/* * Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Chia-I Wu <olv@lunarg.com> * Author: Courtney Goeltzenleuchter <courtney@LunarG.com> * Author: Ian Elliott <ian@LunarG.com> * Author: Ian Elliott <ianelliott@google.com> * Author: Jon Ashburn <jon@lunarg.com> * Author: Gwan-gyeong Mun <elongbug@gmail.com> * Author: Tony Barbour <tony@LunarG.com> * Author: Bill Hollings <bill.hollings@brenwill.com> */ #define _GNU_SOURCE #include <stdio.h> #include <stdarg.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #include <assert.h> #include <signal.h> #if defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) #include <X11/Xutil.h> #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) #include <linux/input.h> #endif #ifdef _WIN32 #pragma comment(linker, "/subsystem:windows") #define APP_NAME_STR_LEN 80 #endif // _WIN32 #if defined(VK_USE_PLATFORM_MIR_KHR) #warning "Cube does not have code for Mir at this time" #endif #ifdef ANDROID #include "vulkan_wrapper.h" #else #include <vulkan/vulkan.h> #endif #include <vulkan/vk_sdk_platform.h> #include "linmath.h" #include "gettime.h" #include "inttypes.h" #define MILLION 1000000L #define BILLION 1000000000L #define DEMO_TEXTURE_COUNT 1 #define APP_SHORT_NAME "cube" #define APP_LONG_NAME "The Vulkan Cube Demo Program" // Allow a maximum of two outstanding presentation operations. #define FRAME_LAG 2 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #if defined(NDEBUG) && defined(__GNUC__) #define U_ASSERT_ONLY __attribute__((unused)) #else #define U_ASSERT_ONLY #endif #if defined(__GNUC__) #define UNUSED __attribute__((unused)) #else #define UNUSED #endif #ifdef _WIN32 bool in_callback = false; #define ERR_EXIT(err_msg, err_class) \ do { \ if (!demo->suppress_popups) MessageBox(NULL, err_msg, err_class, MB_OK); \ exit(1); \ } while (0) void DbgMsg(char *fmt, ...) { va_list va; va_start(va, fmt); printf(fmt, va); fflush(stdout); va_end(va); } #elif defined __ANDROID__ #include <android/log.h> #define ERR_EXIT(err_msg, err_class) \ do { \ ((void)__android_log_print(ANDROID_LOG_INFO, "Cube", err_msg)); \ exit(1); \ } while (0) #ifdef VARARGS_WORKS_ON_ANDROID void DbgMsg(const char *fmt, ...) { va_list va; va_start(va, fmt); __android_log_print(ANDROID_LOG_INFO, "Cube", fmt, va); va_end(va); } #else // VARARGS_WORKS_ON_ANDROID #define DbgMsg(fmt, ...) \ do { \ ((void)__android_log_print(ANDROID_LOG_INFO, "Cube", fmt, ##__VA_ARGS__)); \ } while (0) #endif // VARARGS_WORKS_ON_ANDROID #else #define ERR_EXIT(err_msg, err_class) \ do { \ printf("%s\n", err_msg); \ fflush(stdout); \ exit(1); \ } while (0) void DbgMsg(char *fmt, ...) { va_list va; va_start(va, fmt); printf(fmt, va); fflush(stdout); va_end(va); } #endif #define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \ { \ demo->fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \ if (demo->fp##entrypoint == NULL) { \ ERR_EXIT("vkGetInstanceProcAddr failed to find vk" #entrypoint, "vkGetInstanceProcAddr Failure"); \ } \ } static PFN_vkGetDeviceProcAddr g_gdpa = NULL; #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ if (!g_gdpa) g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(demo->inst, "vkGetDeviceProcAddr"); \ demo->fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \ if (demo->fp##entrypoint == NULL) { \ ERR_EXIT("vkGetDeviceProcAddr failed to find vk" #entrypoint, "vkGetDeviceProcAddr Failure"); \ } \ } /* * structure to track all objects related to a texture. */ struct texture_object { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkMemoryAllocateInfo mem_alloc; VkDeviceMemory mem; VkImageView view; int32_t tex_width, tex_height; }; static char *tex_files[] = {"lunarg.ppm"}; static int validation_error = 0; struct vktexcube_vs_uniform { // Must start with MVP float mvp[4][4]; float position[12 * 3][4]; float attr[12 * 3][4]; }; //-------------------------------------------------------------------------------------- // Mesh and VertexFormat Data //-------------------------------------------------------------------------------------- // clang-format off static const float g_vertex_buffer_data[] = { -1.0f,-1.0f,-1.0f, // -X side -1.0f,-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // -Z side 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // -Y side 1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, -1.0f,-1.0f, 1.0f, -1.0f, 1.0f,-1.0f, // +Y side -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, // +X side 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f, // +Z side -1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, }; static const float g_uv_buffer_data[] = { 0.0f, 1.0f, // -X side 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // -Z side 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, // -Y side 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // +Y side 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, // +X side 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, // +Z side 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, }; // clang-format on void dumpMatrix(const char *note, mat4x4 MVP) { int i; printf("%s: \n", note); for (i = 0; i < 4; i++) { printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]); } printf("\n"); fflush(stdout); } void dumpVec4(const char *note, vec4 vector) { printf("%s: \n", note); printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]); printf("\n"); fflush(stdout); } VKAPI_ATTR VkBool32 VKAPI_CALL BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg, void *pUserData) { #ifndef WIN32 raise(SIGTRAP); #else DebugBreak(); #endif return false; } typedef struct { VkImage image; VkCommandBuffer cmd; VkCommandBuffer graphics_to_present_cmd; VkImageView view; VkBuffer uniform_buffer; VkDeviceMemory uniform_memory; VkFramebuffer framebuffer; VkDescriptorSet descriptor_set; } SwapchainImageResources; struct demo { #if defined(VK_USE_PLATFORM_WIN32_KHR) #define APP_NAME_STR_LEN 80 HINSTANCE connection; // hInstance - Windows Instance char name[APP_NAME_STR_LEN]; // Name to put on the window/icon HWND window; // hWnd - window handle POINT minsize; // minimum window size #elif defined(VK_USE_PLATFORM_XLIB_KHR) Display *display; Window xlib_window; Atom xlib_wm_delete_window; #elif defined(VK_USE_PLATFORM_XCB_KHR) Display *display; xcb_connection_t *connection; xcb_screen_t *screen; xcb_window_t xcb_window; xcb_intern_atom_reply_t *atom_wm_delete_window; #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) struct wl_display *display; struct wl_registry *registry; struct wl_compositor *compositor; struct wl_surface *window; struct wl_shell *shell; struct wl_shell_surface *shell_surface; struct wl_seat *seat; struct wl_pointer *pointer; struct wl_keyboard *keyboard; #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_ANDROID_KHR) ANativeWindow *window; #elif (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK)) void *window; #endif VkSurfaceKHR surface; bool prepared; bool use_staging_buffer; bool separate_present_queue; bool VK_KHR_incremental_present_enabled; bool VK_GOOGLE_display_timing_enabled; bool syncd_with_actual_presents; uint64_t refresh_duration; uint64_t refresh_duration_multiplier; uint64_t target_IPD; // image present duration (inverse of frame rate) uint64_t prev_desired_present_time; uint32_t next_present_id; uint32_t last_early_id; // 0 if no early images uint32_t last_late_id; // 0 if no late images VkInstance inst; VkPhysicalDevice gpu; VkDevice device; VkQueue graphics_queue; VkQueue present_queue; uint32_t graphics_queue_family_index; uint32_t present_queue_family_index; VkSemaphore image_acquired_semaphores[FRAME_LAG]; VkSemaphore draw_complete_semaphores[FRAME_LAG]; VkSemaphore image_ownership_semaphores[FRAME_LAG]; VkPhysicalDeviceProperties gpu_props; VkQueueFamilyProperties *queue_props; VkPhysicalDeviceMemoryProperties memory_properties; uint32_t enabled_extension_count; uint32_t enabled_layer_count; char *extension_names[64]; char *enabled_layers[64]; int width, height; VkFormat format; VkColorSpaceKHR color_space; PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR; PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR; PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR; PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR; PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR; PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR; PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR; PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR; PFN_vkQueuePresentKHR fpQueuePresentKHR; PFN_vkGetRefreshCycleDurationGOOGLE fpGetRefreshCycleDurationGOOGLE; PFN_vkGetPastPresentationTimingGOOGLE fpGetPastPresentationTimingGOOGLE; uint32_t swapchainImageCount; VkSwapchainKHR swapchain; SwapchainImageResources *swapchain_image_resources; VkPresentModeKHR presentMode; VkFence fences[FRAME_LAG]; int frame_index; VkCommandPool cmd_pool; VkCommandPool present_cmd_pool; struct { VkFormat format; VkImage image; VkMemoryAllocateInfo mem_alloc; VkDeviceMemory mem; VkImageView view; } depth; struct texture_object textures[DEMO_TEXTURE_COUNT]; struct texture_object staging_texture; VkCommandBuffer cmd; // Buffer for initialization commands VkPipelineLayout pipeline_layout; VkDescriptorSetLayout desc_layout; VkPipelineCache pipelineCache; VkRenderPass render_pass; VkPipeline pipeline; mat4x4 projection_matrix; mat4x4 view_matrix; mat4x4 model_matrix; float spin_angle; float spin_increment; bool pause; VkShaderModule vert_shader_module; VkShaderModule frag_shader_module; VkDescriptorPool desc_pool; bool quit; int32_t curFrame; int32_t frameCount; bool validate; bool validate_checks_disabled; bool use_break; bool suppress_popups; PFN_vkCreateDebugReportCallbackEXT CreateDebugReportCallback; PFN_vkDestroyDebugReportCallbackEXT DestroyDebugReportCallback; VkDebugReportCallbackEXT msg_callback; PFN_vkDebugReportMessageEXT DebugReportMessage; uint32_t current_buffer; uint32_t queue_family_count; }; VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg, void *pUserData) { // clang-format off char *message = (char *)malloc(strlen(pMsg) + 100); assert(message); if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) { sprintf(message, "INFORMATION: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { sprintf(message, "WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) { sprintf(message, "PERFORMANCE WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { sprintf(message, "ERROR: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) { sprintf(message, "DEBUG: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else { sprintf(message, "INFORMATION: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } #ifdef _WIN32 in_callback = true; struct demo *demo = (struct demo*) pUserData; if (!demo->suppress_popups) MessageBox(NULL, message, "Alert", MB_OK); in_callback = false; #elif defined(ANDROID) if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) { __android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message); } else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { __android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message); } else if (msgFlags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) { __android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message); } else if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { __android_log_print(ANDROID_LOG_ERROR, APP_SHORT_NAME, "%s", message); } else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) { __android_log_print(ANDROID_LOG_DEBUG, APP_SHORT_NAME, "%s", message); } else { __android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message); } #else printf("%s\n", message); fflush(stdout); #endif free(message); // clang-format on /* * false indicates that layer should not bail-out of an * API call that had validation failures. This may mean that the * app dies inside the driver due to invalid parameter(s). * That's what would happen without validation layers, so we'll * keep that behavior here. */ return false; } bool ActualTimeLate(uint64_t desired, uint64_t actual, uint64_t rdur) { // The desired time was the earliest time that the present should have // occured. In almost every case, the actual time should be later than the // desired time. We should only consider the actual time "late" if it is // after "desired + rdur". if (actual <= desired) { // The actual time was before or equal to the desired time. This will // probably never happen, but in case it does, return false since the // present was obviously NOT late. return false; } uint64_t deadline = actual + rdur; if (actual > deadline) { return true; } else { return false; } } bool CanPresentEarlier(uint64_t earliest, uint64_t actual, uint64_t margin, uint64_t rdur) { if (earliest < actual) { // Consider whether this present could have occured earlier. Make sure // that earliest time was at least 2msec earlier than actual time, and // that the margin was at least 2msec: uint64_t diff = actual - earliest; if ((diff >= (2 * MILLION)) && (margin >= (2 * MILLION))) { // This present could have occured earlier because both: 1) the // earliest time was at least 2 msec before actual time, and 2) the // margin was at least 2msec. return true; } } return false; } // Forward declaration: static void demo_resize(struct demo *demo); static bool memory_type_from_properties(struct demo *demo, uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) { // Search memtypes to find first index with those properties for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((typeBits & 1) == 1) { // Type is available, does it match user properties? if ((demo->memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) { *typeIndex = i; return true; } } typeBits >>= 1; } // No memory types matched, return failure return false; } static void demo_flush_init_cmd(struct demo *demo) { VkResult U_ASSERT_ONLY err; // This function could get called twice if the texture uses a staging buffer // In that case the second call should be ignored if (demo->cmd == VK_NULL_HANDLE) return; err = vkEndCommandBuffer(demo->cmd); assert(!err); VkFence fence; VkFenceCreateInfo fence_ci = {.