// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/platform/time.h"
#if V8_OS_POSIX
#include <fcntl.h> // for O_RDONLY
#include <sys/time.h>
#include <unistd.h>
#endif
#if V8_OS_MACOSX
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <pthread.h>
#endif
#include <cstring>
#include <ostream>
#if V8_OS_WIN
#include "src/base/atomicops.h"
#include "src/base/lazy-instance.h"
#include "src/base/win32-headers.h"
#endif
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
namespace {
#if V8_OS_MACOSX
int64_t ComputeThreadTicks() {
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
kern_return_t kr = thread_info(
pthread_mach_thread_np(pthread_self()),
THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&thread_info_data),
&thread_info_count);
CHECK(kr == KERN_SUCCESS);
v8::base::CheckedNumeric<int64_t> absolute_micros(
thread_info_data.user_time.seconds +
thread_info_data.system_time.seconds);
absolute_micros *= v8::base::Time::kMicrosecondsPerSecond;
absolute_micros += (thread_info_data.user_time.microseconds +
thread_info_data.system_time.microseconds);
return absolute_micros.ValueOrDie();
}
#elif V8_OS_POSIX
// Helper function to get results from clock_gettime() and convert to a
// microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported
// on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines
// _POSIX_MONOTONIC_CLOCK to -1.
V8_INLINE int64_t ClockNow(clockid_t clk_id) {
#if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
defined(V8_OS_BSD) || defined(V8_OS_ANDROID)
// On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with
// resolution of 10ms. thread_cputime API provides the time in ns
#if defined(V8_OS_AIX)
thread_cputime_t tc;
if (clk_id == CLOCK_THREAD_CPUTIME_ID) {
if (thread_cputime(-1, &tc) != 0) {
UNREACHABLE();
return 0;
}
}
#endif
struct timespec ts;
if (clock_gettime(clk_id, &ts) != 0) {
UNREACHABLE();
return 0;
}
v8::base::internal::CheckedNumeric<int64_t> result(ts.tv_sec);
result *= v8::base::Time::kMicrosecondsPerSecond;
#if defined(V8_OS_AIX)
if (clk_id == CLOCK_THREAD_CPUTIME_ID) {
result += (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond);
} else {
result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond);
}
#else
result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond);
#endif
return result.ValueOrDie();
#else // Monotonic clock not supported.
return 0;
#endif
}
#elif V8_OS_WIN
V8_INLINE bool IsQPCReliable() {
v8::base::CPU cpu;
// On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable.
return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15;
}
// Returns the current value of the performance counter.
V8_INLINE uint64_t QPCNowRaw() {
LARGE_INTEGER perf_counter_now = {};
// According to the MSDN documentation for QueryPerformanceCounter(), this
// will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
BOOL result = ::QueryPerformanceCounter(&perf_counter_now);
DCHECK(result);
USE(result);
return perf_counter_now.QuadPart;
}
#endif // V8_OS_MACOSX
} // namespace
namespace v8 {
namespace base {
TimeDelta TimeDelta::FromDays(int days) {
return TimeDelta(days * Time::kMicrosecondsPerDay);
}
TimeDelta TimeDelta::FromHours(int hours) {
return TimeDelta(hours * Time::kMicrosecondsPerHour);
}
TimeDelta TimeDelta::FromMinutes(int minutes) {
return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
}
TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
}
TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
}
TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
}
int TimeDelta::InDays() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InHours() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64_t TimeDelta::InSeconds() const {
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMilliseconds() const {
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InNanoseconds() const {
return delta_ * Time::kNanosecondsPerMicrosecond;
}
#if V8_OS_MACOSX
TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct mach_timespec TimeDelta::ToMachTimespec() const {
struct mach_timespec ts;
DCHECK(delta_ >= 0);
ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_MACOSX
#if V8_OS_POSIX
TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct timespec TimeDelta::ToTimespec() const {
struct timespec ts;
ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_POSIX
#if V8_OS_WIN
// We implement time using the high-resolution timers so that we can get
// timeouts which are smaller than 10-15ms. To avoid any drift, we
// periodically resync the internal clock to the system clock.
class Clock final {
public:
Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
Time Now() {
// Time between resampling the un-granular clock for this API (1 minute).
const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
LockGuard<Mutex> lock_guard(&mutex_);
// Determine current time and ticks.
