// Copyright 2016, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// -----------------------------------------------------------------------------
// This file is auto generated from the
// test/aarch32/config/template-simulator-aarch32.cc.in template file using
// tools/generate_tests.py.
//
// PLEASE DO NOT EDIT.
// -----------------------------------------------------------------------------
#include "test-runner.h"
#include "test-utils.h"
#include "test-utils-aarch32.h"
#include "aarch32/assembler-aarch32.h"
#include "aarch32/disasm-aarch32.h"
#include "aarch32/macro-assembler-aarch32.h"
#define __ masm.
#define BUF_SIZE (4096)
#ifdef VIXL_INCLUDE_SIMULATOR_AARCH32
// Run tests with the simulator.
#define SETUP() MacroAssembler masm(BUF_SIZE)
#define START() masm.GetBuffer()->Reset()
#define END() \
__ Hlt(0); \
__ FinalizeCode();
// TODO: Run the tests in the simulator.
#define RUN()
#else // ifdef VIXL_INCLUDE_SIMULATOR_AARCH32.
#define SETUP() \
MacroAssembler masm(BUF_SIZE); \
UseScratchRegisterScope harness_scratch;
#define START() \
harness_scratch.Open(&masm); \
harness_scratch.ExcludeAll(); \
masm.GetBuffer()->Reset(); \
__ Push(r4); \
__ Push(r5); \
__ Push(r6); \
__ Push(r7); \
__ Push(r8); \
__ Push(r9); \
__ Push(r10); \
__ Push(r11); \
__ Push(lr); \
harness_scratch.Include(ip);
#define END() \
harness_scratch.Exclude(ip); \
__ Pop(lr); \
__ Pop(r11); \
__ Pop(r10); \
__ Pop(r9); \
__ Pop(r8); \
__ Pop(r7); \
__ Pop(r6); \
__ Pop(r5); \
__ Pop(r4); \
__ Bx(lr); \
__ FinalizeCode(); \
harness_scratch.Close();
#define RUN() \
{ \
int pcs_offset = masm.IsUsingT32() ? 1 : 0; \
masm.GetBuffer()->SetExecutable(); \
ExecuteMemory(masm.GetBuffer()->GetStartAddress<byte*>(), \
masm.GetSizeOfCodeGenerated(), \
pcs_offset); \
masm.GetBuffer()->SetWritable(); \
}
#endif // ifdef VIXL_INCLUDE_SIMULATOR_AARCH32
namespace vixl {
namespace aarch32 {
// List of instruction encodings:
#define FOREACH_INSTRUCTION(M) \
M(Cmn) \
M(Cmp) \
M(Mov) \
M(Movs) \
M(Mvn) \
M(Mvns) \
M(Teq) \
M(Tst)
// The following definitions are defined again in each generated test, therefore
// we need to place them in an anomymous namespace. It expresses that they are
// local to this file only, and the compiler is not allowed to share these types
// across test files during template instantiation. Specifically, `Operands` and
// `Inputs` have various layouts across generated tests so they absolutely
// cannot be shared.
#ifdef VIXL_INCLUDE_TARGET_A32
namespace {
// Values to be passed to the assembler to produce the instruction under test.
struct Operands {
Condition cond;
Register rd;
uint32_t immediate;
};
// Input data to feed to the instruction.
struct Inputs {
uint32_t apsr;
uint32_t rd;
};
// This structure contains all input data needed to test one specific encoding.
// It used to generate a loop over an instruction.
struct TestLoopData {
// The `operands` fields represents the values to pass to the assembler to
// produce the instruction.
Operands operands;
// Description of the operands, used for error reporting.
const char* operands_description;
// Unique identifier, used for generating traces.
const char* identifier;
// Array of values to be fed to the instruction.
size_t input_size;
const Inputs* inputs;
};
static const Inputs kCondition[] = {{NFlag, 0xabababab},
{ZFlag, 0xabababab},
{CFlag, 0xabababab},
{VFlag, 0xabababab},
{NZFlag, 0xabababab},
{NCFlag, 0xabababab},
{NVFlag, 0xabababab},
{ZCFlag, 0xabababab},
{ZVFlag, 0xabababab},
{CVFlag, 0xabababab},
{NZCFlag, 0xabababab},
{NZVFlag, 0xabababab},
{NCVFlag, 0xabababab},
{ZCVFlag, 0xabababab},
{NZCVFlag, 0xabababab}};
static const Inputs kModifiedImmediate[] =
{{NoFlag, 0x00000000}, {NoFlag, 0x00000001}, {NoFlag, 0x00000002},
{NoFlag, 0x00000020}, {NoFlag, 0x0000007d}, {NoFlag, 0x0000007e},
{NoFlag, 0x0000007f}, {NoFlag, 0x00007ffd}, {NoFlag, 0x00007ffe},
{NoFlag, 0x00007fff}, {NoFlag, 0x33333333}, {NoFlag, 0x55555555},
{NoFlag, 0x7ffffffd}, {NoFlag, 0x7ffffffe}, {NoFlag, 0x7fffffff},
{NoFlag, 0x80000000}, {NoFlag, 0x80000001}, {NoFlag, 0xaaaaaaaa},
{NoFlag, 0xcccccccc}, {NoFlag, 0xffff8000}, {NoFlag, 0xffff8001},
{NoFlag, 0xffff8002}, {NoFlag, 0xffff8003}, {NoFlag, 0xffffff80},
{NoFlag, 0xffffff81}, {NoFlag, 0xffffff82}, {NoFlag, 0xffffff83},
{NoFlag, 0xffffffe0}, {NoFlag, 0xfffffffd}, {NoFlag, 0xfffffffe},
{NoFlag, 0xffffffff}};
// A loop will be generated for each element of this array.