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = 0}; err = vkCreateFence(demo->device, &fence_ci, NULL, &fence); assert(!err); const VkCommandBuffer cmd_bufs[] = {demo->cmd}; VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pNext = NULL, .waitSemaphoreCount = 0, .pWaitSemaphores = NULL, .pWaitDstStageMask = NULL, .commandBufferCount = 1, .pCommandBuffers = cmd_bufs, .signalSemaphoreCount = 0, .pSignalSemaphores = NULL}; err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info, fence); assert(!err); err = vkWaitForFences(demo->device, 1, &fence, VK_TRUE, UINT64_MAX); assert(!err); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, cmd_bufs); vkDestroyFence(demo->device, fence, NULL); demo->cmd = VK_NULL_HANDLE; } static void demo_set_image_layout(struct demo *demo, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout old_image_layout, VkImageLayout new_image_layout, VkAccessFlagBits srcAccessMask, VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages) { assert(demo->cmd); VkImageMemoryBarrier image_memory_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = srcAccessMask, .dstAccessMask = 0, .oldLayout = old_image_layout, .newLayout = new_image_layout, .image = image, .subresourceRange = {aspectMask, 0, 1, 0, 1}}; switch (new_image_layout) { case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: /* Make sure anything that was copying from this image has completed */ image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; break; case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: image_memory_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; break; case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: image_memory_barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; break; case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: image_memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; break; case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: image_memory_barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; break; default: image_memory_barrier.dstAccessMask = 0; break; } VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier; vkCmdPipelineBarrier(demo->cmd, src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); } static void demo_draw_build_cmd(struct demo *demo, VkCommandBuffer cmd_buf) { const VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, .pInheritanceInfo = NULL, }; const VkClearValue clear_values[2] = { [0] = {.color.float32 = {0.2f, 0.2f, 0.2f, 0.2f}}, [1] = {.depthStencil = {1.0f, 0}}, }; const VkRenderPassBeginInfo rp_begin = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .pNext = NULL, .renderPass = demo->render_pass, .framebuffer = demo->swapchain_image_resources[demo->current_buffer].framebuffer, .renderArea.offset.x = 0, .renderArea.offset.y = 0, .renderArea.extent.width = demo->width, .renderArea.extent.height = demo->height, .clearValueCount = 2, .pClearValues = clear_values, }; VkResult U_ASSERT_ONLY err; err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info); assert(!err); vkCmdBeginRenderPass(cmd_buf, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline); vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline_layout, 0, 1, &demo->swapchain_image_resources[demo->current_buffer].descriptor_set, 0, NULL); VkViewport viewport; memset(&viewport, 0, sizeof(viewport)); viewport.height = (float)demo->height; viewport.width = (float)demo->width; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; vkCmdSetViewport(cmd_buf, 0, 1, &viewport); VkRect2D scissor; memset(&scissor, 0, sizeof(scissor)); scissor.extent.width = demo->width; scissor.extent.height = demo->height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(cmd_buf, 0, 1, &scissor); vkCmdDraw(cmd_buf, 12 * 3, 1, 0, 0); // Note that ending the renderpass changes the image's layout from // COLOR_ATTACHMENT_OPTIMAL to PRESENT_SRC_KHR vkCmdEndRenderPass(cmd_buf); if (demo->separate_present_queue) { // We have to transfer ownership from the graphics queue family to the // present queue family to be able to present. Note that we don't have // to transfer from present queue family back to graphics queue family at // the start of the next frame because we don't care about the image's // contents at that point. VkImageMemoryBarrier image_ownership_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .srcQueueFamilyIndex = demo->graphics_queue_family_index, .dstQueueFamilyIndex = demo->present_queue_family_index, .image = demo->swapchain_image_resources[demo->current_buffer].image, .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &image_ownership_barrier); } err = vkEndCommandBuffer(cmd_buf); assert(!err); } void demo_build_image_ownership_cmd(struct demo *demo, int i) { VkResult U_ASSERT_ONLY err; const VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, .pInheritanceInfo = NULL, }; err = vkBeginCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info); assert(!err); VkImageMemoryBarrier image_ownership_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .srcQueueFamilyIndex = demo->graphics_queue_family_index, .dstQueueFamilyIndex = demo->present_queue_family_index, .image = demo->swapchain_image_resources[i].image, .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; vkCmdPipelineBarrier(demo->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &image_ownership_barrier); err = vkEndCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd); assert(!err); } void demo_update_data_buffer(struct demo *demo) { mat4x4 MVP, Model, VP; int matrixSize = sizeof(MVP); uint8_t *pData; VkResult U_ASSERT_ONLY err; mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); // Rotate around the Y axis mat4x4_dup(Model, demo->model_matrix); mat4x4_rotate(demo->model_matrix, Model, 0.0f, 1.0f, 0.0f, (float)degreesToRadians(demo->spin_angle)); mat4x4_mul(MVP, VP, demo->model_matrix); err = vkMapMemory(demo->device, demo->swapchain_image_resources[demo->current_buffer].uniform_memory, 0, VK_WHOLE_SIZE, 0, (void **)&pData); assert(!err); memcpy(pData, (const void *)&MVP[0][0], matrixSize); vkUnmapMemory(demo->device, demo->swapchain_image_resources[demo->current_buffer].uniform_memory); } void DemoUpdateTargetIPD(struct demo *demo) { // Look at what happened to previous presents, and make appropriate // adjustments in timing: VkResult U_ASSERT_ONLY err; VkPastPresentationTimingGOOGLE* past = NULL; uint32_t count = 0; err = demo->fpGetPastPresentationTimingGOOGLE(demo->device, demo->swapchain, &count, NULL); assert(!err); if (count) { past = (VkPastPresentationTimingGOOGLE*) malloc(sizeof(VkPastPresentationTimingGOOGLE) * count); assert(past); err = demo->fpGetPastPresentationTimingGOOGLE(demo->device, demo->swapchain, &count, past); assert(!err); bool early = false; bool late = false; bool calibrate_next = false; for (uint32_t i = 0 ; i < count ; i++) { if (!demo->syncd_with_actual_presents) { // This is the first time that we've received an // actualPresentTime for this swapchain. In order to not // perceive these early frames as "late", we need to sync-up // our future desiredPresentTime's with the // actualPresentTime(s) that we're receiving now. calibrate_next = true; // So that we don't suspect any pending presents as late, // record them all as suspected-late presents: demo->last_late_id = demo->next_present_id - 1; demo->last_early_id = 0; demo->syncd_with_actual_presents = true; break; } else if (CanPresentEarlier(past[i].earliestPresentTime, past[i].actualPresentTime, past[i].presentMargin, demo->refresh_duration)) { // This image could have been presented earlier. We don't want // to decrease the target_IPD until we've seen early presents // for at least two seconds. if (demo->last_early_id == past[i].presentID) { // We've now seen two seconds worth of early presents. // Flag it as such, and reset the counter: early = true; demo->last_early_id = 0; } else if (demo->last_early_id == 0) { // This is the first early present we've seen. // Calculate the presentID for two seconds from now. uint64_t lastEarlyTime = past[i].actualPresentTime + (2 * BILLION); uint32_t howManyPresents = (uint32_t)((lastEarlyTime - past[i].actualPresentTime) / demo->target_IPD); demo->last_early_id = past[i].presentID + howManyPresents; } else { // We are in the midst of a set of early images, // and so we won't do anything. } late = false; demo->last_late_id = 0; } else if (ActualTimeLate(past[i].desiredPresentTime, past[i].actualPresentTime, demo->refresh_duration)) { // This image was presented after its desired time. Since // there's a delay between calling vkQueuePresentKHR and when // we get the timing data, several presents may have been late. // Thus, we need to threat all of the outstanding presents as // being likely late, so that we only increase the target_IPD // once for all of those presents. if ((demo->last_late_id == 0) || (demo->last_late_id < past[i].presentID)) { late = true; // Record the last suspected-late present: demo->last_late_id = demo->next_present_id - 1; } else { // We are in the midst of a set of likely-late images, // and so we won't do anything. } early = false; demo->last_early_id = 0; } else { // Since this image was not presented early or late, reset // any sets of early or late presentIDs: early = false; late = false; calibrate_next = true; demo->last_early_id = 0; demo->last_late_id = 0; } } if (early) { // Since we've seen at least two-seconds worth of presnts that // could have occured earlier than desired, let's decrease the // target_IPD (i.e. increase the frame rate): // // TODO(ianelliott): Try to calculate a better target_IPD based // on the most recently-seen present (this is overly-simplistic). demo->refresh_duration_multiplier--; if (demo->refresh_duration_multiplier == 0) { // This should never happen, but in case it does, don't // try to go faster. demo->refresh_duration_multiplier = 1; } demo->target_IPD = demo->refresh_duration * demo->refresh_duration_multiplier; } if (late) { // Since we found a new instance of a late present, we want to // increase the target_IPD (i.e. decrease the frame rate): // // TODO(ianelliott): Try to calculate a better target_IPD based // on the most recently-seen present (this is overly-simplistic). demo->refresh_duration_multiplier++; demo->target_IPD = demo->refresh_duration * demo->refresh_duration_multiplier; } if (calibrate_next) { int64_t multiple = demo->next_present_id - past[count-1].presentID; demo->prev_desired_present_time = (past[count-1].actualPresentTime + (multiple * demo->target_IPD)); } } } static void demo_draw(struct demo *demo) { VkResult U_ASSERT_ONLY err; // Ensure no more than FRAME_LAG renderings are outstanding vkWaitForFences(demo->device, 1, &demo->fences[demo->frame_index], VK_TRUE, UINT64_MAX); vkResetFences(demo->device, 1, &demo->fences[demo->frame_index]); do { // Get the index of the next available swapchain image: err = demo->fpAcquireNextImageKHR(demo->device, demo->swapchain, UINT64_MAX, demo->image_acquired_semaphores[demo->frame_index], VK_NULL_HANDLE, &demo->current_buffer); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // demo->swapchain is out of date (e.g. the window was resized) and // must be recreated: demo_resize(demo); } else if (err == VK_SUBOPTIMAL_KHR) { // demo->swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. break; } else { assert(!err); } } while (err != VK_SUCCESS); demo_update_data_buffer(demo); if (demo->VK_GOOGLE_display_timing_enabled) { // Look at what happened to previous presents, and make appropriate // adjustments in timing: DemoUpdateTargetIPD(demo); // Note: a real application would position its geometry to that it's in // the correct locatoin for when the next image is presented. It might // also wait, so that there's less latency between any input and when // the next image is rendered/presented. This demo program is so // simple that it doesn't do either of those. } // Wait for the image acquired semaphore to be signaled to ensure // that the image won't be rendered to until the presentation // engine has fully released ownership to the application, and it is // okay to render to the image. VkPipelineStageFlags pipe_stage_flags; VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.pWaitDstStageMask = &pipe_stage_flags; pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &demo->image_acquired_semaphores[demo->frame_index]; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &demo->swapchain_image_resources[demo->current_buffer].cmd; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &demo->draw_complete_semaphores[demo->frame_index]; err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info, demo->fences[demo->frame_index]); assert(!err); if (demo->separate_present_queue) { // If we are using separate queues, change image ownership to the // present queue before presenting, waiting for the draw complete // semaphore and signalling the ownership released semaphore when finished VkFence nullFence = VK_NULL_HANDLE; pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &demo->draw_complete_semaphores[demo->frame_index]; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &demo->swapchain_image_resources[demo->current_buffer].graphics_to_present_cmd; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &demo->image_ownership_semaphores[demo->frame_index]; err = vkQueueSubmit(demo->present_queue, 1, &submit_info, nullFence); assert(!err); } // If we are using separate queues we have to wait for image ownership, // otherwise wait for draw complete VkPresentInfoKHR present = { .