// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_DATE_H_
#define V8_DATE_H_
#include "src/allocation.h"
#include "src/base/platform/platform.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
class DateCache {
public:
static const int kMsPerMin = 60 * 1000;
static const int kSecPerDay = 24 * 60 * 60;
static const int64_t kMsPerDay = kSecPerDay * 1000;
static const int64_t kMsPerMonth = kMsPerDay * 30;
// The largest time that can be passed to OS date-time library functions.
static const int kMaxEpochTimeInSec = kMaxInt;
static const int64_t kMaxEpochTimeInMs =
static_cast<int64_t>(kMaxInt) * 1000;
// The largest time that can be stored in JSDate.
static const int64_t kMaxTimeInMs =
static_cast<int64_t>(864000000) * 10000000;
// Conservative upper bound on time that can be stored in JSDate
// before UTC conversion.
static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth;
// Sentinel that denotes an invalid local offset.
static const int kInvalidLocalOffsetInMs = kMaxInt;
// Sentinel that denotes an invalid cache stamp.
// It is an invariant of DateCache that cache stamp is non-negative.
static const int kInvalidStamp = -1;
DateCache() : stamp_(0), tz_cache_(base::OS::CreateTimezoneCache()) {
ResetDateCache();
}
virtual ~DateCache() {
base::OS::DisposeTimezoneCache(tz_cache_);
tz_cache_ = NULL;
}
// Clears cached timezone information and increments the cache stamp.
void ResetDateCache();
// Computes floor(time_ms / kMsPerDay).
static int DaysFromTime(int64_t time_ms) {
if (time_ms < 0) time_ms -= (kMsPerDay - 1);
return static_cast<int>(time_ms / kMsPerDay);
}
// Computes modulo(time_ms, kMsPerDay) given that
// days = floor(time_ms / kMsPerDay).
static int TimeInDay(int64_t time_ms, int days) {
return static_cast<int>(time_ms - days * kMsPerDay);
}
// Given the number of days since the epoch, computes the weekday.
// ECMA 262 - 15.9.1.6.
int Weekday(int days) {
int result = (days + 4) % 7;
return result >= 0 ? result : result + 7;
}
bool IsLeap(int year) {
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// ECMA 262 - 15.9.1.7.
int LocalOffsetInMs() {
if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
local_offset_ms_ = GetLocalOffsetFromOS();
}
return local_offset_ms_;
}
const char* LocalTimezone(int64_t time_ms) {
if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) {
time_ms = EquivalentTime(time_ms);
}
return base::OS::LocalTimezone(static_cast<double>(time_ms), tz_cache_);
}
// ECMA 262 - 15.9.5.26
int TimezoneOffset(int64_t time_ms) {
int64_t local_ms = ToLocal(time_ms);
return static_cast<int>((time_ms - local_ms) / kMsPerMin);
}
// ECMA 262 - 15.9.1.9
// LocalTime(t) = t + LocalTZA + DaylightSavingTA(t)
int64_t ToLocal(int64_t time_ms) {
return time_ms + LocalOffsetInMs() + DaylightSavingsOffsetInMs(time_ms);
}
// ECMA 262 - 15.9.1.9
// UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA)
int64_t ToUTC(int64_t time_ms) {
// We need to compute UTC time that corresponds to the given local time.
// Literally following spec here leads to incorrect time computation at
// the points were we transition to and from DST.
//
// The following shows that using DST for (t - LocalTZA - hour) produces
// correct conversion.
//
// Consider transition to DST at local time L1.
// Let L0 = L1 - hour, L2 = L1 + hour,
// U1 = UTC time that corresponds to L1,
// U0 = U1 - hour.
// Transitioning to DST moves local clock one hour forward L1 => L2, so
// U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
// U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
// U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
// Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
// U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
// U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
// U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
//
// Consider transition from DST at local time L1.
// Let L0 = L1 - hour,
// U1 = UTC time that corresponds to L1,
// U0 = U1 - hour, U2 = U1 + hour.
// Transitioning from DST moves local clock one hour back L1 => L0, so
// U0 = UTC time that corresponds to L0 (before transition)
// = L0 - LocalTZA - hour.
