// Copyright 2016, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // ----------------------------------------------------------------------------- // This file is auto generated from the // test/aarch32/config/template-simulator-aarch32.cc.in template file using // tools/generate_tests.py. // // PLEASE DO NOT EDIT. // ----------------------------------------------------------------------------- #include "test-runner.h" #include "test-utils.h" #include "test-utils-aarch32.h" #include "aarch32/assembler-aarch32.h" #include "aarch32/disasm-aarch32.h" #include "aarch32/macro-assembler-aarch32.h" #define __ masm. #define BUF_SIZE (4096) #ifdef VIXL_INCLUDE_SIMULATOR_AARCH32 // Run tests with the simulator. #define SETUP() MacroAssembler masm(BUF_SIZE) #define START() masm.GetBuffer()->Reset() #define END() \ __ Hlt(0); \ __ FinalizeCode(); // TODO: Run the tests in the simulator. #define RUN() #else // ifdef VIXL_INCLUDE_SIMULATOR_AARCH32. #define SETUP() \ MacroAssembler masm(BUF_SIZE); \ UseScratchRegisterScope harness_scratch; #define START() \ harness_scratch.Open(&masm); \ harness_scratch.ExcludeAll(); \ masm.GetBuffer()->Reset(); \ __ Push(r4); \ __ Push(r5); \ __ Push(r6); \ __ Push(r7); \ __ Push(r8); \ __ Push(r9); \ __ Push(r10); \ __ Push(r11); \ __ Push(lr); \ harness_scratch.Include(ip); #define END() \ harness_scratch.Exclude(ip); \ __ Pop(lr); \ __ Pop(r11); \ __ Pop(r10); \ __ Pop(r9); \ __ Pop(r8); \ __ Pop(r7); \ __ Pop(r6); \ __ Pop(r5); \ __ Pop(r4); \ __ Bx(lr); \ __ FinalizeCode(); \ harness_scratch.Close(); #define RUN() \ { \ int pcs_offset = masm.IsUsingT32() ? 1 : 0; \ masm.GetBuffer()->SetExecutable(); \ ExecuteMemory(masm.GetBuffer()->GetStartAddress<byte*>(), \ masm.GetSizeOfCodeGenerated(), \ pcs_offset); \ masm.GetBuffer()->SetWritable(); \ } #endif // ifdef VIXL_INCLUDE_SIMULATOR_AARCH32 namespace vixl { namespace aarch32 { // List of instruction encodings: #define FOREACH_INSTRUCTION(M) \ M(Cmn) \ M(Cmp) \ M(Mov) \ M(Movs) \ M(Mvn) \ M(Mvns) \ M(Teq) \ M(Tst) // The following definitions are defined again in each generated test, therefore // we need to place them in an anomymous namespace. It expresses that they are // local to this file only, and the compiler is not allowed to share these types // across test files during template instantiation. Specifically, `Operands` and // `Inputs` have various layouts across generated tests so they absolutely // cannot be shared. #ifdef VIXL_INCLUDE_TARGET_A32 namespace { // Values to be passed to the assembler to produce the instruction under test. struct Operands { Condition cond; Register rd; uint32_t immediate; }; // Input data to feed to the instruction. struct Inputs { uint32_t apsr; uint32_t rd; }; // This structure contains all input data needed to test one specific encoding. // It used to generate a loop over an instruction. struct TestLoopData { // The `operands` fields represents the values to pass to the assembler to // produce the instruction. Operands operands; // Description of the operands, used for error reporting. const char* operands_description; // Unique identifier, used for generating traces. const char* identifier; // Array of values to be fed to the instruction. size_t input_size; const Inputs* inputs; }; static const Inputs kCondition[] = {{NFlag, 0xabababab}, {ZFlag, 0xabababab}, {CFlag, 0xabababab}, {VFlag, 0xabababab}, {NZFlag, 0xabababab}, {NCFlag, 0xabababab}, {NVFlag, 0xabababab}, {ZCFlag, 0xabababab}, {ZVFlag, 0xabababab}, {CVFlag, 0xabababab}, {NZCFlag, 0xabababab}, {NZVFlag, 0xabababab}, {NCVFlag, 0xabababab}, {ZCVFlag, 0xabababab}, {NZCVFlag, 0xabababab}}; static const Inputs kModifiedImmediate[] = {{NoFlag, 0x00000000}, {NoFlag, 0x00000001}, {NoFlag, 0x00000002}, {NoFlag, 0x00000020}, {NoFlag, 0x0000007d}, {NoFlag, 0x0000007e}, {NoFlag, 0x0000007f}, {NoFlag, 0x00007ffd}, {NoFlag, 0x00007ffe}, {NoFlag, 0x00007fff}, {NoFlag, 0x33333333}, {NoFlag, 0x55555555}, {NoFlag, 0x7ffffffd}, {NoFlag, 0x7ffffffe}, {NoFlag, 0x7fffffff}, {NoFlag, 0x80000000}, {NoFlag, 0x80000001}, {NoFlag, 0xaaaaaaaa}, {NoFlag, 0xcccccccc}, {NoFlag, 0xffff8000}, {NoFlag, 0xffff8001}, {NoFlag, 0xffff8002}, {NoFlag, 0xffff8003}, {NoFlag, 0xffffff80}, {NoFlag, 0xffffff81}, {NoFlag, 0xffffff82}, {NoFlag, 