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .pNext = NULL, .waitSemaphoreCount = 1, .pWaitSemaphores = (demo->separate_present_queue) ? &demo->image_ownership_semaphores[demo->frame_index] : &demo->draw_complete_semaphores[demo->frame_index], .swapchainCount = 1, .pSwapchains = &demo->swapchain, .pImageIndices = &demo->current_buffer, }; if (demo->VK_KHR_incremental_present_enabled) { // If using VK_KHR_incremental_present, we provide a hint of the region // that contains changed content relative to the previously-presented // image. The implementation can use this hint in order to save // work/power (by only copying the region in the hint). The // implementation is free to ignore the hint though, and so we must // ensure that the entire image has the correctly-drawn content. uint32_t eighthOfWidth = demo->width / 8; uint32_t eighthOfHeight = demo->height / 8; VkRectLayerKHR rect = { .offset.x = eighthOfWidth, .offset.y = eighthOfHeight, .extent.width = eighthOfWidth * 6, .extent.height = eighthOfHeight * 6, .layer = 0, }; VkPresentRegionKHR region = { .rectangleCount = 1, .pRectangles = &rect, }; VkPresentRegionsKHR regions = { .sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR, .pNext = present.pNext, .swapchainCount = present.swapchainCount, .pRegions = ®ion, }; present.pNext = ®ions; } if (demo->VK_GOOGLE_display_timing_enabled) { VkPresentTimeGOOGLE ptime; if (demo->prev_desired_present_time == 0) { // This must be the first present for this swapchain. // // We don't know where we are relative to the presentation engine's // display's refresh cycle. We also don't know how long rendering // takes. Let's make a grossly-simplified assumption that the // desiredPresentTime should be half way between now and // now+target_IPD. We will adjust over time. uint64_t curtime = getTimeInNanoseconds(); if (curtime == 0) { // Since we didn't find out the current time, don't give a // desiredPresentTime: ptime.desiredPresentTime = 0; } else { ptime.desiredPresentTime = curtime + (demo->target_IPD >> 1); } } else { ptime.desiredPresentTime = (demo->prev_desired_present_time + demo->target_IPD); } ptime.presentID = demo->next_present_id++; demo->prev_desired_present_time = ptime.desiredPresentTime; VkPresentTimesInfoGOOGLE present_time = { .sType = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE, .pNext = present.pNext, .swapchainCount = present.swapchainCount, .pTimes = &ptime, }; if (demo->VK_GOOGLE_display_timing_enabled) { present.pNext = &present_time; } } err = demo->fpQueuePresentKHR(demo->present_queue, &present); demo->frame_index += 1; demo->frame_index %= FRAME_LAG; if (err == VK_ERROR_OUT_OF_DATE_KHR) { // demo->swapchain is out of date (e.g. the window was resized) and // must be recreated: demo_resize(demo); } else if (err == VK_SUBOPTIMAL_KHR) { // demo->swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. } else { assert(!err); } } static void demo_prepare_buffers(struct demo *demo) { VkResult U_ASSERT_ONLY err; VkSwapchainKHR oldSwapchain = demo->swapchain; // Check the surface capabilities and formats VkSurfaceCapabilitiesKHR surfCapabilities; err = demo->fpGetPhysicalDeviceSurfaceCapabilitiesKHR( demo->gpu, demo->surface, &surfCapabilities); assert(!err); uint32_t presentModeCount; err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR( demo->gpu, demo->surface, &presentModeCount, NULL); assert(!err); VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR)); assert(presentModes); err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR( demo->gpu, demo->surface, &presentModeCount, presentModes); assert(!err); VkExtent2D swapchainExtent; // width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF. if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) { // If the surface size is undefined, the size is set to the size // of the images requested, which must fit within the minimum and // maximum values. swapchainExtent.width = demo->width; swapchainExtent.height = demo->height; if (swapchainExtent.width < surfCapabilities.minImageExtent.width) { swapchainExtent.width = surfCapabilities.minImageExtent.width; } else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) { swapchainExtent.width = surfCapabilities.maxImageExtent.width; } if (swapchainExtent.height < surfCapabilities.minImageExtent.height) { swapchainExtent.height = surfCapabilities.minImageExtent.height; } else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) { swapchainExtent.height = surfCapabilities.maxImageExtent.height; } } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfCapabilities.currentExtent; demo->width = surfCapabilities.currentExtent.width; demo->height = surfCapabilities.currentExtent.height; } // The FIFO present mode is guaranteed by the spec to be supported // and to have no tearing. It's a great default present mode to use. VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR; // There are times when you may wish to use another present mode. The // following code shows how to select them, and the comments provide some // reasons you may wish to use them. // // It should be noted that Vulkan 1.0 doesn't provide a method for // synchronizing rendering with the presentation engine's display. There // is a method provided for throttling rendering with the display, but // there are some presentation engines for which this method will not work. // If an application doesn't throttle its rendering, and if it renders much // faster than the refresh rate of the display, this can waste power on // mobile devices. That is because power is being spent rendering images // that may never be seen. // VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about // tearing, or have some way of synchronizing their rendering with the // display. // VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that // generally render a new presentable image every refresh cycle, but are // occasionally early. In this case, the application wants the new image // to be displayed instead of the previously-queued-for-presentation image // that has not yet been displayed. // VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally // render a new presentable image every refresh cycle, but are occasionally // late. In this case (perhaps because of stuttering/latency concerns), // the application wants the late image to be immediately displayed, even // though that may mean some tearing. if (demo->presentMode != swapchainPresentMode) { for (size_t i = 0; i < presentModeCount; ++i) { if (presentModes[i] == demo->presentMode) { swapchainPresentMode = demo->presentMode; break; } } } if (swapchainPresentMode != demo->presentMode) { ERR_EXIT("Present mode specified is not supported\n", "Present mode unsupported"); } // Determine the number of VkImages to use in the swap chain. // Application desires to acquire 3 images at a time for triple // buffering uint32_t desiredNumOfSwapchainImages = 3; if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) { desiredNumOfSwapchainImages = surfCapabilities.minImageCount; } // If maxImageCount is 0, we can ask for as many images as we want; // otherwise we're limited to maxImageCount if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) { // Application must settle for fewer images than desired: desiredNumOfSwapchainImages = surfCapabilities.maxImageCount; } VkSurfaceTransformFlagsKHR preTransform; if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { preTransform = surfCapabilities.currentTransform; } // Find a supported composite alpha mode - one of these is guaranteed to be set VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = { VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, }; for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) { if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) { compositeAlpha = compositeAlphaFlags[i]; break; } } VkSwapchainCreateInfoKHR swapchain_ci = { .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .pNext = NULL, .surface = demo->surface, .minImageCount = desiredNumOfSwapchainImages, .imageFormat = demo->format, .imageColorSpace = demo->color_space, .imageExtent = { .width = swapchainExtent.width, .height = swapchainExtent.height, }, .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .preTransform = preTransform, .compositeAlpha = compositeAlpha, .imageArrayLayers = 1, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .queueFamilyIndexCount = 0, .pQueueFamilyIndices = NULL, .presentMode = swapchainPresentMode, .oldSwapchain = oldSwapchain, .clipped = true, }; uint32_t i; err = demo->fpCreateSwapchainKHR(demo->device, &swapchain_ci, NULL, &demo->swapchain); assert(!err); // If we just re-created an existing swapchain, we should destroy the old // swapchain at this point. // Note: destroying the swapchain also cleans up all its associated // presentable images once the platform is done with them. if (oldSwapchain != VK_NULL_HANDLE) { demo->fpDestroySwapchainKHR(demo->device, oldSwapchain, NULL); } err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, NULL); assert(!err); VkImage *swapchainImages = (VkImage *)malloc(demo->swapchainImageCount * sizeof(VkImage)); assert(swapchainImages); err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, swapchainImages); assert(!err); demo->swapchain_image_resources = (SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * demo->swapchainImageCount); assert(demo->swapchain_image_resources); for (i = 0; i < demo->swapchainImageCount; i++) { VkImageViewCreateInfo color_image_view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .format = demo->format, .components = { .r = VK_COMPONENT_SWIZZLE_R, .g = VK_COMPONENT_SWIZZLE_G, .b = VK_COMPONENT_SWIZZLE_B, .a = VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, .viewType = VK_IMAGE_VIEW_TYPE_2D, .flags = 0, }; demo->swapchain_image_resources[i].image = swapchainImages[i]; color_image_view.image = demo->swapchain_image_resources[i].image; err = vkCreateImageView(demo->device, &color_image_view, NULL, &demo->swapchain_image_resources[i].view); assert(!err); } if (demo->VK_GOOGLE_display_timing_enabled) { VkRefreshCycleDurationGOOGLE rc_dur; err = demo->fpGetRefreshCycleDurationGOOGLE(demo->device, demo->swapchain, &rc_dur); assert(!err); demo->refresh_duration = rc_dur.refreshDuration; demo->syncd_with_actual_presents = false; // Initially target 1X the refresh duration: demo->target_IPD = demo->refresh_duration; demo->refresh_duration_multiplier = 1; demo->prev_desired_present_time = 0; demo->next_present_id = 1; } if (NULL != presentModes) { free(presentModes); } } static void demo_prepare_depth(struct demo *demo) { const VkFormat depth_format = VK_FORMAT_D16_UNORM; const VkImageCreateInfo image = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = NULL, .imageType = VK_IMAGE_TYPE_2D, .format = depth_format, .extent = {demo->width, demo->height, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, .flags = 0, }; VkImageViewCreateInfo view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .image = VK_NULL_HANDLE, .format = depth_format, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, .flags = 0, .viewType = VK_IMAGE_VIEW_TYPE_2D, }; VkMemoryRequirements mem_reqs; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; demo->depth.format = depth_format; /* create image */ err = vkCreateImage(demo->device, &image, NULL, &demo->depth.image); assert(!err); vkGetImageMemoryRequirements(demo->device, demo->depth.image, &mem_reqs); assert(!err); demo->depth.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; demo->depth.mem_alloc.pNext = NULL; demo->depth.mem_alloc.allocationSize = mem_reqs.size; demo->depth.mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &demo->depth.mem_alloc.memoryTypeIndex); assert(pass); /* allocate memory */ err = vkAllocateMemory(demo->device, &demo->depth.mem_alloc, NULL, &demo->depth.mem); assert(!err); /* bind memory */ err = vkBindImageMemory(demo->device, demo->depth.image, demo->depth.mem, 0); assert(!err); /* create image view */ view.image = demo->depth.image; err = vkCreateImageView(demo->device, &view, NULL, &demo->depth.view); assert(!err); } /* Load a ppm file into memory */ bool loadTexture(const char *filename, uint8_t *rgba_data, VkSubresourceLayout *layout, int32_t *width, int32_t *height) { #if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK)) filename =[[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent: @(filename)].UTF8String; #endif #ifdef __ANDROID__ #include <lunarg.ppm.h> char *cPtr; cPtr = (char*)lunarg_ppm; if ((unsigned char*)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "P6\n", 3)) { return false; } while(strncmp(cPtr++, "\n", 1)); sscanf(cPtr, "%u %u", width, height); if (rgba_data == NULL) { return true; } while(strncmp(cPtr++, "\n", 1)); if ((unsigned char*)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "255\n", 4)) { return false; } while(strncmp(cPtr++, "\n", 1)); for (int y = 0; y < *height; y++) { uint8_t *rowPtr = rgba_data; for (int x = 0; x < *width; x++) { memcpy(rowPtr, cPtr, 3); rowPtr[3] = 255; /* Alpha of 1 */ rowPtr += 4; cPtr += 3; } rgba_data += layout->rowPitch; } return true; #else FILE *fPtr = fopen(filename, "rb"); char header[256], *cPtr, *tmp; if (!fPtr) return false; cPtr = fgets(header, 256, fPtr); // P6 if (cPtr == NULL || strncmp(header, "P6\n", 3)) { fclose(fPtr); return false; } do { cPtr = fgets(header, 256, fPtr); if (cPtr == NULL) { fclose(fPtr); return false; } } while (!strncmp(header, "#", 1)); sscanf(header, "%u %u", width, height); if (rgba_data == NULL) { fclose(fPtr); return true; } tmp = fgets(header, 256, fPtr); // Format (void)tmp; if (cPtr == NULL || strncmp(header, "255\n", 3)) { fclose(fPtr); return false; } for (int y = 0; y < *height; y++) { uint8_t *rowPtr = rgba_data; for (int x = 0; x < *width; x++) { size_t s = fread(rowPtr, 3, 1, fPtr); (void)s; rowPtr[3] = 255; /* Alpha of 1 */ rowPtr += 4; } rgba_data += layout->rowPitch; } fclose(fPtr); return true; #endif } static void demo_prepare_texture_image(struct demo *demo, const char *filename, struct texture_object *tex_obj, VkImageTiling tiling, VkImageUsageFlags usage, VkFlags required_props) { const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; int32_t tex_width; int32_t tex_height; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height)) { ERR_EXIT("Failed to load textures", "Load Texture Failure"); } tex_obj->tex_width = tex_width; tex_obj->tex_height = tex_height; const VkImageCreateInfo image_create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = NULL, .imageType = VK_IMAGE_TYPE_2D, .format = tex_format, .extent = {tex_width, tex_height, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = tiling, .usage = usage, .flags = 0, .initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED, }; VkMemoryRequirements mem_reqs; err = vkCreateImage(demo->device, &image_create_info, NULL, &tex_obj->image); assert(!err); vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs); tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; tex_obj->mem_alloc.pNext = NULL; tex_obj->mem_alloc.allocationSize = mem_reqs.size; tex_obj->mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, required_props, &tex_obj->mem_alloc.memoryTypeIndex); assert(pass); /* allocate memory */ err = vkAllocateMemory(demo->device, &tex_obj->mem_alloc, NULL, &(tex_obj->mem)); assert(!err); /* bind memory */ err = vkBindImageMemory(demo->device, tex_obj->image, tex_obj->mem, 0); assert(!err); if (required_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { const VkImageSubresource subres = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = 0, .arrayLayer = 0, }; VkSubresourceLayout layout; void *data; vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres, &layout); err = vkMapMemory(demo->device, tex_obj->mem, 0, tex_obj->mem_alloc.allocationSize, 0, &data); assert(!err); if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) { fprintf(stderr, "Error loading texture: %s\n", filename); } vkUnmapMemory(demo->device, tex_obj->mem); } tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } static void demo_destroy_texture_image(struct demo *demo, struct texture_object *tex_objs) { /* clean up staging resources */ vkFreeMemory(demo->device, tex_objs->mem, NULL); vkDestroyImage(demo->device, tex_objs->image, NULL); } static void demo_prepare_textures(struct demo *demo) { const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; VkFormatProperties props; uint32_t i; vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { VkResult U_ASSERT_ONLY err; if ((props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !demo->use_staging_buffer) { /* Device can texture using linear textures */ demo_prepare_texture_image( demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); // Nothing in the pipeline needs to be complete to start, and don't allow fragment // shader to run until layout transition completes demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, demo->textures[i].imageLayout, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); demo->staging_texture.image = 0; } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) { /* Must use staging buffer to copy linear texture to optimized */ memset(&demo->staging_texture, 0, sizeof(demo->staging_texture)); demo_prepare_texture_image( demo, tex_files[i], &demo->staging_texture, VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); demo_prepare_texture_image( demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_OPTIMAL, (VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT), VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); demo_set_image_layout(demo, demo->staging_texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VkImageCopy copy_region = { .srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, .srcOffset = {0, 0, 0}, .dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, .dstOffset = {0, 0, 0}, .extent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1}, }; vkCmdCopyImage( demo->cmd, demo->staging_texture.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, demo->textures[i].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region); demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, demo->textures[i].imageLayout, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); } else { /* Can't support VK_FORMAT_R8G8B8A8_UNORM !? */ assert(!"No support for R8G8B8A8_UNORM as texture image format"); } const VkSamplerCreateInfo sampler = { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .pNext = NULL, .magFilter = VK_FILTER_NEAREST, .minFilter = VK_FILTER_NEAREST, .mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST, .addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .mipLodBias = 0.0f, .anisotropyEnable = VK_FALSE, .maxAnisotropy = 1, .compareOp = VK_COMPARE_OP_NEVER, .minLod = 0.0f, .maxLod = 0.0f, .borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE, .unnormalizedCoordinates = VK_FALSE, }; VkImageViewCreateInfo view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .image = VK_NULL_HANDLE, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = tex_format, .components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}, .flags = 0, }; /* create sampler */ err = vkCreateSampler(demo->device, &sampler, NULL, &demo->textures[i].sampler); assert(!err); /* create image view */ view.image = demo->textures[i].image; err = vkCreateImageView(demo->device, &view, NULL, &demo->textures[i].view); assert(!err); } } void demo_prepare_cube_data_buffers(struct demo *demo) { VkBufferCreateInfo buf_info; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo mem_alloc; uint8_t *pData; mat4x4 MVP, VP; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; struct vktexcube_vs_uniform data; mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); mat4x4_mul(MVP, VP, demo->model_matrix); memcpy(data.mvp, MVP, sizeof(MVP)); // dumpMatrix("MVP", MVP); for (unsigned int i = 0; i < 12 * 3; i++) { data.position[i][0] = g_vertex_buffer_data[i * 3]; data.position[i][1] = g_vertex_buffer_data[i * 3 + 1]; data.position[i][2] = g_vertex_buffer_data[i * 3 + 2]; data.position[i][3] = 1.0f; data.attr[i][0] = g_uv_buffer_data[2 * i]; data.attr[i][1] = g_uv_buffer_data[2 * i + 1]; data.attr[i][2] = 0; data.attr[i][3] = 0; } memset(&buf_info, 0, sizeof(buf_info)); buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; buf_info.size = sizeof(data); for (unsigned int i = 0; i < demo->swapchainImageCount; i++) { err = vkCreateBuffer(demo->device, &buf_info, NULL, &demo->swapchain_image_resources[i].uniform_buffer); assert(!err); vkGetBufferMemoryRequirements(demo->device, demo->swapchain_image_resources[i].uniform_buffer, &mem_reqs); mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mem_alloc.pNext = NULL; mem_alloc.allocationSize = mem_reqs.size; mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties( demo, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &mem_alloc.memoryTypeIndex); assert(pass); err = vkAllocateMemory(demo->device, &mem_alloc, NULL, &demo->swapchain_image_resources[i].uniform_memory); assert(!err); err = vkMapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, 0, VK_WHOLE_SIZE, 0, (void **)&pData); assert(!err); memcpy(pData, &data, sizeof data); vkUnmapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory); err = vkBindBufferMemory(demo->device, demo->swapchain_image_resources[i].uniform_buffer, demo->swapchain_image_resources[i].uniform_memory, 0); assert(!err); } } static void demo_prepare_descriptor_layout(struct demo *demo) { const VkDescriptorSetLayoutBinding layout_bindings[2] = { [0] = { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, .pImmutableSamplers = NULL, }, [1] = { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = DEMO_TEXTURE_COUNT, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL, }, }; const VkDescriptorSetLayoutCreateInfo descriptor_layout = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .pNext = NULL, .bindingCount = 2, .pBindings = layout_bindings, }; VkResult U_ASSERT_ONLY err; err = vkCreateDescriptorSetLayout(demo->device, &descriptor_layout, NULL, &demo->desc_layout); assert(!err); const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .pNext = NULL, .setLayoutCount = 1, .pSetLayouts = &demo->desc_layout, }; err = vkCreatePipelineLayout(demo->device, &pPipelineLayoutCreateInfo, NULL, &demo->pipeline_layout); assert(!err); } static void demo_prepare_render_pass(struct demo *demo) { // The initial layout for the color and depth attachments will be LAYOUT_UNDEFINED // because at the start of the renderpass, we don't care about their contents. // At the start of the subpass, the color attachment's layout will be transitioned // to LAYOUT_COLOR_ATTACHMENT_OPTIMAL and the depth stencil attachment's layout // will be transitioned to LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL. At the end of // the renderpass, the color attachment's layout will be transitioned to // LAYOUT_PRESENT_SRC_KHR to be ready to present. This is all done as part of // the renderpass, no barriers are necessary. const VkAttachmentDescription attachments[2] = { [0] = { .format = demo->format, .flags = 0, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, }, [1] = { .format = demo->depth.format, .flags = 0, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, }; const VkAttachmentReference color_reference = { .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }; const VkAttachmentReference depth_reference = { .attachment = 1, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }; const VkSubpassDescription subpass = { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .flags = 0, .inputAttachmentCount = 0, .pInputAttachments = NULL, .colorAttachmentCount = 1, .pColorAttachments = &color_reference, .pResolveAttachments = NULL, .pDepthStencilAttachment = &depth_reference, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }; const VkRenderPassCreateInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .pNext = NULL, .flags = 0, .attachmentCount = 2, .pAttachments = attachments, .subpassCount = 1, .pSubpasses = &subpass, .dependencyCount = 0, .pDependencies = NULL, }; VkResult U_ASSERT_ONLY err; err = vkCreateRenderPass(demo->device, &rp_info, NULL, &demo->render_pass); assert(!err); } static VkShaderModule demo_prepare_shader_module(struct demo *demo, const uint32_t *code, size_t size) { VkShaderModule module; VkShaderModuleCreateInfo moduleCreateInfo; VkResult U_ASSERT_ONLY err; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.flags = 0; moduleCreateInfo.codeSize = size; moduleCreateInfo.pCode = code; err = vkCreateShaderModule(demo->device, &moduleCreateInfo, NULL, &module); assert(!err); return module; } static void demo_prepare_vs(struct demo *demo) { const uint32_t vs_code[] = { #include "cube.vert.inc" }; demo->vert_shader_module = demo_prepare_shader_module(demo, vs_code, sizeof(vs_code)); } static void demo_prepare_fs(struct demo *demo) { const uint32_t fs_code[] = { #include "cube.frag.inc" }; demo->frag_shader_module = demo_prepare_shader_module(demo, fs_code, sizeof(fs_code)); } static void demo_prepare_pipeline(struct demo *demo) { VkGraphicsPipelineCreateInfo pipeline; VkPipelineCacheCreateInfo pipelineCache; VkPipelineVertexInputStateCreateInfo vi; VkPipelineInputAssemblyStateCreateInfo ia; VkPipelineRasterizationStateCreateInfo rs; VkPipelineColorBlendStateCreateInfo cb; VkPipelineDepthStencilStateCreateInfo ds; VkPipelineViewportStateCreateInfo vp; VkPipelineMultisampleStateCreateInfo ms; VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE]; VkPipelineDynamicStateCreateInfo dynamicState; VkResult U_ASSERT_ONLY err; memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); memset(&dynamicState, 0, sizeof dynamicState); dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pDynamicStates = dynamicStateEnables; memset(&pipeline, 0, sizeof(pipeline)); pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline.layout = demo->pipeline_layout; memset(&vi, 0, sizeof(vi)); vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; memset(&ia, 0, sizeof(ia)); ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; memset(&rs, 0, sizeof(rs)); rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.cullMode = VK_CULL_MODE_BACK_BIT; rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rs.depthClampEnable = VK_FALSE; rs.rasterizerDiscardEnable = VK_FALSE; rs.depthBiasEnable = VK_FALSE; rs.lineWidth = 1.0f; memset(&cb, 0, sizeof(cb)); cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; VkPipelineColorBlendAttachmentState att_state[1]; memset(att_state, 0, sizeof(att_state)); att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_FALSE; cb.attachmentCount = 1; cb.pAttachments = att_state; memset(&vp, 0, sizeof(vp)); vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vp.viewportCount = 1; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; vp.scissorCount = 1; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; memset(&ds, 0, sizeof(ds)); ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; ds.depthTestEnable = VK_TRUE; ds.depthWriteEnable = VK_TRUE; ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; ds.depthBoundsTestEnable = VK_FALSE; ds.back.failOp = VK_STENCIL_OP_KEEP; ds.back.passOp = VK_STENCIL_OP_KEEP; ds.back.compareOp = VK_COMPARE_OP_ALWAYS; ds.stencilTestEnable = VK_FALSE; ds.front = ds.back; memset(&ms, 0, sizeof(ms)); ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms.pSampleMask = NULL; ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; demo_prepare_vs(demo); demo_prepare_fs(demo); // Two stages: vs and fs VkPipelineShaderStageCreateInfo shaderStages[2]; memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo)); shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderStages[0].module = demo->vert_shader_module; shaderStages[0].pName = "main"; shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderStages[1].module = demo->frag_shader_module; shaderStages[1].pName = "main"; memset(&pipelineCache, 0, sizeof(pipelineCache)); pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; err = vkCreatePipelineCache(demo->device, &pipelineCache, NULL, &demo->pipelineCache); assert(!err); pipeline.pVertexInputState = &vi; pipeline.pInputAssemblyState = &ia; pipeline.pRasterizationState = &rs; pipeline.pColorBlendState = &cb; pipeline.pMultisampleState = &ms; pipeline.pViewportState = &vp; pipeline.pDepthStencilState = &ds; pipeline.stageCount = ARRAY_SIZE(shaderStages); pipeline.pStages = shaderStages; pipeline.renderPass = demo->render_pass; pipeline.pDynamicState = &dynamicState; pipeline.renderPass = demo->render_pass; err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1, &pipeline, NULL, &demo->pipeline); assert(!err); vkDestroyShaderModule(demo->device, demo->frag_shader_module, NULL); vkDestroyShaderModule(demo->device, demo->vert_shader_module, NULL); } static void demo_prepare_descriptor_pool(struct demo *demo) { const VkDescriptorPoolSize type_counts[2] = { [0] = { .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = demo->swapchainImageCount, }, [1] = { .