C++程序  |  3505行  |  96.58 KB

// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Context.cpp: Implements the es1::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.

#include "Context.h"

#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "ResourceManager.h"
#include "Buffer.h"
#include "Framebuffer.h"
#include "Renderbuffer.h"
#include "Texture.h"
#include "VertexDataManager.h"
#include "IndexDataManager.h"
#include "libEGL/Display.h"
#include "common/Surface.hpp"
#include "Common/Half.hpp"

#include <EGL/eglext.h>

using std::abs;

namespace es1
{
Context::Context(egl::Display *const display, const Context *shareContext, const egl::Config *config)
	: egl::Context(display), config(config),
	  modelViewStack(MAX_MODELVIEW_STACK_DEPTH),
	  projectionStack(MAX_PROJECTION_STACK_DEPTH),
	  textureStack0(MAX_TEXTURE_STACK_DEPTH),
	  textureStack1(MAX_TEXTURE_STACK_DEPTH)
{
	sw::Context *context = new sw::Context();
	device = new es1::Device(context);

	mVertexDataManager = new VertexDataManager(this);
	mIndexDataManager = new IndexDataManager();

	setClearColor(0.0f, 0.0f, 0.0f, 0.0f);

	mState.depthClearValue = 1.0f;
	mState.stencilClearValue = 0;

	mState.cullFaceEnabled = false;
	mState.cullMode = GL_BACK;
	mState.frontFace = GL_CCW;
	mState.depthTestEnabled = false;
	mState.depthFunc = GL_LESS;
	mState.blendEnabled = false;
	mState.sourceBlendRGB = GL_ONE;
	mState.sourceBlendAlpha = GL_ONE;
	mState.destBlendRGB = GL_ZERO;
	mState.destBlendAlpha = GL_ZERO;
	mState.blendEquationRGB = GL_FUNC_ADD_OES;
	mState.blendEquationAlpha = GL_FUNC_ADD_OES;
	mState.stencilTestEnabled = false;
	mState.stencilFunc = GL_ALWAYS;
	mState.stencilRef = 0;
	mState.stencilMask = -1;
	mState.stencilWritemask = -1;
	mState.stencilFail = GL_KEEP;
	mState.stencilPassDepthFail = GL_KEEP;
	mState.stencilPassDepthPass = GL_KEEP;
	mState.polygonOffsetFillEnabled = false;
	mState.polygonOffsetFactor = 0.0f;
	mState.polygonOffsetUnits = 0.0f;
	mState.sampleAlphaToCoverageEnabled = false;
	mState.sampleCoverageEnabled = false;
	mState.sampleCoverageValue = 1.0f;
	mState.sampleCoverageInvert = false;
	mState.scissorTestEnabled = false;
	mState.ditherEnabled = true;
	mState.shadeModel = GL_SMOOTH;
	mState.generateMipmapHint = GL_DONT_CARE;
	mState.perspectiveCorrectionHint = GL_DONT_CARE;
	mState.fogHint = GL_DONT_CARE;

	mState.lineWidth = 1.0f;

	mState.viewportX = 0;
	mState.viewportY = 0;
	mState.viewportWidth = 0;
	mState.viewportHeight = 0;
	mState.zNear = 0.0f;
	mState.zFar = 1.0f;

	mState.scissorX = 0;
	mState.scissorY = 0;
	mState.scissorWidth = 0;
	mState.scissorHeight = 0;

	mState.colorMaskRed = true;
	mState.colorMaskGreen = true;
	mState.colorMaskBlue = true;
	mState.colorMaskAlpha = true;
	mState.depthMask = true;

	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
	{
		mState.textureUnit[i].color = {0, 0, 0, 0};
		mState.textureUnit[i].environmentMode = GL_MODULATE;
		mState.textureUnit[i].combineRGB = GL_MODULATE;
		mState.textureUnit[i].combineAlpha = GL_MODULATE;
		mState.textureUnit[i].src0RGB = GL_TEXTURE;
		mState.textureUnit[i].src1RGB = GL_PREVIOUS;
		mState.textureUnit[i].src2RGB = GL_CONSTANT;
		mState.textureUnit[i].src0Alpha = GL_TEXTURE;
		mState.textureUnit[i].src1Alpha = GL_PREVIOUS;
		mState.textureUnit[i].src2Alpha = GL_CONSTANT;
		mState.textureUnit[i].operand0RGB = GL_SRC_COLOR;
		mState.textureUnit[i].operand1RGB = GL_SRC_COLOR;
		mState.textureUnit[i].operand2RGB = GL_SRC_ALPHA;
		mState.textureUnit[i].operand0Alpha = GL_SRC_ALPHA;
		mState.textureUnit[i].operand1Alpha = GL_SRC_ALPHA;
		mState.textureUnit[i].operand2Alpha = GL_SRC_ALPHA;
	}

	if(shareContext)
	{
		mResourceManager = shareContext->mResourceManager;
		mResourceManager->addRef();
	}
	else
	{
		mResourceManager = new ResourceManager();
	}

