// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/platform/time.h" #if V8_OS_POSIX #include <fcntl.h> // for O_RDONLY #include <sys/time.h> #include <unistd.h> #endif #if V8_OS_MACOSX #include <mach/mach.h> #include <mach/mach_time.h> #include <pthread.h> #endif #include <cstring> #include <ostream> #if V8_OS_WIN #include "src/base/atomicops.h" #include "src/base/lazy-instance.h" #include "src/base/win32-headers.h" #endif #include "src/base/cpu.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" namespace { #if V8_OS_MACOSX int64_t ComputeThreadTicks() { mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; kern_return_t kr = thread_info( pthread_mach_thread_np(pthread_self()), THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&thread_info_data), &thread_info_count); CHECK(kr == KERN_SUCCESS); v8::base::CheckedNumeric<int64_t> absolute_micros( thread_info_data.user_time.seconds + thread_info_data.system_time.seconds); absolute_micros *= v8::base::Time::kMicrosecondsPerSecond; absolute_micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return absolute_micros.ValueOrDie(); } #elif V8_OS_POSIX // Helper function to get results from clock_gettime() and convert to a // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines // _POSIX_MONOTONIC_CLOCK to -1. V8_INLINE int64_t ClockNow(clockid_t clk_id) { #if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(V8_OS_BSD) || defined(V8_OS_ANDROID) // On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with // resolution of 10ms. thread_cputime API provides the time in ns #if defined(V8_OS_AIX) thread_cputime_t tc; if (clk_id == CLOCK_THREAD_CPUTIME_ID) { if (thread_cputime(-1, &tc) != 0) { UNREACHABLE(); return 0; } } #endif struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) { UNREACHABLE(); return 0; } v8::base::internal::CheckedNumeric<int64_t> result(ts.tv_sec); result *= v8::base::Time::kMicrosecondsPerSecond; #if defined(V8_OS_AIX) if (clk_id == CLOCK_THREAD_CPUTIME_ID) { result += (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond); } else { result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond); } #else result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond); #endif return result.ValueOrDie(); #else // Monotonic clock not supported. return 0; #endif } #elif V8_OS_WIN V8_INLINE bool IsQPCReliable() { v8::base::CPU cpu; // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable. return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15; } // Returns the current value of the performance counter. V8_INLINE uint64_t QPCNowRaw() { LARGE_INTEGER perf_counter_now = {}; // According to the MSDN documentation for QueryPerformanceCounter(), this // will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx BOOL result = ::QueryPerformanceCounter(&perf_counter_now); DCHECK(result); USE(result); return perf_counter_now.QuadPart; } #endif // V8_OS_MACOSX } // namespace namespace v8 { namespace base { TimeDelta TimeDelta::FromDays(int days) { return TimeDelta(days * Time::kMicrosecondsPerDay); } TimeDelta TimeDelta::FromHours(int hours) { return TimeDelta(hours * Time::kMicrosecondsPerHour); } TimeDelta TimeDelta::FromMinutes(int minutes) { return TimeDelta(minutes * Time::kMicrosecondsPerMinute); } TimeDelta TimeDelta::FromSeconds(int64_t seconds) { return TimeDelta(seconds * Time::kMicrosecondsPerSecond); } TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); } TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); } int TimeDelta::InDays() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); } int TimeDelta::InHours() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); } int TimeDelta::InMinutes() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); } double TimeDelta::InSecondsF() const { return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; } int64_t TimeDelta::InSeconds() const { return delta_ / Time::kMicrosecondsPerSecond; } double TimeDelta::InMillisecondsF() const { return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMilliseconds() const { return delta_ / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InNanoseconds() const { return delta_ * Time::kNanosecondsPerMicrosecond; } #if V8_OS_MACOSX TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct mach_timespec TimeDelta::ToMachTimespec() const { struct mach_timespec ts; DCHECK(delta_ >= 0); ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_MACOSX #if V8_OS_POSIX TimeDelta TimeDelta::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct timespec TimeDelta::ToTimespec() const { struct timespec ts; ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_POSIX #if V8_OS_WIN // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. To avoid any drift, we // periodically resync the internal clock to the system clock. class Clock final { public: Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} Time Now() { // Time between resampling the un-granular clock for this API (1 minute). const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); LockGuard<Mutex> lock_guard(&mutex_); // Determine current time and ticks. TimeTicks ticks = GetSystemTicks(); Time time = GetSystemTime(); // Check if we need to synchronize with the system clock due to a backwards // time change or the amount of time elapsed. TimeDelta elapsed = ticks - initial_ticks_; if (time < initial_time_ || elapsed > kMaxElapsedTime) { initial_ticks_ = ticks; initial_time_ = time; return time; } return initial_time_ + elapsed; } Time NowFromSystemTime() { LockGuard<Mutex> lock_guard(&mutex_); initial_ticks_ = GetSystemTicks(); initial_time_ = GetSystemTime(); return initial_time_; } private: static TimeTicks GetSystemTicks() { return TimeTicks::Now(); } static Time GetSystemTime() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return Time::FromFiletime(ft); } TimeTicks initial_ticks_; Time initial_time_; Mutex mutex_; }; static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>, ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER; Time Time::Now() { return clock.Pointer()->Now(); } Time Time::NowFromSystemTime() { return clock.Pointer()->NowFromSystemTime(); } // Time between windows epoch and standard epoch. static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); Time Time::FromFiletime(FILETIME ft) { if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { return Time(); } if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { return Max(); } int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; return Time(us - kTimeToEpochInMicroseconds); } FILETIME Time::ToFiletime() const { DCHECK(us_ >= 0); FILETIME ft; if (IsNull()) { ft.dwLowDateTime = 0; ft.dwHighDateTime = 0; return ft; } if (IsMax()) { ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); return ft; } uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; ft.dwLowDateTime = static_cast<DWORD>(us); ft.dwHighDateTime = static_cast<DWORD>(us >> 32); return ft; } #elif V8_OS_POSIX Time Time::Now() { struct timeval tv; int result = gettimeofday(&tv, NULL); DCHECK_EQ(0, result); USE(result); return FromTimeval(tv); } Time Time::NowFromSystemTime() { return Now(); } Time Time::FromTimespec(struct timespec ts) { DCHECK(ts.tv_nsec >= 0); DCHECK(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT if (ts.tv_nsec == 0 && ts.tv_sec == 0) { return Time(); } if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT ts.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(ts.tv_sec * kMicrosecondsPerSecond + ts.tv_nsec / kNanosecondsPerMicrosecond); } struct timespec Time::ToTimespec() const { struct timespec ts; if (IsNull()) { ts.tv_sec = 0; ts.tv_nsec = 0; return ts; } if (IsMax()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT return ts; } ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond; return ts; } Time Time::FromTimeval(struct timeval tv) { DCHECK(tv.tv_usec >= 0); DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); if (tv.tv_usec == 0 && tv.tv_sec == 0) { return Time(); } if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && tv.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); } struct timeval Time::ToTimeval() const { struct timeval tv; if (IsNull()) { tv.tv_sec = 0; tv.tv_usec = 0; return tv; } if (IsMax()) { tv.tv_sec = std::numeric_limits<time_t>::max(); tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); return tv; } tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); tv.tv_usec = us_ % kMicrosecondsPerSecond; return tv; } #endif // V8_OS_WIN Time Time::FromJsTime(double ms_since_epoch) { // The epoch is a valid time, so this constructor doesn't interpret // 0 as the null time. if (ms_since_epoch == std::numeric_limits<double>::max()) { return Max(); } return Time( static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); } double Time::ToJsTime() const { if (IsNull()) { // Preserve 0 so the invalid result doesn't depend on the platform. return 0; } if (IsMax()) { // Preserve max without offset to prevent overflow. return std::numeric_limits<double>::max(); } return static_cast<double>(us_) / kMicrosecondsPerMillisecond; } std::ostream& operator<<(std::ostream& os, const Time& time) { return os << time.ToJsTime(); } #if V8_OS_WIN class TickClock { public: virtual ~TickClock() {} virtual int64_t