0xffffff83}, {NoFlag, 0xffffffe0}, {NoFlag, 0xfffffffd}, {NoFlag, 0xfffffffe}, {NoFlag, 0xffffffff}}; // A loop will be generated for each element of this array. const TestLoopData kTests[] = {{{eq, r0, 0x000000ab}, "eq r0 0x000000ab", "Condition_eq_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{ne, r0, 0x000000ab}, "ne r0 0x000000ab", "Condition_ne_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{cs, r0, 0x000000ab}, "cs r0 0x000000ab", "Condition_cs_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{cc, r0, 0x000000ab}, "cc r0 0x000000ab", "Condition_cc_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{mi, r0, 0x000000ab}, "mi r0 0x000000ab", "Condition_mi_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{pl, r0, 0x000000ab}, "pl r0 0x000000ab", "Condition_pl_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{vs, r0, 0x000000ab}, "vs r0 0x000000ab", "Condition_vs_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{vc, r0, 0x000000ab}, "vc r0 0x000000ab", "Condition_vc_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{hi, r0, 0x000000ab}, "hi r0 0x000000ab", "Condition_hi_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{ls, r0, 0x000000ab}, "ls r0 0x000000ab", "Condition_ls_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{ge, r0, 0x000000ab}, "ge r0 0x000000ab", "Condition_ge_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{lt, r0, 0x000000ab}, "lt r0 0x000000ab", "Condition_lt_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{gt, r0, 0x000000ab}, "gt r0 0x000000ab", "Condition_gt_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{le, r0, 0x000000ab}, "le r0 0x000000ab", "Condition_le_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{al, r0, 0x000000ab}, "al r0 0x000000ab", "Condition_al_r0_0x000000ab", ARRAY_SIZE(kCondition), kCondition}, {{al, r0, 0x00000000}, "al r0 0x00000000", "ModifiedImmediate_al_r0_0x00000000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000000ff}, "al r0 0x000000ff", "ModifiedImmediate_al_r0_0x000000ff", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xc000003f}, "al r0 0xc000003f", "ModifiedImmediate_al_r0_0xc000003f", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xf000000f}, "al r0 0xf000000f", "ModifiedImmediate_al_r0_0xf000000f", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xfc000003}, "al r0 0xfc000003", "ModifiedImmediate_al_r0_0xfc000003", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xff000000}, "al r0 0xff000000", "ModifiedImmediate_al_r0_0xff000000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x3fc00000}, "al r0 0x3fc00000", "ModifiedImmediate_al_r0_0x3fc00000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0ff00000}, "al r0 0x0ff00000", "ModifiedImmediate_al_r0_0x0ff00000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x03fc0000}, "al r0 0x03fc0000", "ModifiedImmediate_al_r0_0x03fc0000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00ff0000}, "al r0 0x00ff0000", "ModifiedImmediate_al_r0_0x00ff0000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x003fc000}, "al r0 0x003fc000", "ModifiedImmediate_al_r0_0x003fc000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000ff000}, "al r0 0x000ff000", "ModifiedImmediate_al_r0_0x000ff000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0003fc00}, "al r0 0x0003fc00", "ModifiedImmediate_al_r0_0x0003fc00", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0000ff00}, "al r0 0x0000ff00", "ModifiedImmediate_al_r0_0x0000ff00", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00003fc0}, "al r0 0x00003fc0", "ModifiedImmediate_al_r0_0x00003fc0", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00000ff0}, "al r0 0x00000ff0", "ModifiedImmediate_al_r0_0x00000ff0", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000003fc}, "al r0 0x000003fc", "ModifiedImmediate_al_r0_0x000003fc", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000000ab}, "al r0 0x000000ab", "ModifiedImmediate_al_r0_0x000000ab", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xc000002a}, "al r0 0xc000002a", "ModifiedImmediate_al_r0_0xc000002a", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xb000000a}, "al r0 0xb000000a", "ModifiedImmediate_al_r0_0xb000000a", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xac000002}, "al