcb_connection_has_error(demo->connection) > 0) {
printf("Cannot find a compatible Vulkan installable client driver "
"(ICD).\nExiting ...\n");
fflush(stdout);
exit(1);
}
setup = xcb_get_setup(demo->connection);
iter = xcb_setup_roots_iterator(setup);
while (scr-- > 0)
xcb_screen_next(&iter);
demo->screen = iter.data;
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
demo->display = wl_display_connect(NULL);
if (demo->display == NULL) {
printf("Cannot find a compatible Vulkan installable client driver "
"(ICD).\nExiting ...\n");
fflush(stdout);
exit(1);
}
demo->registry = wl_display_get_registry(demo->display);
wl_registry_add_listener(demo->registry, ®istry_listener, demo);
wl_display_dispatch(demo->display);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#endif
}
static void demo_init(struct demo *demo, int argc, char **argv) {
vec3 eye = {0.0f, 3.0f, 5.0f};
vec3 origin = {0, 0, 0};
vec3 up = {0.0f, 1.0f, 0.0};
memset(demo, 0, sizeof(*demo));
demo->presentMode = VK_PRESENT_MODE_FIFO_KHR;
demo->frameCount = INT32_MAX;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--use_staging") == 0) {
demo->use_staging_buffer = true;
continue;
}
if ((strcmp(argv[i], "--present_mode") == 0) &&
(i < argc - 1)) {
demo->presentMode = atoi(argv[i+1]);
i++;
continue;
}
if (strcmp(argv[i], "--break") == 0) {
demo->use_break = true;
continue;
}
if (strcmp(argv[i], "--validate") == 0) {
demo->validate = true;
continue;
}
if (strcmp(argv[i], "--validate-checks-disabled") == 0) {
demo->validate = true;
demo->validate_checks_disabled = true;
continue;
}
if (strcmp(argv[i], "--xlib") == 0) {
fprintf(stderr, "--xlib is deprecated and no longer does anything");
continue;
}
if (strcmp(argv[i], "--c") == 0 && demo->frameCount == INT32_MAX &&
i < argc - 1 && sscanf(argv[i + 1], "%d", &demo->frameCount) == 1 &&
demo->frameCount >= 0) {
i++;
continue;
}
if (strcmp(argv[i], "--suppress_popups") == 0) {
demo->suppress_popups = true;
continue;
}
if (strcmp(argv[i], "--display_timing") == 0) {
demo->VK_GOOGLE_display_timing_enabled = true;
continue;
}
if (strcmp(argv[i], "--incremental_present") == 0) {
demo->VK_KHR_incremental_present_enabled = true;
continue;
}
#if defined(ANDROID)
ERR_EXIT("Usage: cube [--validate]\n", "Usage");
#else
fprintf(stderr,
"Usage:\n %s [--use_staging] [--validate] [--validate-checks-disabled]\n"
" [--break] [--c <framecount>] [--suppress_popups]\n"
" [--incremental_present] [--display_timing]\n"
" [--present_mode {0,1,2,3}]\n"
"\n"
"Options for --present_mode:\n"
" %d: VK_PRESENT_MODE_IMMEDIATE_KHR\n"
" %d: VK_PRESENT_MODE_MAILBOX_KHR\n"
" %d: VK_PRESENT_MODE_FIFO_KHR (default)\n"
" %d: VK_PRESENT_MODE_FIFO_RELAXED_KHR\n",
APP_SHORT_NAME, VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_KHR,
VK_PRESENT_MODE_FIFO_RELAXED_KHR);
fflush(stderr);
exit(1);
#endif
}
demo_init_connection(demo);
demo_init_vk(demo);
demo->width = 500;
demo->height = 500;
demo->spin_angle = 4.0f;
demo->spin_increment = 0.2f;
demo->pause = false;
mat4x4_perspective(demo->projection_matrix, (float)degreesToRadians(45.0f),
1.0f, 0.1f, 100.0f);
mat4x4_look_at(demo->view_matrix, eye, origin, up);
mat4x4_identity(demo->model_matrix);
demo->projection_matrix[1][1]*=-1; //Flip projection matrix from GL to Vulkan orientation.
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
// Include header required for parsing the command line options.
#include <shellapi.h>
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine,
int nCmdShow) {
MSG msg; // message
bool done; // flag saying when app is complete
int argc;
char **argv;
// Ensure wParam is initialized.
msg.wParam = 0;
// Use the CommandLine functions to get the command line arguments.
// Unfortunately, Microsoft outputs
// this information as wide characters for Unicode, and we simply want the
// Ascii version to be compatible
// with the non-Windows side. So, we have to convert the information to
// Ascii character strings.