Now() = 0; virtual bool IsHighResolution() = 0; }; // Overview of time counters: // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, the CPU counter is unreliable and should not // be used in production. Its biggest issue is that it is per processor and it // is not synchronized between processors. Also, on some computers, the counters // will change frequency due to thermal and power changes, and stop in some // states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (100 nanoseconds) time stamp but is comparatively more expensive // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. // (with some help from ACPI). // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx // in the worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent result on a multiprocessor computer, but it is unreliable in // reality due to bugs in BIOS or HAL on some, especially old computers. // With recent updates on HAL and newer BIOS, QPC is getting more reliable but // it should be used with caution. // // (3) System time. The system time provides a low-resolution (typically 10ms // to 55 milliseconds) time stamp but is comparatively less expensive to // retrieve and more reliable. class HighResolutionTickClock final : public TickClock { public: explicit HighResolutionTickClock(int64_t ticks_per_second) : ticks_per_second_(ticks_per_second) { DCHECK_LT(0, ticks_per_second); } virtual ~HighResolutionTickClock() {} int64_t Now() override { uint64_t now = QPCNowRaw(); // Intentionally calculate microseconds in a round about manner to avoid // overflow and precision issues. Think twice before simplifying! int64_t whole_seconds = now / ticks_per_second_; int64_t leftover_ticks = now % ticks_per_second_; int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow() // will never return 0. return ticks + 1; } bool IsHighResolution() override { return true; } private: int64_t ticks_per_second_; }; class RolloverProtectedTickClock final : public TickClock { public: RolloverProtectedTickClock() : rollover_(0) {} virtual ~RolloverProtectedTickClock() {} int64_t Now() override { // We use timeGetTime() to implement TimeTicks::Now(), which rolls over // every ~49.7 days. We try to track rollover ourselves, which works if // TimeTicks::Now() is called at least every 24 days. // Note that we do not use GetTickCount() here, since timeGetTime() gives // more predictable delta values, as described here: // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx // timeGetTime() provides 1ms granularity when combined with // timeBeginPeriod(). If the host application for V8 wants fast timers, it // can use timeBeginPeriod() to increase the resolution. // We use a lock-free version because the sampler thread calls it // while having the rest of the world stopped, that could cause a deadlock. base::Atomic32 rollover = base::Acquire_Load(&rollover_); uint32_t now = static_cast<uint32_t>(timeGetTime()); if ((now >> 31) != static_cast<uint32_t>(rollover & 1)) { base::Release_CompareAndSwap(&rollover_, rollover, rollover + 1); ++rollover; } uint64_t ms = (static_cast<uint64_t>(rollover) << 31) | now; return static_cast<int64_t>(ms * Time::kMicrosecondsPerMillisecond); } bool IsHighResolution() override { return false; } private: base::Atomic32 rollover_; }; static LazyStaticInstance<RolloverProtectedTickClock, DefaultConstructTrait<RolloverProtectedTickClock>, ThreadSafeInitOnceTrait>::type tick_clock = LAZY_STATIC_INSTANCE_INITIALIZER; struct CreateHighResTickClockTrait { static TickClock* Create() { // Check if the installed hardware supports a high-resolution performance // counter, and if not fallback to the low-resolution tick clock. LARGE_INTEGER ticks_per_second; if (!QueryPerformanceFrequency(&ticks_per_second)) { return tick_clock.Pointer(); } // If QPC not reliable, fallback to low-resolution tick clock. if (IsQPCReliable()) { return tick_clock.Pointer(); } return new HighResolutionTickClock(ticks_per_second.QuadPart); } }; static LazyDynamicInstance<TickClock, CreateHighResTickClockTrait, ThreadSafeInitOnceTrait>::type high_res_tick_clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER; TimeTicks TimeTicks::Now() { // Make sure we never return 0 here. TimeTicks ticks(tick_clock.Pointer()->Now()); DCHECK(!ticks.IsNull()); return ticks; } TimeTicks TimeTicks::HighResolutionNow() { // Make sure we never return 0 here. TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); DCHECK(!ticks.IsNull()); return ticks; } // static bool TimeTicks::IsHighResolutionClockWorking() { return high_res_tick_clock.Pointer()->IsHighResolution(); } #else // V8_OS_WIN TimeTicks