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = demo->swapchainImageCount * DEMO_TEXTURE_COUNT, }, }; const VkDescriptorPoolCreateInfo descriptor_pool = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .pNext = NULL, .maxSets = demo->swapchainImageCount, .poolSizeCount = 2, .pPoolSizes = type_counts, }; VkResult U_ASSERT_ONLY err; err = vkCreateDescriptorPool(demo->device, &descriptor_pool, NULL, &demo->desc_pool); assert(!err); } static void demo_prepare_descriptor_set(struct demo *demo) { VkDescriptorImageInfo tex_descs[DEMO_TEXTURE_COUNT]; VkWriteDescriptorSet writes[2]; VkResult U_ASSERT_ONLY err; VkDescriptorSetAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .pNext = NULL, .descriptorPool = demo->desc_pool, .descriptorSetCount = 1, .pSetLayouts = &demo->desc_layout}; VkDescriptorBufferInfo buffer_info; buffer_info.offset = 0; buffer_info.range = sizeof(struct vktexcube_vs_uniform); memset(&tex_descs, 0, sizeof(tex_descs)); for (unsigned int i = 0; i < DEMO_TEXTURE_COUNT; i++) { tex_descs[i].sampler = demo->textures[i].sampler; tex_descs[i].imageView = demo->textures[i].view; tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL; } memset(&writes, 0, sizeof(writes)); writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[0].descriptorCount = 1; writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; writes[0].pBufferInfo = &buffer_info; writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[1].dstBinding = 1; writes[1].descriptorCount = DEMO_TEXTURE_COUNT; writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[1].pImageInfo = tex_descs; for (unsigned int i = 0; i < demo->swapchainImageCount; i++) { err = vkAllocateDescriptorSets(demo->device, &alloc_info, &demo->swapchain_image_resources[i].descriptor_set); assert(!err); buffer_info.buffer = demo->swapchain_image_resources[i].uniform_buffer; writes[0].dstSet = demo->swapchain_image_resources[i].descriptor_set; writes[1].dstSet = demo->swapchain_image_resources[i].descriptor_set; vkUpdateDescriptorSets(demo->device, 2, writes, 0, NULL); } } static void demo_prepare_framebuffers(struct demo *demo) { VkImageView attachments[2]; attachments[1] = demo->depth.view; const VkFramebufferCreateInfo fb_info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .pNext = NULL, .renderPass = demo->render_pass, .attachmentCount = 2, .pAttachments = attachments, .width = demo->width, .height = demo->height, .layers = 1, }; VkResult U_ASSERT_ONLY err; uint32_t i; for (i = 0; i < demo->swapchainImageCount; i++) { attachments[0] = demo->swapchain_image_resources[i].view; err = vkCreateFramebuffer(demo->device, &fb_info, NULL, &demo->swapchain_image_resources[i].framebuffer); assert(!err); } } static void demo_prepare(struct demo *demo) { VkResult U_ASSERT_ONLY err; const VkCommandPoolCreateInfo cmd_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .pNext = NULL, .queueFamilyIndex = demo->graphics_queue_family_index, .flags = 0, }; err = vkCreateCommandPool(demo->device, &cmd_pool_info, NULL, &demo->cmd_pool); assert(!err); const VkCommandBufferAllocateInfo cmd = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = demo->cmd_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->cmd); assert(!err); VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = 0, .pInheritanceInfo = NULL, }; err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info); assert(!err); demo_prepare_buffers(demo); demo_prepare_depth(demo); demo_prepare_textures(demo); demo_prepare_cube_data_buffers(demo); demo_prepare_descriptor_layout(demo); demo_prepare_render_pass(demo); demo_prepare_pipeline(demo); for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->swapchain_image_resources[i].cmd); assert(!err); } if (demo->separate_present_queue) { const VkCommandPoolCreateInfo present_cmd_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .pNext = NULL, .queueFamilyIndex = demo->present_queue_family_index, .flags = 0, }; err = vkCreateCommandPool(demo->device, &present_cmd_pool_info, NULL, &demo->present_cmd_pool); assert(!err); const VkCommandBufferAllocateInfo present_cmd_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = demo->present_cmd_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { err = vkAllocateCommandBuffers( demo->device, &present_cmd_info, &demo->swapchain_image_resources[i].graphics_to_present_cmd); assert(!err); demo_build_image_ownership_cmd(demo, i); } } demo_prepare_descriptor_pool(demo); demo_prepare_descriptor_set(demo); demo_prepare_framebuffers(demo); for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { demo->current_buffer = i; demo_draw_build_cmd(demo, demo->swapchain_image_resources[i].cmd); } /* * Prepare functions above may generate pipeline commands * that need to be flushed before beginning the render loop. */ demo_flush_init_cmd(demo); if (demo->staging_texture.image) { demo_destroy_texture_image(demo, &demo->staging_texture); } demo->current_buffer = 0; demo->prepared = true; } static void demo_cleanup(struct demo *demo) { uint32_t i; demo->prepared = false; vkDeviceWaitIdle(demo->device); // Wait for fences from present operations for (i = 0; i < FRAME_LAG; i++) { vkWaitForFences(demo->device, 1, &demo->fences[i], VK_TRUE, UINT64_MAX); vkDestroyFence(demo->device, demo->fences[i], NULL); vkDestroySemaphore(demo->device, demo->image_acquired_semaphores[i], NULL); vkDestroySemaphore(demo->device, demo->draw_complete_semaphores[i], NULL); if (demo->separate_present_queue) { vkDestroySemaphore(demo->device, demo->image_ownership_semaphores[i], NULL); } } for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL); } vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); vkDestroyPipeline(demo->device, demo->pipeline, NULL); vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); vkDestroyRenderPass(demo->device, demo->render_pass, NULL); vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { vkDestroyImageView(demo->device, demo->textures[i].view, NULL); vkDestroyImage(demo->device, demo->textures[i].image, NULL); vkFreeMemory(demo->device, demo->textures[i].mem, NULL); vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); } demo->fpDestroySwapchainKHR(demo->device, demo->swapchain, NULL); vkDestroyImageView(demo->device, demo->depth.view, NULL); vkDestroyImage(demo->device, demo->depth.image, NULL); vkFreeMemory(demo->device, demo->depth.mem, NULL); for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->swapchain_image_resources[i].cmd); vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL); vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL); } free(demo->swapchain_image_resources); free(demo->queue_props); vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); if (demo->separate_present_queue) { vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL); } vkDeviceWaitIdle(demo->device); vkDestroyDevice(demo->device, NULL); if (demo->validate) { demo->DestroyDebugReportCallback(demo->inst, demo->msg_callback, NULL); } vkDestroySurfaceKHR(demo->inst, demo->surface, NULL); #if defined(VK_USE_PLATFORM_XLIB_KHR) XDestroyWindow(demo->display, demo->xlib_window); XCloseDisplay(demo->display); #elif defined(VK_USE_PLATFORM_XCB_KHR) xcb_destroy_window(demo->connection, demo->xcb_window); xcb_disconnect(demo->connection); free(demo->atom_wm_delete_window); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) wl_keyboard_destroy(demo->keyboard); wl_pointer_destroy(demo->pointer); wl_seat_destroy(demo->seat); wl_shell_surface_destroy(demo->shell_surface); wl_surface_destroy(demo->window); wl_shell_destroy(demo->shell); wl_compositor_destroy(demo->compositor); wl_registry_destroy(demo->registry); wl_display_disconnect(demo->display); #elif defined(VK_USE_PLATFORM_MIR_KHR) #endif vkDestroyInstance(demo->inst, NULL); } static void demo_resize(struct demo *demo) { uint32_t i; // Don't react to resize until after first initialization. if (!demo->prepared) { return; } // In order to properly resize the window, we must re-create the swapchain // AND redo the command buffers, etc. // // First, perform part of the demo_cleanup() function: demo->prepared = false; vkDeviceWaitIdle(demo->device); for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL); } vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); vkDestroyPipeline(demo->device, demo->pipeline, NULL); vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); vkDestroyRenderPass(demo->device, demo->render_pass, NULL); vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { vkDestroyImageView(demo->device, demo->textures[i].view, NULL); vkDestroyImage(demo->device, demo->textures[i].image, NULL); vkFreeMemory(demo->device, demo->textures[i].mem, NULL); vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); } vkDestroyImageView(demo->device, demo->depth.view, NULL); vkDestroyImage(demo->device, demo->depth.image, NULL); vkFreeMemory(demo->device, demo->depth.mem, NULL); for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->swapchain_image_resources[i].cmd); vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL); vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL); } vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); if (demo->separate_present_queue) { vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL); } free(demo->swapchain_image_resources); // Second, re-perform the demo_prepare() function, which will re-create the // swapchain: demo_prepare(demo); } // On MS-Windows, make this a global, so it's available to WndProc() struct demo demo; #if defined(VK_USE_PLATFORM_WIN32_KHR) static void demo_run(struct demo *demo) { if (!demo->prepared) return; demo_draw(demo); demo->curFrame++; if (demo->frameCount != INT_MAX && demo->curFrame == demo->frameCount) { PostQuitMessage(validation_error); } } // MS-Windows event handling function: LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(validation_error); break; case WM_PAINT: // The validation callback calls MessageBox which can generate paint // events - don't make more Vulkan calls if we got here from the // callback if (!in_callback) { demo_run(&demo); } break; case WM_GETMINMAXINFO: // set window's minimum size ((MINMAXINFO*)lParam)->ptMinTrackSize = demo.minsize; return 0; case WM_SIZE: // Resize the application to the new window size, except when // it was minimized. Vulkan doesn't support images or swapchains // with width=0 and height=0. if (wParam != SIZE_MINIMIZED) { demo.width = lParam & 0xffff; demo.height = (lParam & 0xffff0000) >> 16; demo_resize(&demo); } break; default: break; } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } static void demo_create_window(struct demo *demo) { WNDCLASSEX win_class; // Initialize the window class structure: win_class.cbSize = sizeof(WNDCLASSEX); win_class.style = CS_HREDRAW | CS_VREDRAW; win_class.lpfnWndProc = WndProc; win_class.cbClsExtra = 0; win_class.cbWndExtra = 0; win_class.hInstance = demo->connection; // hInstance win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION); win_class.hCursor = LoadCursor(NULL, IDC_ARROW); win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH); win_class.lpszMenuName = NULL; win_class.lpszClassName = demo->name; win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // Register window class: if (!RegisterClassEx(&win_class)) { // It didn't work, so try to give a useful error: printf("Unexpected error trying to start the application!\n"); fflush(stdout); exit(1); } // Create window with the registered class: RECT wr = {0, 0, demo->width, demo->height}; AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE); demo->window = CreateWindowEx(0, demo->name, // class name demo->name, // app name WS_OVERLAPPEDWINDOW | // window style WS_VISIBLE | WS_SYSMENU, 100, 100, // x/y coords wr.right - wr.left, // width wr.bottom - wr.top, // height NULL, // handle to parent NULL, // handle to menu demo->connection, // hInstance NULL); // no extra parameters if (!demo->window) { // It didn't work, so try to give a useful error: printf("Cannot create a window in which to draw!\n"); fflush(stdout); exit(1); } // Window client area size must be at least 1 pixel high, to prevent crash. demo->minsize.x = GetSystemMetrics(SM_CXMINTRACK); demo->minsize.y = GetSystemMetrics(SM_CYMINTRACK)+1; } #elif defined(VK_USE_PLATFORM_XLIB_KHR) static void demo_create_xlib_window(struct demo *demo) { XInitThreads(); demo->display = XOpenDisplay(NULL); long visualMask = VisualScreenMask; int numberOfVisuals; XVisualInfo vInfoTemplate={}; vInfoTemplate.screen = DefaultScreen(demo->display); XVisualInfo *visualInfo = XGetVisualInfo(demo->display, visualMask, &vInfoTemplate, &numberOfVisuals); Colormap colormap = XCreateColormap( demo->display, RootWindow(demo->display, vInfoTemplate.screen), visualInfo->visual, AllocNone); XSetWindowAttributes windowAttributes={}; windowAttributes.colormap = colormap; windowAttributes.background_pixel = 0xFFFFFFFF; windowAttributes.border_pixel = 0; windowAttributes.event_mask = KeyPressMask | KeyReleaseMask | StructureNotifyMask | ExposureMask; demo->xlib_window = XCreateWindow( demo->display, RootWindow(demo->display, vInfoTemplate.screen), 0, 0, demo->width, demo->height, 0, visualInfo->depth, InputOutput, visualInfo->visual, CWBackPixel | CWBorderPixel | CWEventMask | CWColormap, &windowAttributes); XSelectInput(demo->display, demo->xlib_window, ExposureMask | KeyPressMask); XMapWindow(demo->display, demo->xlib_window); XFlush(demo->display); demo->xlib_wm_delete_window = XInternAtom(demo->display, "WM_DELETE_WINDOW", False); } static void demo_handle_xlib_event(struct demo *demo, const XEvent *event) { switch(event->type) { case ClientMessage: if ((Atom)event->xclient.data.l[0] == demo->xlib_wm_delete_window) demo->quit = true; break; case KeyPress: switch (event->xkey.keycode) { case 0x9: // Escape demo->quit = true; break; case 0x71: // left arrow key demo->spin_angle -= demo->spin_increment; break; case 0x72: // right arrow key demo->spin_angle += demo->spin_increment; break; case 0x41: // space bar demo->pause = !demo->pause; break; } break; case ConfigureNotify: if ((demo->width != event->xconfigure.width) || (demo->height != event->xconfigure.height)) { demo->width = event->xconfigure.width; demo->height = event->xconfigure.height; demo_resize(demo); } break; default: break; } } static void demo_run_xlib(struct demo *demo) { while (!demo->quit) { XEvent event; if (demo->pause) { XNextEvent(demo->display, &event); demo_handle_xlib_event(demo, &event); } while (XPending(demo->display) > 