TimeTicks ticks = GetSystemTicks();
Time time = GetSystemTime();
// Check if we need to synchronize with the system clock due to a backwards
// time change or the amount of time elapsed.
TimeDelta elapsed = ticks - initial_ticks_;
if (time < initial_time_ || elapsed > kMaxElapsedTime) {
initial_ticks_ = ticks;
initial_time_ = time;
return time;
}
return initial_time_ + elapsed;
}
Time NowFromSystemTime() {
LockGuard<Mutex> lock_guard(&mutex_);
initial_ticks_ = GetSystemTicks();
initial_time_ = GetSystemTime();
return initial_time_;
}
private:
static TimeTicks GetSystemTicks() {
return TimeTicks::Now();
}
static Time GetSystemTime() {
FILETIME ft;
::GetSystemTimeAsFileTime(&ft);
return Time::FromFiletime(ft);
}
TimeTicks initial_ticks_;
Time initial_time_;
Mutex mutex_;
};
static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>,
ThreadSafeInitOnceTrait>::type clock =
LAZY_STATIC_INSTANCE_INITIALIZER;
Time Time::Now() {
return clock.Pointer()->Now();
}
Time Time::NowFromSystemTime() {
return clock.Pointer()->NowFromSystemTime();
}
// Time between windows epoch and standard epoch.
static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
Time Time::FromFiletime(FILETIME ft) {
if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
return Time();
}
if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
return Max();
}
int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
(static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
return Time(us - kTimeToEpochInMicroseconds);
}
FILETIME Time::ToFiletime() const {
DCHECK(us_ >= 0);
FILETIME ft;
if (IsNull()) {
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 0;
return ft;
}
if (IsMax()) {
ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
return ft;
}
uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
ft.dwLowDateTime = static_cast<DWORD>(us);
ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
return ft;
}
#elif V8_OS_POSIX
Time Time::Now() {
struct timeval tv;
int result = gettimeofday(&tv, NULL);
DCHECK_EQ(0, result);
USE(result);
return FromTimeval(tv);
}
Time Time::NowFromSystemTime() {
return Now();
}
Time Time::FromTimespec(struct timespec ts) {
DCHECK(ts.tv_nsec >= 0);
DCHECK(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT
if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
return Time();
}
if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT
ts.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(ts.tv_sec * kMicrosecondsPerSecond +
ts.tv_nsec / kNanosecondsPerMicrosecond);
}
struct timespec Time::ToTimespec() const {
struct timespec ts;
if (IsNull()) {
ts.tv_sec = 0;
ts.tv_nsec = 0;
return ts;
}
if (IsMax()) {
ts.tv_sec = std::numeric_limits<time_t>::max();
ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT
return ts;
}
ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
return ts;
}
Time Time::FromTimeval(struct timeval tv) {
DCHECK(tv.tv_usec >= 0);
DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
if (tv.tv_usec == 0 && tv.tv_sec == 0) {
return Time();
}
if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
tv.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
}
struct timeval Time::ToTimeval() const {
struct timeval tv;
if (IsNull()) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return tv;
}
if (IsMax()) {
tv.tv_sec = std::numeric_limits<time_t>::max();
tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
return tv;
}
tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
tv.tv_usec = us_ % kMicrosecondsPerSecond;
return tv;
}
#endif // V8_OS_WIN
Time Time::FromJsTime(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret
// 0 as the null time.
if (ms_since_epoch == std::numeric_limits<double>::max()) {
return Max();
}
return Time(
static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
}
double Time::ToJsTime() const {
if (IsNull()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (IsMax()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::max();
}
return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
}
std::ostream& operator<<(std::ostream& os, const Time& time) {
return os << time.ToJsTime();
}
#if V8_OS_WIN
class TickClock {
public:
virtual ~TickClock() {}
virtual int64_t Now() = 0;
virtual bool IsHighResolution() = 0;
};
// Overview of time counters:
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, the CPU counter is unreliable and should not
// be used in production. Its biggest issue is that it is per processor and it
// is not synchronized between processors. Also, on some computers, the counters
// will change frequency due to thermal and power changes, and stop in some
// states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (100 nanoseconds) time stamp but is comparatively more expensive
// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
// (with some help from ACPI).
// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
// in the worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent result on a multiprocessor computer, but it is unreliable in
// reality due to bugs in BIOS or HAL on some, especially old computers.
// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
// it should be used with caution.
//
// (3) System time. The system time provides a low-resolution (typically 10ms
// to 55 milliseconds) time stamp but is comparatively less expensive to
// retrieve and more reliable.
class HighResolutionTickClock final : public TickClock {
public:
explicit HighResolutionTickClock(int64_t ticks_per_second)
: ticks_per_second_(ticks_per_second) {
DCHECK_LT(0, ticks_per_second);
}
virtual ~HighResolutionTickClock() {}
int64_t Now() override {
uint64_t now = QPCNowRaw();
// Intentionally calculate microseconds in a round about manner to avoid
// overflow and precision issues. Think twice before simplifying!
int64_t whole_seconds = now / ticks_per_second_;
int64_t leftover_ticks = now % ticks_per_second_;
int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
// Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
// will never return 0.
return ticks + 1;
}
bool IsHighResolution() override { return true; }
private:
int64_t ticks_per_second_;
};
class RolloverProtectedTickClock final : public TickClock {
public:
RolloverProtectedTickClock() : rollover_(0) {}
virtual ~RolloverProtectedTickClock() {}
int64_t Now() override {
// We use timeGetTime() to implement TimeTicks::Now(), which rolls over
// every ~49.7 days. We try to track rollover ourselves, which works if
// TimeTicks::Now() is called at least every 24 days.
// Note that we do not use GetTickCount() here, since timeGetTime() gives
// more predictable delta values, as described here:
// http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
// timeGetTime() provides 1ms granularity when combined with
// timeBeginPeriod(). If the host application for V8 wants fast timers, it
// can use timeBeginPeriod() to increase the resolution.
// We use a lock-free version because the sampler thread calls it
// while having the rest of the world stopped, that could cause a deadlock.
base::Atomic32 rollover = base::Acquire_Load(&rollover_);
uint32_t now = static_cast<uint32_t>(timeGetTime());
if ((now >> 31) != static_cast<uint32_t>(rollover & 1)) {
base::Release_CompareAndSwap(&rollover_, rollover, rollover + 1);
++rollover;
}
uint64_t ms = (static_cast<uint64_t>(rollover) << 31) | now;
return static_cast<int64_t>(ms * Time::kMicrosecondsPerMillisecond);
}
bool IsHighResolution() override { return false; }
private:
base::Atomic32 rollover_;
};
static LazyStaticInstance<RolloverProtectedTickClock,
DefaultConstructTrait<RolloverProtectedTickClock>,
ThreadSafeInitOnceTrait>::type tick_clock =
LAZY_STATIC_INSTANCE_INITIALIZER;
struct CreateHighResTickClockTrait {
static TickClock* Create() {
// Check if the installed hardware supports a high-resolution performance
// counter, and if not fallback to the low-resolution tick clock.
LARGE_INTEGER ticks_per_second;
if (!QueryPerformanceFrequency(&ticks_per_second)) {
return tick_clock.Pointer();
}
// If QPC not reliable, fallback to low-resolution tick clock.
if (IsQPCReliable()) {
return tick_clock.Pointer();
}
return new HighResolutionTickClock(ticks_per_second.QuadPart);
}
};
static LazyDynamicInstance<TickClock, CreateHighResTickClockTrait,
ThreadSafeInitOnceTrait>::type high_res_tick_clock =
LAZY_DYNAMIC_INSTANCE_INITIALIZER;
TimeTicks TimeTicks::Now() {
// Make sure we never return 0 here.
TimeTicks ticks(tick_clock.Pointer()->Now());
DCHECK(!ticks.IsNull());
return ticks;
}
TimeTicks TimeTicks::HighResolutionNow() {
// Make sure we never return 0 here.
TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
DCHECK(!ticks.IsNull());
return ticks;
}
// static
bool TimeTicks::IsHighResolutionClockWorking() {
return high_res_tick_clock.Pointer()->IsHighResolution();
}
#else // V8_OS_WIN
TimeTicks TimeTicks::Now() {
return HighResolutionNow();
}
TimeTicks TimeTicks::HighResolutionNow() {
int64_t ticks;
#if V8_OS_MACOSX
static struct mach_timebase_info info;
if (info.denom == 0) {
kern_return_t result = mach_timebase_info(&info);
DCHECK_EQ(KERN_SUCCESS, result);
USE(result);
}
ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
info.numer / info.denom);
#elif V8_OS_SOLARIS
ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_POSIX
ticks = ClockNow(CLOCK_MONOTONIC);
#endif // V8_OS_MACOSX
// Make sure we never return 0 here.
return TimeTicks(ticks + 1);
}
// static
bool TimeTicks::IsHighResolutionClockWorking() {
return true;
}
#endif // V8_OS_WIN
bool ThreadTicks::IsSupported() {
#if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_MACOSX) || defined(V8_OS_ANDROID) || defined(V8_OS_SOLARIS)
return true;
#elif defined(V8_OS_WIN)
return IsSupportedWin();
#else
return false;
#endif
}
ThreadTicks ThreadTicks::Now() {
#if V8_OS_MACOSX
return ThreadTicks(ComputeThreadTicks());
#elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_ANDROID)
return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID));
#elif V8_OS_SOLARIS
return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_WIN
return ThreadTicks::GetForThread(::GetCurrentThread());
#else
UNREACHABLE();
return ThreadTicks();
#endif
}
#if V8_OS_WIN
ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) {
DCHECK(IsSupported());
// Get the number of TSC ticks used by the current thread.
ULONG64 thread_cycle_time = 0;
::QueryThreadCycleTime(thread_handle, &thread_cycle_time);
// Get the frequency of the TSC.
double tsc_ticks_per_second = TSCTicksPerSecond();
if (tsc_ticks_per_second == 0)
return ThreadTicks();
// Return the CPU time of the current thread.
double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
return ThreadTicks(
static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond));
}
// static
bool ThreadTicks::IsSupportedWin() {
static bool is_supported = base::CPU().has_non_stop_time_stamp_counter() &&
!IsQPCReliable();
return is_supported;
}
// static
void ThreadTicks::WaitUntilInitializedWin() {
while (TSCTicksPerSecond() == 0)
::Sleep(10);
}
double ThreadTicks::TSCTicksPerSecond() {
DCHECK(IsSupported());
// The value returned by QueryPerformanceFrequency() cannot be used as the TSC
// frequency, because there is no guarantee that the TSC frequency is equal to
// the performance counter frequency.
// The TSC frequency is cached in a static variable because it takes some time
// to compute it.
static double tsc_ticks_per_second = 0;
if (tsc_ticks_per_second != 0)
return tsc_ticks_per_second;
// Increase the thread priority to reduces the chances of having a context
// switch during a reading of the TSC and the performance counter.
int previous_priority = ::GetThreadPriority(::GetCurrentThread());
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// The first time that this function is called, make an initial reading of the
// TSC and the performance counter.
static const uint64_t tsc_initial = __rdtsc();
static const uint64_t perf_counter_initial = QPCNowRaw();
// Make a another reading of the TSC and the performance counter every time
// that this function is called.
uint64_t tsc_now = __rdtsc();
uint64_t perf_counter_now = QPCNowRaw();
// Reset the thread priority.
::SetThreadPriority(::GetCurrentThread(), previous_priority);
// Make sure that at least 50 ms elapsed between the 2 readings. The first
// time that this function is called, we don't expect this to be the case.
// Note: The longer the elapsed time between the 2 readings is, the more
// accurate the computed TSC frequency will be. The 50 ms value was
// chosen because local benchmarks show that it allows us to get a
// stddev of less than 1 tick/us between multiple runs.
// Note: According to the MSDN documentation for QueryPerformanceFrequency(),
// this will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx
LARGE_INTEGER perf_counter_frequency = {};
::QueryPerformanceFrequency(&perf_counter_frequency);
DCHECK_GE(perf_counter_now, perf_counter_initial);
uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
double elapsed_time_seconds =
perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart);
const double kMinimumEvaluationPeriodSeconds = 0.05;
if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
return 0;
// Compute the frequency of the TSC.
DCHECK_GE(tsc_now, tsc_initial);
uint64_t tsc_ticks = tsc_now - tsc_initial;
tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
return tsc_ticks_per_second;
}
#endif // V8_OS_WIN
} // namespace base
} // namespace v8