// U1 = UTC time that corresponds to L0 (after transition)
// = L0 - LocalTZA = L1 - LocalTZA - hour
// U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
// Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
// U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
// U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
// It is impossible to get U1 from local time.
const int kMsPerHour = 3600 * 1000;
time_ms -= LocalOffsetInMs();
return time_ms - DaylightSavingsOffsetInMs(time_ms - kMsPerHour);
}
// Computes a time equivalent to the given time according
// to ECMA 262 - 15.9.1.9.
// The issue here is that some library calls don't work right for dates
// that cannot be represented using a non-negative signed 32 bit integer
// (measured in whole seconds based on the 1970 epoch).
// We solve this by mapping the time to a year with same leap-year-ness
// and same starting day for the year. The ECMAscript specification says
// we must do this, but for compatibility with other browsers, we use
// the actual year if it is in the range 1970..2037
int64_t EquivalentTime(int64_t time_ms) {
int days = DaysFromTime(time_ms);
int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay);
int year, month, day;
YearMonthDayFromDays(days, &year, &month, &day);
int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1;
return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms;
}
// Returns an equivalent year in the range [2008-2035] matching
// - leap year,
// - week day of first day.
// ECMA 262 - 15.9.1.9.
int EquivalentYear(int year) {
int week_day = Weekday(DaysFromYearMonth(year, 0));
int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28;
// Find the year in the range 2008..2037 that is equivalent mod 28.
// Add 3*28 to give a positive argument to the modulus operator.
return 2008 + (recent_year + 3 * 28 - 2008) % 28;
}
// Given the number of days since the epoch, computes
// the corresponding year, month, and day.
void YearMonthDayFromDays(int days, int* year, int* month, int* day);
// Computes the number of days since the epoch for
// the first day of the given month in the given year.
int DaysFromYearMonth(int year, int month);
// Breaks down the time value.
void BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
int* weekday, int* hour, int* min, int* sec, int* ms);
// Cache stamp is used for invalidating caches in JSDate.
// We increment the stamp each time when the timezone information changes.
// JSDate objects perform stamp check and invalidate their caches if
// their saved stamp is not equal to the current stamp.
Smi* stamp() { return stamp_; }
void* stamp_address() { return &stamp_; }
// These functions are virtual so that we can override them when testing.
virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) {
double time_ms = static_cast<double>(time_sec * 1000);
return static_cast<int>(
base::OS::DaylightSavingsOffset(time_ms, tz_cache_));
}
virtual int GetLocalOffsetFromOS() {
double offset = base::OS::LocalTimeOffset(tz_cache_);
DCHECK(offset < kInvalidLocalOffsetInMs);
return static_cast<int>(offset);
}
private:
// The implementation relies on the fact that no time zones have
// more than one daylight savings offset change per 19 days.
// In Egypt in 2010 they decided to suspend DST during Ramadan. This
// led to a short interval where DST is in effect from September 10 to
// September 30.
static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay;
// Size of the Daylight Savings Time cache.
static const int kDSTSize = 32;
// Daylight Savings Time segment stores a segment of time where
// daylight savings offset does not change.
struct DST {
int start_sec;
int end_sec;
int offset_ms;
int last_used;
};
// Computes the daylight savings offset for the given time.
// ECMA 262 - 15.9.1.8
int DaylightSavingsOffsetInMs(int64_t time_ms);
// Sets the before_ and the after_ segments from the DST cache such that
// the before_ segment starts earlier than the given time and
// the after_ segment start later than the given time.
// Both segments might be invalid.
// The last_used counters of the before_ and after_ are updated.
void ProbeDST(int time_sec);
// Finds the least recently used segment from the DST cache that is not
// equal to the given 'skip' segment.
DST* LeastRecentlyUsedDST(DST* skip);
// Extends the after_ segment with the given point or resets it
// if it starts later than the given time + kDefaultDSTDeltaInSec.
inline void ExtendTheAfterSegment(int time_sec, int offset_ms);
// Makes the given segment invalid.
inline void ClearSegment(DST* segment);
bool InvalidSegment(DST* segment) {
return segment->start_sec > segment->end_sec;
}
Smi* stamp_;
// Daylight Saving Time cache.
DST dst_[kDSTSize];
int dst_usage_counter_;
DST* before_;
DST* after_;
int local_offset_ms_;
// Year/Month/Day cache.
bool ymd_valid_;
int ymd_days_;
int ymd_year_;
int ymd_month_;
int ymd_day_;
base::TimezoneCache* tz_cache_;
};
} // namespace internal
} // namespace v8
#endif