const TestLoopData kTests[] = {{{eq, r0, 0x000000ab},
"eq r0 0x000000ab",
"Condition_eq_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{ne, r0, 0x000000ab},
"ne r0 0x000000ab",
"Condition_ne_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{cs, r0, 0x000000ab},
"cs r0 0x000000ab",
"Condition_cs_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{cc, r0, 0x000000ab},
"cc r0 0x000000ab",
"Condition_cc_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{mi, r0, 0x000000ab},
"mi r0 0x000000ab",
"Condition_mi_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{pl, r0, 0x000000ab},
"pl r0 0x000000ab",
"Condition_pl_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{vs, r0, 0x000000ab},
"vs r0 0x000000ab",
"Condition_vs_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{vc, r0, 0x000000ab},
"vc r0 0x000000ab",
"Condition_vc_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{hi, r0, 0x000000ab},
"hi r0 0x000000ab",
"Condition_hi_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{ls, r0, 0x000000ab},
"ls r0 0x000000ab",
"Condition_ls_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{ge, r0, 0x000000ab},
"ge r0 0x000000ab",
"Condition_ge_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{lt, r0, 0x000000ab},
"lt r0 0x000000ab",
"Condition_lt_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{gt, r0, 0x000000ab},
"gt r0 0x000000ab",
"Condition_gt_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{le, r0, 0x000000ab},
"le r0 0x000000ab",
"Condition_le_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{al, r0, 0x000000ab},
"al r0 0x000000ab",
"Condition_al_r0_0x000000ab",
ARRAY_SIZE(kCondition),
kCondition},
{{al, r0, 0x00000000},
"al r0 0x00000000",
"ModifiedImmediate_al_r0_0x00000000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000000ff},
"al r0 0x000000ff",
"ModifiedImmediate_al_r0_0x000000ff",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xc000003f},
"al r0 0xc000003f",
"ModifiedImmediate_al_r0_0xc000003f",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xf000000f},
"al r0 0xf000000f",
"ModifiedImmediate_al_r0_0xf000000f",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xfc000003},
"al r0 0xfc000003",
"ModifiedImmediate_al_r0_0xfc000003",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xff000000},
"al r0 0xff000000",
"ModifiedImmediate_al_r0_0xff000000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x3fc00000},
"al r0 0x3fc00000",
"ModifiedImmediate_al_r0_0x3fc00000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0ff00000},
"al r0 0x0ff00000",
"ModifiedImmediate_al_r0_0x0ff00000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x03fc0000},
"al r0 0x03fc0000",
"ModifiedImmediate_al_r0_0x03fc0000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00ff0000},
"al r0 0x00ff0000",
"ModifiedImmediate_al_r0_0x00ff0000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x003fc000},
"al r0 0x003fc000",
"ModifiedImmediate_al_r0_0x003fc000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000ff000},
"al r0 0x000ff000",
"ModifiedImmediate_al_r0_0x000ff000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0003fc00},
"al r0 0x0003fc00",
"ModifiedImmediate_al_r0_0x0003fc00",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0000ff00},
"al r0 0x0000ff00",
"ModifiedImmediate_al_r0_0x0000ff00",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00003fc0},
"al r0 0x00003fc0",
"ModifiedImmediate_al_r0_0x00003fc0",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00000ff0},
"al r0 0x00000ff0",
"ModifiedImmediate_al_r0_0x00000ff0",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000003fc},
"al r0 0x000003fc",
"ModifiedImmediate_al_r0_0x000003fc",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000000ab},
"al r0 0x000000ab",
"ModifiedImmediate_al_r0_0x000000ab",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xc000002a},
"al r0 0xc000002a",
"ModifiedImmediate_al_r0_0xc000002a",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xb000000a},
"al r0 0xb000000a",
"ModifiedImmediate_al_r0_0xb000000a",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xac000002},
"al r0 0xac000002",
"ModifiedImmediate_al_r0_0xac000002",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0xab000000},
"al r0 0xab000000",
"ModifiedImmediate_al_r0_0xab000000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x2ac00000},