TimeTicks::Now() { return HighResolutionNow(); } TimeTicks TimeTicks::HighResolutionNow() { int64_t ticks; #if V8_OS_MACOSX static struct mach_timebase_info info; if (info.denom == 0) { kern_return_t result = mach_timebase_info(&info); DCHECK_EQ(KERN_SUCCESS, result); USE(result); } ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * info.numer / info.denom); #elif V8_OS_SOLARIS ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_POSIX ticks = ClockNow(CLOCK_MONOTONIC); #endif // V8_OS_MACOSX // Make sure we never return 0 here. return TimeTicks(ticks + 1); } // static bool TimeTicks::IsHighResolutionClockWorking() { return true; } #endif // V8_OS_WIN bool ThreadTicks::IsSupported() { #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_MACOSX) || defined(V8_OS_ANDROID) || defined(V8_OS_SOLARIS) return true; #elif defined(V8_OS_WIN) return IsSupportedWin(); #else return false; #endif } ThreadTicks ThreadTicks::Now() { #if V8_OS_MACOSX return ThreadTicks(ComputeThreadTicks()); #elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_ANDROID) return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); #elif V8_OS_SOLARIS return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_WIN return ThreadTicks::GetForThread(::GetCurrentThread()); #else UNREACHABLE(); return ThreadTicks(); #endif } #if V8_OS_WIN ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) { DCHECK(IsSupported()); // Get the number of TSC ticks used by the current thread. ULONG64 thread_cycle_time = 0; ::QueryThreadCycleTime(thread_handle, &thread_cycle_time); // Get the frequency of the TSC. double tsc_ticks_per_second = TSCTicksPerSecond(); if (tsc_ticks_per_second == 0) return ThreadTicks(); // Return the CPU time of the current thread. double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second; return ThreadTicks( static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond)); } // static bool ThreadTicks::IsSupportedWin() { static bool is_supported = base::CPU().has_non_stop_time_stamp_counter() && !IsQPCReliable(); return is_supported; } // static void ThreadTicks::WaitUntilInitializedWin() { while (TSCTicksPerSecond() == 0) ::Sleep(10); } double ThreadTicks::TSCTicksPerSecond() { DCHECK(IsSupported()); // The value returned by QueryPerformanceFrequency() cannot be used as the TSC // frequency, because there is no guarantee that the TSC frequency is equal to // the performance counter frequency. // The TSC frequency is cached in a static variable because it takes some time // to compute it. static double tsc_ticks_per_second = 0; if (tsc_ticks_per_second != 0) return tsc_ticks_per_second; // Increase the thread priority to reduces the chances of having a context // switch during a reading of the TSC and the performance counter. int previous_priority = ::GetThreadPriority(::GetCurrentThread()); ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST); // The first time that this function is called, make an initial reading of the // TSC and the performance counter. static const uint64_t tsc_initial = __rdtsc(); static const uint64_t perf_counter_initial = QPCNowRaw(); // Make a another reading of the TSC and the performance counter every time // that this function is called. uint64_t tsc_now = __rdtsc(); uint64_t perf_counter_now = QPCNowRaw(); // Reset the thread priority. ::SetThreadPriority(::GetCurrentThread(), previous_priority); // Make sure that at least 50 ms elapsed between the 2 readings. The first // time that this function is called, we don't expect this to be the case. // Note: The longer the elapsed time between the 2 readings is, the more // accurate the computed TSC frequency will be. The 50 ms value was // chosen because local benchmarks show that it allows us to get a // stddev of less than 1 tick/us between multiple runs. // Note: According to the MSDN documentation for QueryPerformanceFrequency(), // this will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx LARGE_INTEGER perf_counter_frequency = {}; ::QueryPerformanceFrequency(&perf_counter_frequency); DCHECK_GE(perf_counter_now, perf_counter_initial); uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial; double elapsed_time_seconds = perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart); const double kMinimumEvaluationPeriodSeconds = 0.05; if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) return 0; // Compute the frequency of the TSC. DCHECK_GE(tsc_now, tsc_initial); uint64_t tsc_ticks = tsc_now - tsc_initial; tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds; return tsc_ticks_per_second; } #endif // V8_OS_WIN } // namespace base } // namespace v8