// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_DATE_H_ #define V8_DATE_H_ #include "src/allocation.h" #include "src/base/platform/platform.h" #include "src/globals.h" namespace v8 { namespace internal { class DateCache { public: static const int kMsPerMin = 60 * 1000; static const int kSecPerDay = 24 * 60 * 60; static const int64_t kMsPerDay = kSecPerDay * 1000; static const int64_t kMsPerMonth = kMsPerDay * 30; // The largest time that can be passed to OS date-time library functions. static const int kMaxEpochTimeInSec = kMaxInt; static const int64_t kMaxEpochTimeInMs = static_cast<int64_t>(kMaxInt) * 1000; // The largest time that can be stored in JSDate. static const int64_t kMaxTimeInMs = static_cast<int64_t>(864000000) * 10000000; // Conservative upper bound on time that can be stored in JSDate // before UTC conversion. static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth; // Sentinel that denotes an invalid local offset. static const int kInvalidLocalOffsetInMs = kMaxInt; // Sentinel that denotes an invalid cache stamp. // It is an invariant of DateCache that cache stamp is non-negative. static const int kInvalidStamp = -1; DateCache() : stamp_(0), tz_cache_(base::OS::CreateTimezoneCache()) { ResetDateCache(); } virtual ~DateCache() { base::OS::DisposeTimezoneCache(tz_cache_); tz_cache_ = NULL; } // Clears cached timezone information and increments the cache stamp. void ResetDateCache(); // Computes floor(time_ms / kMsPerDay). static int DaysFromTime(int64_t time_ms) { if (time_ms < 0) time_ms -= (kMsPerDay - 1); return static_cast<int>(time_ms / kMsPerDay); } // Computes modulo(time_ms, kMsPerDay) given that // days = floor(time_ms / kMsPerDay). static int TimeInDay(int64_t time_ms, int days) { return static_cast<int>(time_ms - days * kMsPerDay); } // Given the number of days since the epoch, computes the weekday. // ECMA 262 - 15.9.1.6. int Weekday(int days) { int result = (days + 4) % 7; return result >= 0 ? result : result + 7; } bool IsLeap(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } // ECMA 262 - 15.9.1.7. int LocalOffsetInMs() { if (local_offset_ms_ == kInvalidLocalOffsetInMs) { local_offset_ms_ = GetLocalOffsetFromOS(); } return local_offset_ms_; } const char* LocalTimezone(int64_t time_ms) { if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) { time_ms = EquivalentTime(time_ms); } return base::OS::LocalTimezone(static_cast<double>(time_ms), tz_cache_); } // ECMA 262 - 15.9.5.26 int TimezoneOffset(int64_t time_ms) { int64_t local_ms = ToLocal(time_ms); return static_cast<int>((time_ms - local_ms) / kMsPerMin); } // ECMA 262 - 15.9.1.9 // LocalTime(t) = t + LocalTZA + DaylightSavingTA(t) int64_t ToLocal(int64_t time_ms) { return time_ms + LocalOffsetInMs() + DaylightSavingsOffsetInMs(time_ms); } // ECMA 262 - 15.9.1.9 // UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA) int64_t ToUTC(int64_t time_ms) { // We need to compute UTC time that corresponds to the given local time. // Literally following spec here leads to incorrect time computation at // the points were we transition to and from DST. // // The following shows that using DST for (t - LocalTZA - hour) produces // correct conversion. // // Consider transition to DST at local time L1. // Let L0 = L1 - hour, L2 = L1 + hour, // U1 = UTC time that corresponds to L1, // U0 = U1 - hour. // Transitioning to DST moves local clock one hour forward L1 => L2, so // U0 = UTC time that corresponds to L0 = L0 - LocalTZA, // U1 = UTC time that corresponds to L1 = L1 - LocalTZA, // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour. // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1. // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour), // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour), // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour). // // Consider transition from DST at local time L1. // Let L0 = L1 - hour, // U1 = UTC time that corresponds to L1, // U0 = U1 - hour, U2 = U1 + hour. // Transitioning from DST moves local clock one hour back L1 => L0, so // U0 = UTC time that corresponds to L0 (before transition) // = L0 - LocalTZA - hour. // U1 = UTC time that corresponds to L0 (after transition) // = L0 - LocalTZA = L1 - LocalTZA - hour // U2 = UTC time that corresponds to L1 = L1 - LocalTZA. // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0. // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0). // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1). // It is impossible to get U1 from local time. const int kMsPerHour = 3600 * 1000; time_ms -= LocalOffsetInMs(); return time_ms - DaylightSavingsOffsetInMs(time_ms - kMsPerHour); } // Computes a time equivalent to the given time according // to ECMA 262 - 15.9.1.9. // The issue here is that some library calls don't work right for dates // that cannot be represented using a non-negative signed 32 bit integer // (measured in whole seconds based on the 1970 epoch). // We solve this by mapping the time to a year with same leap-year-ness // and same starting day for the year. The ECMAscript specification says // we must do this, but for compatibility with other browsers, we use // the actual year if it is in the range 1970..2037 int64_t EquivalentTime(int64_t time_ms) { int days = DaysFromTime(time_ms); int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay); int year, month, day; YearMonthDayFromDays(days, &year, &month, &day); int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1; return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms; } // Returns an equivalent year in the range [2008-2035] matching // - leap year, // - week day of first day. // ECMA 262 - 15.9.1.9. int EquivalentYear(int year) { int week_day = Weekday(DaysFromYearMonth(year, 0)); int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28; // Find the year in the range 2008..2037 that is equivalent mod 28. // Add 3*28 to give a positive argument to the modulus operator. return 2008 + (recent_year + 3 * 28 - 2008) % 28; } // Given the number of days since the epoch, computes // the corresponding year, month, and day. void YearMonthDayFromDays(int days, int* year, int* month, int* day); // Computes the number of days since the epoch for // the first day of the given month in the given year. int DaysFromYearMonth(int year, int month); // Breaks down the time value. void BreakDownTime(int64_t time_ms, int* year, int* month, int* day, int* weekday, int* hour, int* min, int* sec, int* ms); // Cache stamp is used for invalidating caches in JSDate. // We increment the stamp each time when the timezone information changes. // JSDate objects perform stamp check and invalidate their caches if // their saved stamp is not equal to the current stamp. Smi* stamp() { return stamp_; } void* stamp_address() { return &stamp_; } // These functions are virtual so that we can override them when testing. virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) { double time_ms = static_cast<double>(time_sec * 1000); return static_cast<int>( base::OS::DaylightSavingsOffset(time_ms, tz_cache_)); } virtual int GetLocalOffsetFromOS() { double offset = base::OS::LocalTimeOffset(tz_cache_); DCHECK(offset < kInvalidLocalOffsetInMs); return static_cast<int>(offset); } private: // The implementation relies on the fact that no time zones have // more than one daylight savings offset change per 19 days. // In Egypt in 2010 they decided to suspend DST during Ramadan. This // led to a short interval where DST is in effect from September 10 to // September 30. static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay; // Size of the Daylight Savings Time cache. static const int kDSTSize = 32; // Daylight Savings Time segment stores a segment of time where // daylight savings offset does not change. struct DST { int start_sec; int end_sec; int offset_ms; int last_used; }; // Computes the daylight savings offset for the given time. // ECMA 262 - 15.9.1.8 int DaylightSavingsOffsetInMs(int64_t time_ms); // Sets the before_ and the after_ segments from the DST cache such that // the before_ segment starts earlier than the given time and // the after_ segment start later than the given time. // Both segments might be invalid. // The last_used counters of the before_ and after_ are updated. void ProbeDST(int time_sec); // Finds the least recently used segment from the DST cache that is not // equal to the given 'skip' segment. DST* LeastRecentlyUsedDST(DST* skip); // Extends the after_ segment with the given point or resets it // if it starts later than the given time + kDefaultDSTDeltaInSec. inline void ExtendTheAfterSegment(int time_sec, int offset_ms); // Makes the given segment invalid. inline void ClearSegment(DST* segment); bool InvalidSegment(DST* segment) { return segment->start_sec > segment->end_sec; } Smi* stamp_; // Daylight Saving Time cache. DST dst_[kDSTSize]; int dst_usage_counter_; DST* before_; DST* after_; int local_offset_ms_; // Year/Month/Day cache. bool ymd_valid_; int ymd_days_; int ymd_year_; int ymd_month_; int ymd_day_; base::TimezoneCache* tz_cache_; }; } // namespace internal } // namespace v8 #endif