"al r0 0x2ac00000",
"ModifiedImmediate_al_r0_0x2ac00000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0ab00000},
"al r0 0x0ab00000",
"ModifiedImmediate_al_r0_0x0ab00000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x02ac0000},
"al r0 0x02ac0000",
"ModifiedImmediate_al_r0_0x02ac0000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00ab0000},
"al r0 0x00ab0000",
"ModifiedImmediate_al_r0_0x00ab0000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x002ac000},
"al r0 0x002ac000",
"ModifiedImmediate_al_r0_0x002ac000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000ab000},
"al r0 0x000ab000",
"ModifiedImmediate_al_r0_0x000ab000",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0002ac00},
"al r0 0x0002ac00",
"ModifiedImmediate_al_r0_0x0002ac00",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x0000ab00},
"al r0 0x0000ab00",
"ModifiedImmediate_al_r0_0x0000ab00",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00002ac0},
"al r0 0x00002ac0",
"ModifiedImmediate_al_r0_0x00002ac0",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x00000ab0},
"al r0 0x00000ab0",
"ModifiedImmediate_al_r0_0x00000ab0",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate},
{{al, r0, 0x000002ac},
"al r0 0x000002ac",
"ModifiedImmediate_al_r0_0x000002ac",
ARRAY_SIZE(kModifiedImmediate),
kModifiedImmediate}};
// We record all inputs to the instructions as outputs. This way, we also check
// that what shouldn't change didn't change.
struct TestResult {
size_t output_size;
const Inputs* outputs;
};
// These headers each contain an array of `TestResult` with the reference output
// values. The reference arrays are names `kReference{mnemonic}`.
#include "aarch32/traces/simulator-cond-rd-operand-const-cmn-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-cmp-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-mov-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-movs-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-mvn-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-mvns-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-teq-a32.h"
#include "aarch32/traces/simulator-cond-rd-operand-const-tst-a32.h"
// The maximum number of errors to report in detail for each test.
const unsigned kErrorReportLimit = 8;
typedef void (MacroAssembler::*Fn)(Condition cond,
Register rd,
const Operand& op);
void TestHelper(Fn instruction,
const char* mnemonic,
const TestResult reference[]) {
SETUP();
masm.UseA32();
START();
// Data to compare to `reference`.
TestResult* results[ARRAY_SIZE(kTests)];
// Test cases for memory bound instructions may allocate a buffer and save its
// address in this array.
byte* scratch_memory_buffers[ARRAY_SIZE(kTests)];
// Generate a loop for each element in `kTests`. Each loop tests one specific
// instruction.
for (unsigned i = 0; i < ARRAY_SIZE(kTests); i++) {
// Allocate results on the heap for this test.
results[i] = new TestResult;
results[i]->outputs = new Inputs[kTests[i].input_size];
results[i]->output_size = kTests[i].input_size;
size_t input_stride = sizeof(kTests[i].inputs[0]) * kTests[i].input_size;
VIXL_ASSERT(IsUint32(input_stride));
scratch_memory_buffers[i] = NULL;
Label loop;
UseScratchRegisterScope scratch_registers(&masm);
// Include all registers from r0 ro r12.
scratch_registers.Include(RegisterList(0x1fff));
// Values to pass to the macro-assembler.
Condition cond = kTests[i].operands.cond;
Register rd = kTests[i].operands.rd;
uint32_t immediate = kTests[i].operands.immediate;
Operand op(immediate);
scratch_registers.Exclude(rd);
// Allocate reserved registers for our own use.
Register input_ptr = scratch_registers.Acquire();
Register input_end = scratch_registers.Acquire();
Register result_ptr = scratch_registers.Acquire();
// Initialize `input_ptr` to the first element and `input_end` the address
// after the array.
__ Mov(input_ptr, Operand::From(kTests[i].inputs));
__ Add(input_end, input_ptr, static_cast<uint32_t>(input_stride));
__ Mov(result_ptr, Operand::From(results[i]->outputs));
__ Bind(&loop);
{
UseScratchRegisterScope temp_registers(&masm);
Register nzcv_bits = temp_registers.Acquire();
Register saved_q_bit = temp_registers.Acquire();
// Save the `Q` bit flag.
__ Mrs(saved_q_bit, APSR);
__ And(saved_q_bit, saved_q_bit, QFlag);
// Set the `NZCV` and `Q` flags together.