LPWSTR *commandLineArgs = CommandLineToArgvW(GetCommandLineW(), &argc);
if (NULL == commandLineArgs) {
argc = 0;
}
if (argc > 0) {
argv = (char **)malloc(sizeof(char *) * argc);
if (argv == NULL) {
argc = 0;
} else {
for (int iii = 0; iii < argc; iii++) {
size_t wideCharLen = wcslen(commandLineArgs[iii]);
size_t numConverted = 0;
argv[iii] = (char *)malloc(sizeof(char) * (wideCharLen + 1));
if (argv[iii] != NULL) {
wcstombs_s(&numConverted, argv[iii], wideCharLen + 1,
commandLineArgs[iii], wideCharLen + 1);
}
}
}
} else {
argv = NULL;
}
demo_init(&demo, argc, argv);
// Free up the items we had to allocate for the command line arguments.
if (argc > 0 && argv != NULL) {
for (int iii = 0; iii < argc; iii++) {
if (argv[iii] != NULL) {
free(argv[iii]);
}
}
free(argv);
}
demo.connection = hInstance;
strncpy(demo.name, "cube", APP_NAME_STR_LEN);
demo_create_window(&demo);
demo_init_vk_swapchain(&demo);
demo_prepare(&demo);
done = false; // initialize loop condition variable
// main message loop
while (!done) {
PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
if (msg.message == WM_QUIT) // check for a quit message
{
done = true; // if found, quit app
} else {
/* Translate and dispatch to event queue*/
TranslateMessage(&msg);
DispatchMessage(&msg);
}
RedrawWindow(demo.window, NULL, NULL, RDW_INTERNALPAINT);
}
demo_cleanup(&demo);
return (int)msg.wParam;
}
#elif defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK)
static void demo_main(struct demo *demo, void* view) {
const char* argv[] = { "CubeSample" };
int argc = sizeof(argv) / sizeof(char*);
demo_init(demo, argc, (char**)argv);
demo->window = view;
demo_init_vk_swapchain(demo);
demo_prepare(demo);
demo->spin_angle = 0.4f;
}
static void demo_update_and_draw(struct demo *demo) {
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo_update_data_buffer(demo);
demo_draw(demo);
}
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
#include <android/log.h>
#include <android_native_app_glue.h>
#include "android_util.h"
static bool initialized = false;
static bool active = false;
struct demo demo;
static int32_t processInput(struct android_app* app, AInputEvent* event) {
return 0;
}
static void processCommand(struct android_app* app, int32_t cmd) {
switch(cmd) {
case APP_CMD_INIT_WINDOW: {
if (app->window) {
// We're getting a new window. If the app is starting up, we
// need to initialize. If the app has already been
// initialized, that means that we lost our previous window,
// which means that we have a lot of work to do. At a minimum,
// we need to destroy the swapchain and surface associated with
// the old window, and create a new surface and swapchain.
// However, since there are a lot of other objects/state that
// is tied to the swapchain, it's easiest to simply cleanup and
// start over (i.e. use a brute-force approach of re-starting
// the app)
if (demo.prepared) {
demo_cleanup(&demo);
}
// Parse Intents into argc, argv
// Use the following key to send arguments, i.e.
// --es args "--validate"
const char key[] = "args";
char* appTag = (char*) APP_SHORT_NAME;
int argc = 0;
char** argv = get_args(app, key, appTag, &argc);
__android_log_print(ANDROID_LOG_INFO, appTag, "argc = %i", argc);
for (int i = 0; i < argc; i++)
__android_log_print(ANDROID_LOG_INFO, appTag, "argv[%i] = %s", i, argv[i]);
demo_init(&demo, argc, argv);
// Free the argv malloc'd by get_args
for (int i = 0; i < argc; i++)
free(argv[i]);
demo.window = (void*)app->window;
demo_init_vk_swapchain(&demo);
demo_prepare(&demo);
initialized = true;
}
break;
}
case APP_CMD_GAINED_FOCUS: {
active = true;
break;
}
case APP_CMD_LOST_FOCUS: {
active = false;
break;
}
}
}
void android_main(struct android_app *app)
{
#ifdef ANDROID
int vulkanSupport = InitVulkan();
if (vulkanSupport == 0)
return;
#endif
demo.prepared = false;
app->onAppCmd = processCommand;
app->onInputEvent = processInput;
while(1) {
int events;
struct android_poll_source* source;
while (ALooper_pollAll(active ? 0 : -1, NULL, &events, (void**)&source) >= 0) {
if (source) {
source->process(app, source);
}
if (app->destroyRequested != 0) {
demo_cleanup(&demo);
return;
}
}
if (initialized && active) {
demo_run(&demo);
}
}
}
#else
int main(int argc, char **argv) {
struct demo demo;
demo_init(&demo, argc, argv);
#if defined(VK_USE_PLATFORM_XCB_KHR)
demo_create_xcb_window(&demo);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
demo_create_xlib_window(&demo);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
demo_create_window(&demo);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#endif
demo_init_vk_swapchain(&demo);
demo_prepare(&demo);
#if defined(VK_USE_PLATFORM_XCB_KHR)
demo_run_xcb(&demo);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
demo_run_xlib(&demo);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
demo_run(&demo);
#elif defined(VK_USE_PLATFORM_MIR_KHR)
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
demo_run_display(&demo);
#endif
demo_cleanup(&demo);
return validation_error;
}
#endif