0) { XNextEvent(demo->display, &event); demo_handle_xlib_event(demo, &event); } demo_draw(demo); demo->curFrame++; if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) demo->quit = true; } } #elif defined(VK_USE_PLATFORM_XCB_KHR) static void demo_handle_xcb_event(struct demo *demo, const xcb_generic_event_t *event) { uint8_t event_code = event->response_type & 0x7f; switch (event_code) { case XCB_EXPOSE: // TODO: Resize window break; case XCB_CLIENT_MESSAGE: if ((*(xcb_client_message_event_t *)event).data.data32[0] == (*demo->atom_wm_delete_window).atom) { demo->quit = true; } break; case XCB_KEY_RELEASE: { const xcb_key_release_event_t *key = (const xcb_key_release_event_t *)event; switch (key->detail) { case 0x9: // Escape demo->quit = true; break; case 0x71: // left arrow key demo->spin_angle -= demo->spin_increment; break; case 0x72: // right arrow key demo->spin_angle += demo->spin_increment; break; case 0x41: // space bar demo->pause = !demo->pause; break; } } break; case XCB_CONFIGURE_NOTIFY: { const xcb_configure_notify_event_t *cfg = (const xcb_configure_notify_event_t *)event; if ((demo->width != cfg->width) || (demo->height != cfg->height)) { demo->width = cfg->width; demo->height = cfg->height; demo_resize(demo); } } break; default: break; } } static void demo_run_xcb(struct demo *demo) { xcb_flush(demo->connection); while (!demo->quit) { xcb_generic_event_t *event; if (demo->pause) { event = xcb_wait_for_event(demo->connection); } else { event = xcb_poll_for_event(demo->connection); } while (event) { demo_handle_xcb_event(demo, event); free(event); event = xcb_poll_for_event(demo->connection); } demo_draw(demo); demo->curFrame++; if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) demo->quit = true; } } static void demo_create_xcb_window(struct demo *demo) { uint32_t value_mask, value_list[32]; demo->xcb_window = xcb_generate_id(demo->connection); value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK; value_list[0] = demo->screen->black_pixel; value_list[1] = XCB_EVENT_MASK_KEY_RELEASE | XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_STRUCTURE_NOTIFY; xcb_create_window(demo->connection, XCB_COPY_FROM_PARENT, demo->xcb_window, demo->screen->root, 0, 0, demo->width, demo->height, 0, XCB_WINDOW_CLASS_INPUT_OUTPUT, demo->screen->root_visual, value_mask, value_list); /* Magic code that will send notification when window is destroyed */ xcb_intern_atom_cookie_t cookie = xcb_intern_atom(demo->connection, 1, 12, "WM_PROTOCOLS"); xcb_intern_atom_reply_t *reply = xcb_intern_atom_reply(demo->connection, cookie, 0); xcb_intern_atom_cookie_t cookie2 = xcb_intern_atom(demo->connection, 0, 16, "WM_DELETE_WINDOW"); demo->atom_wm_delete_window = xcb_intern_atom_reply(demo->connection, cookie2, 0); xcb_change_property(demo->connection, XCB_PROP_MODE_REPLACE, demo->xcb_window, (*reply).atom, 4, 32, 1, &(*demo->atom_wm_delete_window).atom); free(reply); xcb_map_window(demo->connection, demo->xcb_window); // Force the x/y coordinates to 100,100 results are identical in consecutive // runs const uint32_t coords[] = {100, 100}; xcb_configure_window(demo->connection, demo->xcb_window, XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y, coords); } // VK_USE_PLATFORM_XCB_KHR #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) static void demo_run(struct demo *demo) { while (!demo->quit) { if (demo->pause) { wl_display_dispatch(demo->display); // block and wait for input } else { wl_display_dispatch_pending(demo->display); // don't block demo_draw(demo); demo->curFrame++; if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) demo->quit = true; } } } static void handle_ping(void *data UNUSED, struct wl_shell_surface *shell_surface, uint32_t serial) { wl_shell_surface_pong(shell_surface, serial); } static void handle_configure(void *data UNUSED, struct wl_shell_surface *shell_surface UNUSED, uint32_t edges UNUSED, int32_t width UNUSED, int32_t height UNUSED) {} static void handle_popup_done(void *data UNUSED, struct wl_shell_surface *shell_surface UNUSED) {} static const struct wl_shell_surface_listener shell_surface_listener = { handle_ping, handle_configure, handle_popup_done}; static void demo_create_window(struct demo *demo) { demo->window = wl_compositor_create_surface(demo->compositor); if (!demo->window) { printf("Can not create wayland_surface from compositor!\n"); fflush(stdout); exit(1); } demo->shell_surface = wl_shell_get_shell_surface(demo->shell, demo->window); if (!demo->shell_surface) { printf("Can not get shell_surface from wayland_surface!\n"); fflush(stdout); exit(1); } wl_shell_surface_add_listener(demo->shell_surface, &shell_surface_listener, demo); wl_shell_surface_set_toplevel(demo->shell_surface); wl_shell_surface_set_title(demo->shell_surface, APP_SHORT_NAME); } #elif defined(VK_USE_PLATFORM_ANDROID_KHR) static void demo_run(struct demo *demo) { if (!demo->prepared) return; demo_draw(demo); demo->curFrame++; } #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_DISPLAY_KHR) static VkResult demo_create_display_surface(struct demo *demo) { VkResult U_ASSERT_ONLY err; uint32_t display_count; uint32_t mode_count; uint32_t plane_count; VkDisplayPropertiesKHR display_props; VkDisplayKHR display; VkDisplayModePropertiesKHR mode_props; VkDisplayPlanePropertiesKHR *plane_props; VkBool32 found_plane = VK_FALSE; uint32_t plane_index; VkExtent2D image_extent; VkDisplaySurfaceCreateInfoKHR create_info; // Get the first display err = vkGetPhysicalDeviceDisplayPropertiesKHR(demo->gpu, &display_count, NULL); assert(!err); if (display_count == 0) { printf("Cannot find any display!\n"); fflush(stdout); exit(1); } display_count = 1; err = vkGetPhysicalDeviceDisplayPropertiesKHR(demo->gpu, &display_count, &display_props); assert(!err || (err == VK_INCOMPLETE)); display = display_props.display; // Get the first mode of the display err = vkGetDisplayModePropertiesKHR(demo->gpu, display, &mode_count, NULL); assert(!err); if (mode_count == 0) { printf("Cannot find any mode for the display!\n"); fflush(stdout); exit(1); } mode_count = 1; err = vkGetDisplayModePropertiesKHR(demo->gpu, display, &mode_count, &mode_props); assert(!err || (err == VK_INCOMPLETE)); // Get the list of planes err = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(demo->gpu, &plane_count, NULL); assert(!err); if (plane_count == 0) { printf("Cannot find any plane!\n"); fflush(stdout); exit(1); } plane_props = malloc(sizeof(VkDisplayPlanePropertiesKHR) * plane_count); assert(plane_props); err = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(demo->gpu, &plane_count, plane_props); assert(!err); // Find a plane compatible with the display for (plane_index = 0; plane_index < plane_count; plane_index++) { uint32_t supported_count; VkDisplayKHR *supported_displays; // Disqualify planes that are bound to a different display if ((plane_props[plane_index].currentDisplay != VK_NULL_HANDLE) && (plane_props[plane_index].currentDisplay != display)) { continue; } err = vkGetDisplayPlaneSupportedDisplaysKHR(demo->gpu, plane_index, &supported_count, NULL); assert(!err); if (supported_count == 0) { continue; } supported_displays = malloc(sizeof(VkDisplayKHR) * supported_count); assert(supported_displays); err = vkGetDisplayPlaneSupportedDisplaysKHR(demo->gpu, plane_index, &supported_count, supported_displays); assert(!err); for (uint32_t i = 0; i < supported_count; i++) { if (supported_displays[i] == display) { found_plane = VK_TRUE; break; } } free(supported_displays); if (found_plane) { break; } } if (!found_plane) { printf("Cannot find a plane compatible with the display!\n"); fflush(stdout); exit(1); } free(plane_props); VkDisplayPlaneCapabilitiesKHR planeCaps; vkGetDisplayPlaneCapabilitiesKHR(demo->gpu, mode_props.displayMode, plane_index, &planeCaps); // Find a supported alpha mode VkDisplayPlaneAlphaFlagBitsKHR alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR; VkDisplayPlaneAlphaFlagBitsKHR alphaModes[4] = { VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR, VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR, VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR, VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR, }; for (uint32_t i = 0; i < sizeof(alphaModes); i++) { if (planeCaps.supportedAlpha & alphaModes[i]) { alphaMode = alphaModes[i]; break; } } image_extent.width = mode_props.parameters.visibleRegion.width; image_extent.height = mode_props.parameters.visibleRegion.height; create_info.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR; create_info.pNext = NULL; create_info.flags = 0; create_info.displayMode = mode_props.displayMode; create_info.planeIndex = plane_index; create_info.planeStackIndex = plane_props[plane_index].currentStackIndex; create_info.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; create_info.alphaMode = alphaMode; create_info.globalAlpha = 1.0f; create_info.imageExtent = image_extent; return vkCreateDisplayPlaneSurfaceKHR(demo->inst, &create_info, NULL, &demo->surface); } static void demo_run_display(struct demo *demo) { while (!demo->quit) { demo_draw(demo); demo->curFrame++; if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) { demo->quit = true; } } } #endif /* * Return 1 (true) if all layer names specified in check_names * can be found in given layer properties. */ static VkBool32 demo_check_layers(uint32_t check_count, char **check_names, uint32_t layer_count, VkLayerProperties *layers) { for (uint32_t i = 0; i < check_count; i++) { VkBool32 found = 0; for (uint32_t j = 0; j < layer_count; j++) { if (!strcmp(check_names[i], layers[j].layerName)) { found = 1; break; } } if (!found) { fprintf(stderr, "Cannot find layer: %s\n", check_names[i]); return 0; } } return 1; } static void demo_init_vk(struct demo *demo) { VkResult err; uint32_t instance_extension_count = 0; uint32_t instance_layer_count = 0; uint32_t validation_layer_count = 0; char **instance_validation_layers = NULL; demo->enabled_extension_count = 0; demo->enabled_layer_count = 0; char *instance_validation_layers_alt1[] = { "VK_LAYER_LUNARG_standard_validation" }; char *instance_validation_layers_alt2[] = { "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation", "VK_LAYER_GOOGLE_unique_objects" }; /* Look for validation layers */ VkBool32 validation_found = 0; if (demo->validate) { err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL); assert(!err); instance_validation_layers = instance_validation_layers_alt1; if (instance_layer_count > 0) { VkLayerProperties *instance_layers = malloc(sizeof (VkLayerProperties) * instance_layer_count); err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers); assert(!err); validation_found = demo_check_layers( ARRAY_SIZE(instance_validation_layers_alt1), instance_validation_layers, instance_layer_count, instance_layers); if (validation_found) { demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt1); demo->enabled_layers[0] = "VK_LAYER_LUNARG_standard_validation"; validation_layer_count = 1; } else { // use alternative set of validation layers instance_validation_layers = instance_validation_layers_alt2; demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt2); validation_found = demo_check_layers( ARRAY_SIZE(instance_validation_layers_alt2), instance_validation_layers, instance_layer_count, instance_layers); validation_layer_count = ARRAY_SIZE(instance_validation_layers_alt2); for (uint32_t i = 0; i < validation_layer_count; i++) { demo->enabled_layers[i] = instance_validation_layers[i]; } } free(instance_layers); } if (!validation_found) { ERR_EXIT("vkEnumerateInstanceLayerProperties failed to find " "required validation layer.\n\n" "Please look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } } /* Look for instance extensions */ VkBool32 surfaceExtFound = 0; VkBool32 platformSurfaceExtFound = 0; memset(demo->extension_names, 0, sizeof(demo->extension_names)); err = vkEnumerateInstanceExtensionProperties( NULL, &instance_extension_count, NULL); assert(!err); if (instance_extension_count > 0) { VkExtensionProperties *instance_extensions = malloc(sizeof(VkExtensionProperties) * instance_extension_count); err = vkEnumerateInstanceExtensionProperties( NULL, &instance_extension_count, instance_extensions); assert(!err); for (uint32_t i = 0; i < instance_extension_count; i++) { if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { surfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME; } #if defined(VK_USE_PLATFORM_WIN32_KHR) if (!strcmp(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_WIN32_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_XLIB_KHR) if (!strcmp(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_XLIB_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_XCB_KHR) if (!strcmp(VK_KHR_XCB_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_XCB_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) if (!strcmp(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_DISPLAY_KHR) if (!strcmp(VK_KHR_DISPLAY_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_DISPLAY_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_ANDROID_KHR) if (!strcmp(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_ANDROID_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_IOS_MVK) if (!strcmp(VK_MVK_IOS_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_MVK_IOS_SURFACE_EXTENSION_NAME; } #elif defined(VK_USE_PLATFORM_MACOS_MVK) if (!strcmp(VK_MVK_MACOS_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_MVK_MACOS_SURFACE_EXTENSION_NAME; } #endif if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (demo->validate) { demo->extension_names[demo->enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; } } assert(demo->enabled_extension_count < 64); } free(instance_extensions); } if (!surfaceExtFound) { ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } if (!platformSurfaceExtFound) { #if defined(VK_USE_PLATFORM_WIN32_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_WIN32_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_IOS_MVK) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_MVK_IOS_SURFACE_EXTENSION_NAME" extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_MACOS_MVK) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_MVK_MACOS_SURFACE_EXTENSION_NAME" extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_XCB_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_XCB_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_DISPLAY_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_DISPLAY_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_ANDROID_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_ANDROID_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #elif defined(VK_USE_PLATFORM_XLIB_KHR) ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_XLIB_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #endif } const VkApplicationInfo app = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pNext = NULL, .pApplicationName = APP_SHORT_NAME, .applicationVersion = 0, .pEngineName = APP_SHORT_NAME, .engineVersion = 0, .apiVersion = VK_API_VERSION_1_0, }; VkInstanceCreateInfo inst_info = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pNext = NULL, .pApplicationInfo = &app, .enabledLayerCount = demo->enabled_layer_count, .ppEnabledLayerNames = (const char *const *)instance_validation_layers, .enabledExtensionCount = demo->enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)demo->extension_names, }; /* * This is info for a temp callback to use during CreateInstance. * After the instance is created, we use the instance-based * function to register the final callback. */ VkDebugReportCallbackCreateInfoEXT dbgCreateInfoTemp; VkValidationFlagsEXT val_flags; if (demo->validate) { dbgCreateInfoTemp.