__ Ldr(nzcv_bits, MemOperand(input_ptr, offsetof(Inputs, apsr)));
__ Orr(nzcv_bits, nzcv_bits, saved_q_bit);
__ Msr(APSR_nzcvq, nzcv_bits);
}
__ Ldr(rd, MemOperand(input_ptr, offsetof(Inputs, rd)));
(masm.*instruction)(cond, rd, op);
{
UseScratchRegisterScope temp_registers(&masm);
Register nzcv_bits = temp_registers.Acquire();
__ Mrs(nzcv_bits, APSR);
// Only record the NZCV bits.
__ And(nzcv_bits, nzcv_bits, NZCVFlag);
__ Str(nzcv_bits, MemOperand(result_ptr, offsetof(Inputs, apsr)));
}
__ Str(rd, MemOperand(result_ptr, offsetof(Inputs, rd)));
// Advance the result pointer.
__ Add(result_ptr, result_ptr, Operand::From(sizeof(kTests[i].inputs[0])));
// Loop back until `input_ptr` is lower than `input_base`.
__ Add(input_ptr, input_ptr, Operand::From(sizeof(kTests[i].inputs[0])));
__ Cmp(input_ptr, input_end);
__ B(ne, &loop);
}
END();
RUN();
if (Test::generate_test_trace()) {
// Print the results.
for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) {
printf("const Inputs kOutputs_%s_%s[] = {\n",
mnemonic,
kTests[i].identifier);
for (size_t j = 0; j < results[i]->output_size; j++) {
printf(" { ");
printf("0x%08" PRIx32, results[i]->outputs[j].apsr);
printf(", ");
printf("0x%08" PRIx32, results[i]->outputs[j].rd);
printf(" },\n");
}
printf("};\n");
}
printf("const TestResult kReference%s[] = {\n", mnemonic);
for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) {
printf(" {\n");
printf(" ARRAY_SIZE(kOutputs_%s_%s),\n",
mnemonic,
kTests[i].identifier);
printf(" kOutputs_%s_%s,\n", mnemonic, kTests[i].identifier);
printf(" },\n");
}
printf("};\n");
} else if (kCheckSimulatorTestResults) {
// Check the results.
unsigned total_error_count = 0;
for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) {
bool instruction_has_errors = false;
for (size_t j = 0; j < kTests[i].input_size; j++) {
uint32_t apsr = results[i]->outputs[j].apsr;
uint32_t rd = results[i]->outputs[j].rd;
uint32_t apsr_input = kTests[i].inputs[j].apsr;
uint32_t rd_input = kTests[i].inputs[j].rd;
uint32_t apsr_ref = reference[i].outputs[j].apsr;
uint32_t rd_ref = reference[i].outputs[j].rd;
if (((apsr != apsr_ref) || (rd != rd_ref)) &&
(++total_error_count <= kErrorReportLimit)) {
// Print the instruction once even if it triggered multiple failures.
if (!instruction_has_errors) {
printf("Error(s) when testing \"%s %s\":\n",
mnemonic,
kTests[i].operands_description);
instruction_has_errors = true;
}
// Print subsequent errors.
printf(" Input: ");
printf("0x%08" PRIx32, apsr_input);
printf(", ");
printf("0x%08" PRIx32, rd_input);
printf("\n");
printf(" Expected: ");
printf("0x%08" PRIx32, apsr_ref);
printf(", ");
printf("0x%08" PRIx32, rd_ref);
printf("\n");
printf(" Found: ");
printf("0x%08" PRIx32, apsr);
printf(", ");
printf("0x%08" PRIx32, rd);
printf("\n\n");
}
}
}
if (total_error_count > kErrorReportLimit) {
printf("%u other errors follow.\n",
total_error_count - kErrorReportLimit);
}
VIXL_CHECK(total_error_count == 0);
} else {
VIXL_WARNING("Assembled the code, but did not run anything.\n");
}
for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) {
delete[] results[i]->outputs;
delete results[i];
delete[] scratch_memory_buffers[i];
}
}
// Instantiate tests for each instruction in the list.
// TODO: Remove this limitation by having a sandboxing mechanism.
#if defined(VIXL_HOST_POINTER_32)
#define TEST(mnemonic) \
void Test_##mnemonic() { \
TestHelper(&MacroAssembler::mnemonic, #mnemonic, kReference##mnemonic); \
} \
Test test_##mnemonic("AARCH32_SIMULATOR_COND_RD_OPERAND_CONST_" #mnemonic \
"_A32", \
&Test_##mnemonic);
#else
#define TEST(mnemonic) \
void Test_##mnemonic() { \
VIXL_WARNING("This test can only run on a 32-bit host.\n"); \
USE(TestHelper); \
} \
Test test_##mnemonic("AARCH32_SIMULATOR_COND_RD_OPERAND_CONST_" #mnemonic \
"_A32", \
&Test_##mnemonic);
#endif
FOREACH_INSTRUCTION(TEST)
#undef TEST
} // namespace
#endif
} // namespace aarch32
} // namespace vixl