r0 0xac000002", "ModifiedImmediate_al_r0_0xac000002", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0xab000000}, "al r0 0xab000000", "ModifiedImmediate_al_r0_0xab000000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x2ac00000}, "al r0 0x2ac00000", "ModifiedImmediate_al_r0_0x2ac00000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0ab00000}, "al r0 0x0ab00000", "ModifiedImmediate_al_r0_0x0ab00000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x02ac0000}, "al r0 0x02ac0000", "ModifiedImmediate_al_r0_0x02ac0000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00ab0000}, "al r0 0x00ab0000", "ModifiedImmediate_al_r0_0x00ab0000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x002ac000}, "al r0 0x002ac000", "ModifiedImmediate_al_r0_0x002ac000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000ab000}, "al r0 0x000ab000", "ModifiedImmediate_al_r0_0x000ab000", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0002ac00}, "al r0 0x0002ac00", "ModifiedImmediate_al_r0_0x0002ac00", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x0000ab00}, "al r0 0x0000ab00", "ModifiedImmediate_al_r0_0x0000ab00", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00002ac0}, "al r0 0x00002ac0", "ModifiedImmediate_al_r0_0x00002ac0", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x00000ab0}, "al r0 0x00000ab0", "ModifiedImmediate_al_r0_0x00000ab0", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}, {{al, r0, 0x000002ac}, "al r0 0x000002ac", "ModifiedImmediate_al_r0_0x000002ac", ARRAY_SIZE(kModifiedImmediate), kModifiedImmediate}}; // We record all inputs to the instructions as outputs. This way, we also check // that what shouldn't change didn't change. struct TestResult { size_t output_size; const Inputs* outputs; }; // These headers each contain an array of `TestResult` with the reference output // values. The reference arrays are names `kReference{mnemonic}`. #include "aarch32/traces/simulator-cond-rd-operand-const-cmn-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-cmp-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-mov-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-movs-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-mvn-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-mvns-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-teq-a32.h" #include "aarch32/traces/simulator-cond-rd-operand-const-tst-a32.h" // The maximum number of errors to report in detail for each test. const unsigned kErrorReportLimit = 8; typedef void (MacroAssembler::*Fn)(Condition cond, Register rd, const Operand& op); void TestHelper(Fn instruction, const char* mnemonic, const TestResult reference[]) { SETUP(); masm.UseA32(); START(); // Data to compare to `reference`. TestResult* results[ARRAY_SIZE(kTests)]; // Test cases for memory bound instructions may allocate a buffer and save its // address in this array. byte* scratch_memory_buffers[ARRAY_SIZE(kTests)]; // Generate a loop for each element in `kTests`. Each loop tests one specific // instruction. for (unsigned i = 0; i < ARRAY_SIZE(kTests); i++) { // Allocate results on the heap for this test. results[i] = new TestResult; results[i]->outputs = new Inputs[kTests[i].input_size]; results[i]->output_size = kTests[i].input_size; size_t input_stride = sizeof(kTests[i].inputs[0]) * kTests[i].input_size; VIXL_ASSERT(IsUint32(input_stride)); scratch_memory_buffers[i] = NULL; Label loop; UseScratchRegisterScope scratch_registers(&masm); // Include all registers from r0 ro r12. scratch_registers.Include(RegisterList(0x1fff)); // Values to pass to the macro-assembler. Condition cond = kTests[i].operands.cond; Register rd = kTests[i].operands.rd; uint32_t immediate = kTests[i].operands.immediate; Operand op(immediate); scratch_registers.Exclude(rd); // Allocate reserved registers for our own use. Register input_ptr = scratch_registers.Acquire(); Register input_end = scratch_registers.Acquire(); Register result_ptr = scratch_registers.Acquire(); // Initialize `input_ptr` to the first element and `input_end` the address // after the array. __ Mov(input_ptr, Operand::From(kTests[i].inputs)); __ Add(input_end, input_ptr, static_cast<uint32_t>(input_stride)); __ Mov(result_ptr, Operand::From(results[i]->outputs)); __ Bind(&loop); { UseScratchRegisterScope temp_registers(&masm); Register nzcv_bits = temp_registers.Acquire(); Register saved_q_bit = temp_registers.Acquire(); // Save the `Q` bit flag. __ Mrs(saved_q_bit, APSR); __ And(saved_q_bit, saved_q_bit, QFlag); // Set the `NZCV` and `Q` flags together. __ Ldr(nzcv_bits, MemOperand(input_ptr, offsetof(Inputs, apsr))); __ Orr(nzcv_bits, nzcv_bits, saved_q_bit); __ Msr(APSR_nzcvq, nzcv_bits); } __ Ldr(rd, MemOperand(input_ptr, offsetof(Inputs, rd))); (masm.