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfoTemp.pNext = NULL; dbgCreateInfoTemp.pfnCallback = demo->use_break ? BreakCallback : dbgFunc; dbgCreateInfoTemp.pUserData = demo; dbgCreateInfoTemp.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT; if (demo->validate_checks_disabled) { val_flags.sType = VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT; val_flags.pNext = NULL; val_flags.disabledValidationCheckCount = 1; VkValidationCheckEXT disabled_check = VK_VALIDATION_CHECK_ALL_EXT; val_flags.pDisabledValidationChecks = &disabled_check; dbgCreateInfoTemp.pNext = (void*)&val_flags; } inst_info.pNext = &dbgCreateInfoTemp; } uint32_t gpu_count; err = vkCreateInstance(&inst_info, NULL, &demo->inst); if (err == VK_ERROR_INCOMPATIBLE_DRIVER) { ERR_EXIT("Cannot find a compatible Vulkan installable client driver " "(ICD).\n\nPlease look at the Getting Started guide for " "additional information.\n", "vkCreateInstance Failure"); } else if (err == VK_ERROR_EXTENSION_NOT_PRESENT) { ERR_EXIT("Cannot find a specified extension library" ".\nMake sure your layers path is set appropriately.\n", "vkCreateInstance Failure"); } else if (err) { ERR_EXIT("vkCreateInstance failed.\n\nDo you have a compatible Vulkan " "installable client driver (ICD) installed?\nPlease look at " "the Getting Started guide for additional information.\n", "vkCreateInstance Failure"); } /* Make initial call to query gpu_count, then second call for gpu info*/ err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, NULL); assert(!err && gpu_count > 0); if (gpu_count > 0) { VkPhysicalDevice *physical_devices = malloc(sizeof(VkPhysicalDevice) * gpu_count); err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, physical_devices); assert(!err); /* For cube demo we just grab the first physical device */ demo->gpu = physical_devices[0]; free(physical_devices); } else { ERR_EXIT("vkEnumeratePhysicalDevices reported zero accessible devices.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) " "installed?\nPlease look at the Getting Started guide for " "additional information.\n", "vkEnumeratePhysicalDevices Failure"); } /* Look for device extensions */ uint32_t device_extension_count = 0; VkBool32 swapchainExtFound = 0; demo->enabled_extension_count = 0; memset(demo->extension_names, 0, sizeof(demo->extension_names)); err = vkEnumerateDeviceExtensionProperties(demo->gpu, NULL, &device_extension_count, NULL); assert(!err); if (device_extension_count > 0) { VkExtensionProperties *device_extensions = malloc(sizeof(VkExtensionProperties) * device_extension_count); err = vkEnumerateDeviceExtensionProperties( demo->gpu, NULL, &device_extension_count, device_extensions); assert(!err); for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) { swapchainExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME; } assert(demo->enabled_extension_count < 64); } if (demo->VK_KHR_incremental_present_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. demo->VK_KHR_incremental_present_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, device_extensions[i].extensionName)) { demo->extension_names[demo->enabled_extension_count++] = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME; demo->VK_KHR_incremental_present_enabled = true; DbgMsg("VK_KHR_incremental_present extension enabled\n"); } assert(demo->enabled_extension_count < 64); } if (!demo->VK_KHR_incremental_present_enabled) { DbgMsg("VK_KHR_incremental_present extension NOT AVAILABLE\n"); } } if (demo->VK_GOOGLE_display_timing_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. demo->VK_GOOGLE_display_timing_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME, device_extensions[i].extensionName)) { demo->extension_names[demo->enabled_extension_count++] = VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME; demo->VK_GOOGLE_display_timing_enabled = true; DbgMsg("VK_GOOGLE_display_timing extension enabled\n"); } assert(demo->enabled_extension_count < 64); } if (!demo->VK_GOOGLE_display_timing_enabled) { DbgMsg("VK_GOOGLE_display_timing extension NOT AVAILABLE\n"); } } free(device_extensions); } if (!swapchainExtFound) { ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find " "the " VK_KHR_SWAPCHAIN_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } if (demo->validate) { demo->CreateDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr( demo->inst, "vkCreateDebugReportCallbackEXT"); demo->DestroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr( demo->inst, "vkDestroyDebugReportCallbackEXT"); if (!demo->CreateDebugReportCallback) { ERR_EXIT( "GetProcAddr: Unable to find vkCreateDebugReportCallbackEXT\n", "vkGetProcAddr Failure"); } if (!demo->DestroyDebugReportCallback) { ERR_EXIT( "GetProcAddr: Unable to find vkDestroyDebugReportCallbackEXT\n", "vkGetProcAddr Failure"); } demo->DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr( demo->inst, "vkDebugReportMessageEXT"); if (!demo->DebugReportMessage) { ERR_EXIT("GetProcAddr: Unable to find vkDebugReportMessageEXT\n", "vkGetProcAddr Failure"); } VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; PFN_vkDebugReportCallbackEXT callback; callback = demo->use_break ? BreakCallback : dbgFunc; dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.pNext = NULL; dbgCreateInfo.pfnCallback = callback; dbgCreateInfo.pUserData = demo; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT; err = demo->CreateDebugReportCallback(demo->inst, &dbgCreateInfo, NULL, &demo->msg_callback); switch (err) { case VK_SUCCESS: break; case VK_ERROR_OUT_OF_HOST_MEMORY: ERR_EXIT("CreateDebugReportCallback: out of host memory\n", "CreateDebugReportCallback Failure"); break; default: ERR_EXIT("CreateDebugReportCallback: unknown failure\n", "CreateDebugReportCallback Failure"); break; } } vkGetPhysicalDeviceProperties(demo->gpu, &demo->gpu_props); /* Call with NULL data to get count */ vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_family_count, NULL); assert(demo->queue_family_count >= 1); demo->queue_props = (VkQueueFamilyProperties *)malloc( demo->queue_family_count * sizeof(VkQueueFamilyProperties)); vkGetPhysicalDeviceQueueFamilyProperties( demo->gpu, &demo->queue_family_count, demo->queue_props); // Query fine-grained feature support for this device. // If app has specific feature requirements it should check supported // features based on this query VkPhysicalDeviceFeatures physDevFeatures; vkGetPhysicalDeviceFeatures(demo->gpu, &physDevFeatures); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceSupportKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceCapabilitiesKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceFormatsKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfacePresentModesKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetSwapchainImagesKHR); } static void demo_create_device(struct demo *demo) { VkResult U_ASSERT_ONLY err; float queue_priorities[1] = {0.0}; VkDeviceQueueCreateInfo queues[2]; queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[0].pNext = NULL; queues[0].queueFamilyIndex = demo->graphics_queue_family_index; queues[0].queueCount = 1; queues[0].pQueuePriorities = queue_priorities; queues[0].flags = 0; VkDeviceCreateInfo device = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .pNext = NULL, .queueCreateInfoCount = 1, .pQueueCreateInfos = queues, .enabledLayerCount = 0, .ppEnabledLayerNames = NULL, .enabledExtensionCount = demo->enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)demo->extension_names, .pEnabledFeatures = NULL, // If specific features are required, pass them in here }; if (demo->separate_present_queue) { queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[1].pNext = NULL; queues[1].queueFamilyIndex = demo->present_queue_family_index; queues[1].queueCount = 1; queues[1].pQueuePriorities = queue_priorities; queues[1].flags = 0; device.queueCreateInfoCount = 2; } err = vkCreateDevice(demo->gpu, &device, NULL, &demo->device); assert(!err); } static void demo_init_vk_swapchain(struct demo *demo) { VkResult U_ASSERT_ONLY err; // Create a WSI surface for the window: #if defined(VK_USE_PLATFORM_WIN32_KHR) VkWin32SurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.hinstance = demo->connection; createInfo.hwnd = demo->window; err = vkCreateWin32SurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) VkWaylandSurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.display = demo->display; createInfo.surface = demo->window; err = vkCreateWaylandSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_ANDROID_KHR) VkAndroidSurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.window = (ANativeWindow*)(demo->window); err = vkCreateAndroidSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_XLIB_KHR) VkXlibSurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.dpy = demo->display; createInfo.window = demo->xlib_window; err = vkCreateXlibSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_XCB_KHR) VkXcbSurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.connection = demo->connection; createInfo.window = demo->xcb_window; err = vkCreateXcbSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_DISPLAY_KHR) err = demo_create_display_surface(demo); #elif defined(VK_USE_PLATFORM_IOS_MVK) VkIOSSurfaceCreateInfoMVK surface; surface.sType = VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK; surface.pNext = NULL; surface.flags = 0; surface.pView = demo->window; err = vkCreateIOSSurfaceMVK(demo->inst, &surface, NULL, &demo->surface); #elif defined(VK_USE_PLATFORM_MACOS_MVK) VkMacOSSurfaceCreateInfoMVK surface; surface.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK; surface.pNext = NULL; surface.flags = 0; surface.pView = demo->window; err = vkCreateMacOSSurfaceMVK(demo->inst, &surface, NULL, &demo->surface); #endif assert(!err); // Iterate over each queue to learn whether it supports presenting: VkBool32 *supportsPresent = (VkBool32 *)malloc(demo->queue_family_count * sizeof(VkBool32)); for (uint32_t i = 0; i < demo->queue_family_count; i++) { demo->fpGetPhysicalDeviceSurfaceSupportKHR(demo->gpu, i, demo->surface, &supportsPresent[i]); } // Search for a graphics and a present queue in the array of queue // families, try to find one that supports both uint32_t graphicsQueueFamilyIndex = UINT32_MAX; uint32_t presentQueueFamilyIndex = UINT32_MAX; for (uint32_t i = 0; i < demo->queue_family_count; i++) { if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) { if (graphicsQueueFamilyIndex == UINT32_MAX) { graphicsQueueFamilyIndex = i; } if (supportsPresent[i] == VK_TRUE) { graphicsQueueFamilyIndex = i; presentQueueFamilyIndex = i; break; } } } if (presentQueueFamilyIndex == UINT32_MAX) { // If didn't find a queue that supports both graphics and present, then // find a separate present queue. for (uint32_t i = 0; i < demo->queue_family_count; ++i) { if (supportsPresent[i] == VK_TRUE) { presentQueueFamilyIndex = i; break; } } } // Generate error if could not find both a graphics and a present queue if (graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX) { ERR_EXIT("Could not find both graphics and present queues\n", "Swapchain Initialization Failure"); } demo->graphics_queue_family_index = graphicsQueueFamilyIndex; demo->present_queue_family_index = presentQueueFamilyIndex; demo->separate_present_queue = (demo->graphics_queue_family_index != demo->present_queue_family_index); free(supportsPresent); demo_create_device(demo); GET_DEVICE_PROC_ADDR(demo->device, CreateSwapchainKHR); GET_DEVICE_PROC_ADDR(demo->device, DestroySwapchainKHR); GET_DEVICE_PROC_ADDR(demo->device, GetSwapchainImagesKHR); GET_DEVICE_PROC_ADDR(demo->device, AcquireNextImageKHR); GET_DEVICE_PROC_ADDR(demo->device, QueuePresentKHR); if (demo->VK_GOOGLE_display_timing_enabled) { GET_DEVICE_PROC_ADDR(demo->device, GetRefreshCycleDurationGOOGLE); GET_DEVICE_PROC_ADDR(demo->device, GetPastPresentationTimingGOOGLE); } vkGetDeviceQueue(demo->device, demo->graphics_queue_family_index, 0, &demo->graphics_queue); if (!demo->separate_present_queue) { demo->present_queue = demo->graphics_queue; } else { vkGetDeviceQueue(demo->device, demo->present_queue_family_index, 0, &demo->present_queue); } // Get the list of VkFormat's that are supported: uint32_t formatCount; err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface, &formatCount, NULL); assert(!err); VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR)); err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface, &formatCount, surfFormats); assert(!err); // If the format list includes just one entry of VK_FORMAT_UNDEFINED, // the surface has no preferred format. Otherwise, at least one // supported format will be returned. if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) { demo->format = VK_FORMAT_B8G8R8A8_UNORM; } else { assert(formatCount >= 1); demo->format = surfFormats[0].format; } demo->color_space = surfFormats[0].colorSpace; demo->quit = false; demo->curFrame = 0; // Create semaphores to synchronize acquiring presentable buffers before // rendering and waiting for drawing to be complete before presenting VkSemaphoreCreateInfo semaphoreCreateInfo = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = NULL, .flags = 0, }; // Create fences that we can use to throttle if we get too far // ahead of the image presents VkFenceCreateInfo fence_ci = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = VK_FENCE_CREATE_SIGNALED_BIT }; for (uint32_t i = 0; i < FRAME_LAG; i++) { err = vkCreateFence(demo->device, &fence_ci, NULL, &demo->fences[i]); assert(!err); err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL, &demo->image_acquired_semaphores[i]); assert(!err); err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL, &demo->draw_complete_semaphores[i]); assert(!err); if (demo->separate_present_queue) { err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo, NULL, &demo->image_ownership_semaphores[i]); assert(!err); } } demo->frame_index = 0; // Get Memory information and properties vkGetPhysicalDeviceMemoryProperties(demo->gpu, &demo->memory_properties); } #if defined(VK_USE_PLATFORM_WAYLAND_KHR) static void pointer_handle_enter(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface, wl_fixed_t sx, wl_fixed_t sy) {} static void pointer_handle_leave(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface) {} static void pointer_handle_motion(void *data, struct wl_pointer *pointer, uint32_t time, wl_fixed_t sx, wl_fixed_t sy) {} static void pointer_handle_button(void *data, struct wl_pointer *wl_pointer, uint32_t serial, uint32_t time, uint32_t button, uint32_t state) { struct demo *demo = data; if (button == BTN_LEFT && state == WL_POINTER_BUTTON_STATE_PRESSED) { wl_shell_surface_move(demo->shell_surface, demo->seat, serial); } } static void pointer_handle_axis(void *data, struct wl_pointer *wl_pointer, uint32_t time, uint32_t axis, wl_fixed_t value) {} static const struct wl_pointer_listener pointer_listener = { pointer_handle_enter, pointer_handle_leave, pointer_handle_motion, pointer_handle_button, pointer_handle_axis, }; static void keyboard_handle_keymap(void *data, struct wl_keyboard *keyboard, uint32_t format, int fd, uint32_t size) {} static void keyboard_handle_enter(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface, struct wl_array *keys) {} static void keyboard_handle_leave(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface) {} static void keyboard_handle_key(void *data, struct wl_keyboard *keyboard, uint32_t serial, uint32_t time, uint32_t key, uint32_t state) { if (state != WL_KEYBOARD_KEY_STATE_RELEASED) return; struct demo *demo = data; switch (key) { case KEY_ESC: // Escape demo->quit = true; break; case KEY_LEFT: // left arrow key demo->spin_angle -= demo->spin_increment; break; case KEY_RIGHT: // right arrow key demo->spin_angle += demo->spin_increment; break; case KEY_SPACE: // space bar demo->pause = !demo->pause; break; } } static void keyboard_handle_modifiers(void *data, struct wl_keyboard *keyboard, uint32_t serial, uint32_t mods_depressed, uint32_t mods_latched, uint32_t mods_locked, uint32_t group) {} static const struct wl_keyboard_listener keyboard_listener = { keyboard_handle_keymap, keyboard_handle_enter, keyboard_handle_leave, keyboard_handle_key, keyboard_handle_modifiers, }; static void seat_handle_capabilities(void *data, struct wl_seat *seat, enum wl_seat_capability caps) { // Subscribe to pointer events struct demo *demo = data; if ((caps & WL_SEAT_CAPABILITY_POINTER) && !demo->pointer) { demo->pointer = wl_seat_get_pointer(seat); wl_pointer_add_listener(demo->pointer, &pointer_listener, demo); } else if (!(caps & WL_SEAT_CAPABILITY_POINTER) && demo->pointer) { wl_pointer_destroy(demo->pointer); demo->pointer = NULL; } // Subscribe to keyboard events if (caps & WL_SEAT_CAPABILITY_KEYBOARD) { demo->keyboard = wl_seat_get_keyboard(seat); wl_keyboard_add_listener(demo->keyboard, &keyboard_listener, demo); } else if (!(caps & WL_SEAT_CAPABILITY_KEYBOARD)) { wl_keyboard_destroy(demo->keyboard); demo->keyboard = NULL; } } static const struct wl_seat_listener seat_listener = { seat_handle_capabilities, }; static void registry_handle_global(void *data, struct wl_registry *registry, uint32_t id, const char *interface, uint32_t version UNUSED) { struct demo *demo = data; // pickup wayland objects when they appear if (strcmp(interface, "wl_compositor") == 0) { demo->compositor = wl_registry_bind(registry, id, &wl_compositor_interface, 1); } else if (strcmp(interface, "wl_shell") == 0) { demo->shell = wl_registry_bind(registry, id, &wl_shell_interface, 1); } else if (strcmp(interface, "wl_seat") == 0) { demo->seat = wl_registry_bind(registry, id, &wl_seat_interface, 1); wl_seat_add_listener(demo->seat, &seat_listener, demo); } } static void registry_handle_global_remove(void *data UNUSED, struct wl_registry *registry UNUSED, uint32_t name UNUSED) {} static const struct wl_registry_listener registry_listener = { registry_handle_global, registry_handle_global_remove}; #elif defined(VK_USE_PLATFORM_MIR_KHR) #endif static void demo_init_connection(struct demo *demo) { #if defined(VK_USE_PLATFORM_XCB_KHR) const xcb_setup_t *setup; xcb_screen_iterator_t iter; int scr; demo->connection = xcb_connect(NULL, &scr); if (xcb_connection_has_error(demo->connection) > 0) { printf("Cannot find a compatible Vulkan installable client driver " "(ICD).\nExiting ...\n"); fflush(stdout); exit(1); } setup = xcb_get_setup(demo->connection); iter = xcb_setup_roots_iterator(setup); while (scr-- > 0) xcb_screen_next(&iter); demo->screen = iter.data; #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) demo->display = wl_display_connect(NULL); if (demo->display == NULL) { printf("Cannot find a compatible Vulkan installable client driver " "(ICD).\nExiting ...\n"); fflush(stdout); exit(1); } demo->registry = wl_display_get_registry(demo->display); wl_registry_add_listener(demo->registry, ®istry_listener, demo); wl_display_dispatch(demo->display); #elif defined(VK_USE_PLATFORM_MIR_KHR) #endif } static void demo_init(struct demo *demo, int argc, char **argv) { vec3 eye = {0.0f, 3.0f, 5.0f}; vec3 origin = {0, 0, 0}; vec3 up = {0.0f, 1.0f, 0.0}; memset(demo, 0, sizeof(*demo)); demo->presentMode = VK_PRESENT_MODE_FIFO_KHR; demo->frameCount = INT32_MAX; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "--use_staging") == 0) { demo->use_staging_buffer = true; continue; } if ((strcmp(argv[i], "--present_mode") == 0) && (i < argc - 1)) { demo->presentMode = atoi(argv[i+1]); i++; continue; } if (strcmp(argv[i], "--break") == 0) { demo->use_break = true; continue; } if (strcmp(argv[i], "--validate") == 0) { demo->validate = true; continue; } if (strcmp(argv[i], "--validate-checks-disabled") == 0) { demo->validate = true; demo->validate_checks_disabled = true; continue; } if (strcmp(argv[i], "--xlib") == 0) { fprintf(stderr, "--xlib is deprecated and no longer does anything"); continue; } if (strcmp(argv[i], "--c") == 0 && demo->frameCount == INT32_MAX && i < argc - 1 && sscanf(argv[i + 1], "%d", &demo->frameCount) == 1 && demo->frameCount >= 0) { i++; continue; } if (strcmp(argv[i], "--suppress_popups") == 0) { demo->suppress_popups = true; continue; } if (strcmp(argv[i], "--display_timing") == 0) { demo->VK_GOOGLE_display_timing_enabled = true; continue; } if (strcmp(argv[i], "--incremental_present") == 0) { demo->VK_KHR_incremental_present_enabled = true; continue; } #if defined(ANDROID) ERR_EXIT("Usage: cube [--validate]\n", "Usage"); #else fprintf(stderr, "Usage:\n %s [--use_staging] [--validate] [--validate-checks-disabled]\n" " [--break] [--c <framecount>] [--suppress_popups]\n" " [--incremental_present] [--display_timing]\n" " [--present_mode {0,1,2,3}]\n" "\n" "Options for --present_mode:\n" " %d: VK_PRESENT_MODE_IMMEDIATE_KHR\n" " %d: VK_PRESENT_MODE_MAILBOX_KHR\n" " %d: VK_PRESENT_MODE_FIFO_KHR (default)\n" " %d: VK_PRESENT_MODE_FIFO_RELAXED_KHR\n", APP_SHORT_NAME, VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_KHR, VK_PRESENT_MODE_FIFO_RELAXED_KHR); fflush(stderr); exit(1); #endif } demo_init_connection(demo); demo_init_vk(demo); demo->width = 500; demo->height = 500; demo->spin_angle = 4.0f; demo->spin_increment = 0.2f; demo->pause = false; mat4x4_perspective(demo->projection_matrix, (float)degreesToRadians(45.0f), 1.0f, 0.1f, 100.0f); mat4x4_look_at(demo->view_matrix, eye, origin, up); mat4x4_identity(demo->model_matrix); demo->projection_matrix[1][1]*=-1; //Flip projection matrix from GL to Vulkan orientation. } #if defined(VK_USE_PLATFORM_WIN32_KHR) // Include header required for parsing the command line options. #include <shellapi.h> int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) { MSG msg; // message bool done; // flag saying when app is complete int argc; char **argv; // Ensure wParam is initialized. msg.wParam = 0; // Use the CommandLine functions to get the command line arguments. // Unfortunately, Microsoft outputs // this information as wide characters for Unicode, and we simply want the // Ascii version to be compatible // with the non-Windows side. So, we have to convert the information to // Ascii character strings. LPWSTR *commandLineArgs = CommandLineToArgvW(GetCommandLineW(), &argc); if (NULL == commandLineArgs) { argc = 0; } if (argc > 0) { argv = (char **)malloc(sizeof(char *) * argc); if (argv == NULL) { argc = 0; } else { for (int iii = 0; iii < argc; iii++) { size_t wideCharLen = wcslen(commandLineArgs[iii]); size_t numConverted = 0; argv[iii] = (char *)malloc(sizeof(char) * (wideCharLen + 1)); if (argv[iii] != NULL) { wcstombs_s(&numConverted, argv[iii], wideCharLen + 1, commandLineArgs[iii], wideCharLen + 1); } } } } else { argv = NULL; } demo_init(&demo, argc, argv); // Free up the items we had to allocate for the command line arguments. if (argc > 0 && argv != NULL) { for (int iii = 0; iii < argc; iii++) { if (argv[iii] != NULL) { free(argv[iii]); } } free(argv); } demo.connection = hInstance; strncpy(demo.name, "cube", APP_NAME_STR_LEN); demo_create_window(&demo); demo_init_vk_swapchain(&demo); demo_prepare(&demo); done = false; // initialize loop condition variable // main message loop while (!done) { PeekMessage(&msg, NULL, 0, 0, PM_REMOVE); if (msg.message == WM_QUIT) // check for a quit message { done = true; // if found, quit app } else { /* Translate and dispatch to event queue*/ TranslateMessage(&msg); DispatchMessage(&msg); } RedrawWindow(demo.window, NULL, NULL, RDW_INTERNALPAINT); } demo_cleanup(&demo); return (int)msg.wParam; } #elif defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK) static void demo_main(struct demo *demo, void* view) { const char* argv[] = { "CubeSample" }; int argc = sizeof(argv) / sizeof(char*); demo_init(demo, argc, (char**)argv); demo->window = view; demo_init_vk_swapchain(demo); demo_prepare(demo); demo->spin_angle = 0.4f; } static void demo_update_and_draw(struct demo *demo) { // Wait for work to finish before updating MVP. vkDeviceWaitIdle(demo->device); demo_update_data_buffer(demo); demo_draw(demo); } #elif defined(VK_USE_PLATFORM_ANDROID_KHR) #include <android/log.h> #include <android_native_app_glue.h> #include "android_util.h" static bool initialized = false; static bool active = false; struct demo demo; static int32_t processInput(struct android_app* app, AInputEvent* event) { return 0; } static void processCommand(struct android_app* app, int32_t cmd) { switch(cmd) { case APP_CMD_INIT_WINDOW: { if (app->window) { // We're getting a new window. If the app is starting up, we // need to initialize. If the app has already been // initialized, that means that we lost our previous window, // which means that we have a lot of work to do. At a minimum, // we need to destroy the swapchain and surface associated with // the old window, and create a new surface and swapchain. // However, since there are a lot of other objects/state that // is tied to the swapchain, it's easiest to simply cleanup and // start over (i.e. use a brute-force approach of re-starting // the app) if (demo.prepared) { demo_cleanup(&demo); } // Parse Intents into argc, argv // Use the following key to send arguments, i.e. // --es args "--validate" const char key[] = "args"; char* appTag = (char*) APP_SHORT_NAME; int argc = 0; char** argv = get_args(app, key, appTag, &argc); __android_log_print(ANDROID_LOG_INFO, appTag, "argc = %i", argc); for (int i = 0; i < argc; i++) __android_log_print(ANDROID_LOG_INFO, appTag, "argv[%i] = %s", i, argv[i]); demo_init(&demo, argc, argv); // Free the argv malloc'd by get_args for (int i = 0; i < argc; i++) free(argv[i]); demo.window = (void*)app->window; demo_init_vk_swapchain(&demo); demo_prepare(&demo); initialized = true; } break; } case APP_CMD_GAINED_FOCUS: { active = true; break; } case APP_CMD_LOST_FOCUS: { active = false; break; } } } void android_main(struct android_app *app) { #ifdef ANDROID int vulkanSupport = InitVulkan(); if (vulkanSupport == 0) return; #endif demo.prepared = false; app->onAppCmd = processCommand; app->onInputEvent = processInput; while(1) { int events; struct android_poll_source* source; while (ALooper_pollAll(active ? 0 : -1, NULL, &events, (void**)&source) >= 0) { if (source) { source->process(app, source); } if (app->destroyRequested != 0) { demo_cleanup(&demo); return; } } if (initialized && active) { demo_run(&demo); } } } #else int main(int argc, char **argv) { struct demo demo; demo_init(&demo, argc, argv); #if defined(VK_USE_PLATFORM_XCB_KHR) demo_create_xcb_window(&demo); #elif defined(VK_USE_PLATFORM_XLIB_KHR) demo_create_xlib_window(&demo); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) demo_create_window(&demo); #elif defined(VK_USE_PLATFORM_MIR_KHR) #endif demo_init_vk_swapchain(&demo); demo_prepare(&demo); #if defined(VK_USE_PLATFORM_XCB_KHR) demo_run_xcb(&demo); #elif defined(VK_USE_PLATFORM_XLIB_KHR) demo_run_xlib(&demo); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) demo_run(&demo); #elif defined(VK_USE_PLATFORM_MIR_KHR) #elif defined(VK_USE_PLATFORM_DISPLAY_KHR) demo_run_display(&demo); #endif demo_cleanup(&demo); return validation_error; } #endif