*instruction)(cond, rd, op); { UseScratchRegisterScope temp_registers(&masm); Register nzcv_bits = temp_registers.Acquire(); __ Mrs(nzcv_bits, APSR); // Only record the NZCV bits. __ And(nzcv_bits, nzcv_bits, NZCVFlag); __ Str(nzcv_bits, MemOperand(result_ptr, offsetof(Inputs, apsr))); } __ Str(rd, MemOperand(result_ptr, offsetof(Inputs, rd))); // Advance the result pointer. __ Add(result_ptr, result_ptr, Operand::From(sizeof(kTests[i].inputs[0]))); // Loop back until `input_ptr` is lower than `input_base`. __ Add(input_ptr, input_ptr, Operand::From(sizeof(kTests[i].inputs[0]))); __ Cmp(input_ptr, input_end); __ B(ne, &loop); } END(); RUN(); if (Test::generate_test_trace()) { // Print the results. for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) { printf("const Inputs kOutputs_%s_%s[] = {\n", mnemonic, kTests[i].identifier); for (size_t j = 0; j < results[i]->output_size; j++) { printf(" { "); printf("0x%08" PRIx32, results[i]->outputs[j].apsr); printf(", "); printf("0x%08" PRIx32, results[i]->outputs[j].rd); printf(" },\n"); } printf("};\n"); } printf("const TestResult kReference%s[] = {\n", mnemonic); for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) { printf(" {\n"); printf(" ARRAY_SIZE(kOutputs_%s_%s),\n", mnemonic, kTests[i].identifier); printf(" kOutputs_%s_%s,\n", mnemonic, kTests[i].identifier); printf(" },\n"); } printf("};\n"); } else if (kCheckSimulatorTestResults) { // Check the results. unsigned total_error_count = 0; for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) { bool instruction_has_errors = false; for (size_t j = 0; j < kTests[i].input_size; j++) { uint32_t apsr = results[i]->outputs[j].apsr; uint32_t rd = results[i]->outputs[j].rd; uint32_t apsr_input = kTests[i].inputs[j].apsr; uint32_t rd_input = kTests[i].inputs[j].rd; uint32_t apsr_ref = reference[i].outputs[j].apsr; uint32_t rd_ref = reference[i].outputs[j].rd; if (((apsr != apsr_ref) || (rd != rd_ref)) && (++total_error_count <= kErrorReportLimit)) { // Print the instruction once even if it triggered multiple failures. if (!instruction_has_errors) { printf("Error(s) when testing \"%s %s\":\n", mnemonic, kTests[i].operands_description); instruction_has_errors = true; } // Print subsequent errors. printf(" Input: "); printf("0x%08" PRIx32, apsr_input); printf(", "); printf("0x%08" PRIx32, rd_input); printf("\n"); printf(" Expected: "); printf("0x%08" PRIx32, apsr_ref); printf(", "); printf("0x%08" PRIx32, rd_ref); printf("\n"); printf(" Found: "); printf("0x%08" PRIx32, apsr); printf(", "); printf("0x%08" PRIx32, rd); printf("\n\n"); } } } if (total_error_count > kErrorReportLimit) { printf("%u other errors follow.\n", total_error_count - kErrorReportLimit); } VIXL_CHECK(total_error_count == 0); } else { VIXL_WARNING("Assembled the code, but did not run anything.\n"); } for (size_t i = 0; i < ARRAY_SIZE(kTests); i++) { delete[] results[i]->outputs; delete results[i]; delete[] scratch_memory_buffers[i]; } } // Instantiate tests for each instruction in the list. // TODO: Remove this limitation by having a sandboxing mechanism. #if defined(VIXL_HOST_POINTER_32) #define TEST(mnemonic) \ void Test_##mnemonic() { \ TestHelper(&MacroAssembler::mnemonic, #mnemonic, kReference##mnemonic); \ } \ Test test_##mnemonic("AARCH32_SIMULATOR_COND_RD_OPERAND_CONST_" #mnemonic \ "_A32", \ &Test_##mnemonic); #else #define TEST(mnemonic) \ void Test_##mnemonic() { \ VIXL_WARNING("This test can only run on a 32-bit host.\n"); \ USE(TestHelper); \ } \ Test test_##mnemonic("AARCH32_SIMULATOR_COND_RD_OPERAND_CONST_" #mnemonic \ "_A32", \ &Test_##mnemonic); #endif FOREACH_INSTRUCTION(TEST) #undef TEST } // namespace #endif } // namespace aarch32 } // namespace vixl