	// [OpenGL ES 2.0.24] section 3.7 page 83:
	// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
	// and cube map texture state vectors respectively associated with them.
	// In order that access to these initial textures not be lost, they are treated as texture
	// objects all of whose names are 0.

	mTexture2DZero = new Texture2D(0);
	mTextureExternalZero = new TextureExternal(0);

	mState.activeSampler = 0;

	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
	{
		bindTexture((TextureType)type, 0);
	}

	bindArrayBuffer(0);
	bindElementArrayBuffer(0);
	bindFramebuffer(0);
	bindRenderbuffer(0);

	mState.packAlignment = 4;
	mState.unpackAlignment = 4;

	mInvalidEnum = false;
	mInvalidValue = false;
	mInvalidOperation = false;
	mOutOfMemory = false;
	mInvalidFramebufferOperation = false;
	mMatrixStackOverflow = false;
	mMatrixStackUnderflow = false;

	lightingEnabled = false;

	for(int i = 0; i < MAX_LIGHTS; i++)
	{
		light[i].enabled = false;
		light[i].ambient = {0.0f, 0.0f, 0.0f, 1.0f};
		light[i].diffuse = {0.0f, 0.0f, 0.0f, 1.0f};
		light[i].specular = {0.0f, 0.0f, 0.0f, 1.0f};
		light[i].position = {0.0f, 0.0f, 1.0f, 0.0f};
		light[i].direction = {0.0f, 0.0f, -1.0f};
		light[i].attenuation = {1.0f, 0.0f, 0.0f};
		light[i].spotExponent = 0.0f;
		light[i].spotCutoffAngle = 180.0f;
	}

	light[0].diffuse = {1.0f, 1.0f, 1.0f, 1.0f};
	light[0].specular = {1.0f, 1.0f, 1.0f, 1.0f};

	globalAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
	materialAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
	materialDiffuse = {0.8f, 0.8f, 0.8f, 1.0f};
	materialSpecular = {0.0f, 0.0f, 0.0f, 1.0f};
	materialEmission = {0.0f, 0.0f, 0.0f, 1.0f};
	materialShininess = 0.0f;
	lightModelTwoSide = false;

	matrixMode = GL_MODELVIEW;

	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
	{
		texture2Denabled[i] = false;
		textureExternalEnabled[i] = false;
	}

	clientTexture = GL_TEXTURE0;

	setVertexAttrib(sw::Color0, 1.0f, 1.0f, 1.0f, 1.0f);

	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
	{
		setVertexAttrib(sw::TexCoord0 + i, 0.0f, 0.0f, 0.0f, 1.0f);
	}

	setVertexAttrib(sw::Normal, 0.0f, 0.0f, 1.0f, 1.0f);
	setVertexAttrib(sw::PointSize, 1.0f, 1.0f, 1.0f, 1.0f);

	clipFlags = 0;

	alphaTestEnabled = false;
	alphaTestFunc = GL_ALWAYS;
	alphaTestRef = 0;

	fogEnabled = false;
	fogMode = GL_EXP;
	fogDensity = 1.0f;
	fogStart = 0.0f;
	fogEnd = 1.0f;
	fogColor = {0, 0, 0, 0};

	lineSmoothEnabled = false;
	colorMaterialEnabled = false;
	normalizeEnabled = false;
	rescaleNormalEnabled = false;
	multisampleEnabled = true;
	sampleAlphaToOneEnabled = false;

	colorLogicOpEnabled = false;
	logicalOperation = GL_COPY;

	pointSpriteEnabled = false;
	pointSmoothEnabled = false;
	pointSizeMin = 0.0f;
	pointSizeMax = 1.0f;
	pointDistanceAttenuation = {1.0f, 0.0f, 0.0f};
	pointFadeThresholdSize = 1.0f;

	mHasBeenCurrent = false;

	markAllStateDirty();
}

Context::~Context()
{
	while(!mFramebufferNameSpace.empty())
	{
		deleteFramebuffer(mFramebufferNameSpace.firstName());
	}

	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
	{
		for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
		{
			mState.samplerTexture[type][sampler] = nullptr;
		}
	}

	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
	{
		mState.vertexAttribute[i].mBoundBuffer = nullptr;
	}

	mState.arrayBuffer = nullptr;
	mState.elementArrayBuffer = nullptr;
	mState.renderbuffer = nullptr;

	mTexture2DZero = nullptr;
	mTextureExternalZero = nullptr;

	delete mVertexDataManager;
	delete mIndexDataManager;

	mResourceManager->release();
	delete device;
}

void Context::makeCurrent(gl::Surface *surface)
{
	if(!mHasBeenCurrent)
	{
		mState.viewportX = 0;
		mState.viewportY = 0;
		mState.viewportWidth = surface ? surface->getWidth() : 0;
		mState.viewportHeight = surface ? surface->getHeight() : 0;

		mState.scissorX = 0;
		mState.scissorY = 0;
		mState.scissorWidth = surface ? surface->getWidth() : 0;
		mState.scissorHeight = surface ? surface->getHeight() : 0;

		mHasBeenCurrent = true;
	}

	// Wrap the existing resources into GL objects and assign them to the '0' names
	egl::Image *defaultRenderTarget = surface ? surface->getRenderTarget() : nullptr;
	egl::Image *depthStencil = surface ? surface->getDepthStencil() : nullptr;

	Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
	DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
	Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);

	setFramebufferZero(framebufferZero);

	if(defaultRenderTarget)
	{
		defaultRenderTarget->release();
	}

	if(depthStencil)
	{
		depthStencil->release();
	}

	markAllStateDirty();
}

EGLint Context::getClientVersion() const
{
	return 1;
}

EGLint Context::getConfigID() const
{
	return config->mConfigID;
}

// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
	mDepthStateDirty = true;
	mMaskStateDirty = true;
	mBlendStateDirty = true;
	mStencilStateDirty = true;
	mPolygonOffsetStateDirty = true;
	mSampleStateDirty = true;
	mDitherStateDirty = true;
	mFrontFaceDirty = true;
}

void Context::setClearColor(float red, float green, float blue, float alpha)
{
	mState.colorClearValue.red = red;
	mState.colorClearValue.green = green;
	mState.colorClearValue.blue = blue;
	mState.colorClearValue.alpha = alpha;
}

void Context::setClearDepth(float depth)
{
	mState.depthClearValue = depth;
}

void Context::setClearStencil(int stencil)
{
	mState.stencilClearValue = stencil;
}

void Context::setCullFaceEnabled(bool enabled)
{
	mState.cullFaceEnabled = enabled;
}

bool Context::isCullFaceEnabled() const
{
	return mState.cullFaceEnabled;
}

void Context::setCullMode(GLenum mode)
{
   mState.cullMode = mode;
}

void Context::setFrontFace(GLenum front)
{
	if(mState.frontFace != front)
	{
		mState.frontFace = front;
		mFrontFaceDirty = true;
	}
}

void Context::setDepthTestEnabled(bool enabled)
{
	if(mState.depthTestEnabled != enabled)
	{
		mState.depthTestEnabled = enabled;
		mDepthStateDirty = true;
	}
}

bool Context::isDepthTestEnabled() const
{
	return mState.depthTestEnabled;
}

void Context::setDepthFunc(GLenum depthFunc)
{
	if(mState.depthFunc != depthFunc)
	{
		mState.depthFunc = depthFunc;
		mDepthStateDirty = true;
	}
}

void Context::setDepthRange(float zNear, float zFar)
{
	mState.zNear = zNear;
	mState.zFar = zFar;
}

void Context::setAlphaTestEnabled(bool enabled)
{
	alphaTestEnabled = enabled;
}

bool Context::isAlphaTestEnabled() const
{
	return alphaTestEnabled;
}

void Context::setAlphaFunc(GLenum alphaFunc, GLclampf reference)
{
	alphaTestFunc = alphaFunc;
	alphaTestRef = reference;
}

void Context::setBlendEnabled(bool enabled)
{
	if(mState.blendEnabled != enabled)
	{
		mState.blendEnabled = enabled;
		mBlendStateDirty = true;
	}
}

bool Context::isBlendEnabled() const
{
	return mState.blendEnabled;
}

void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
	if(mState.sourceBlendRGB != sourceRGB ||
	   mState.sourceBlendAlpha != sourceAlpha ||
	   mState.destBlendRGB != destRGB ||
	   mState.destBlendAlpha != destAlpha)
	{
		mState.sourceBlendRGB = sourceRGB;
		mState.destBlendRGB = destRGB;
		mState.sourceBlendAlpha = sourceAlpha;
		mState.destBlendAlpha = destAlpha;
		mBlendStateDirty = true;
	}
}

void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
	if(mState.blendEquationRGB != rgbEquation ||
	   mState.blendEquationAlpha != alphaEquation)
	{
		mState.blendEquationRGB = rgbEquation;
		mState.blendEquationAlpha = alphaEquation;
		mBlendStateDirty = true;
	}
}

void Context::setStencilTestEnabled(bool enabled)
{
	if(mState.stencilTestEnabled != enabled)
	{
		mState.stencilTestEnabled = enabled;
		mStencilStateDirty = true;
	}
}

bool Context::isStencilTestEnabled() const
{
	return mState.stencilTestEnabled;
}

void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
	if(mState.stencilFunc != stencilFunc ||
	   mState.stencilRef != stencilRef ||
	   mState.stencilMask != stencilMask)
	{
		mState.stencilFunc = stencilFunc;
		mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
		mState.stencilMask = stencilMask;
		mStencilStateDirty = true;
	}
}

void Context::setStencilWritemask(GLuint stencilWritemask)
{
	if(mState.stencilWritemask != stencilWritemask)
	{
		mState.stencilWritemask = stencilWritemask;
		mStencilStateDirty = true;
	}
}

void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
	if(mState.stencilFail != stencilFail ||
	   mState.stencilPassDepthFail != stencilPassDepthFail ||
	   mState.stencilPassDepthPass != stencilPassDepthPass)
	{
		mState.stencilFail = stencilFail;
		mState.stencilPassDepthFail = stencilPassDepthFail;
		mState.stencilPassDepthPass = stencilPassDepthPass;
		mStencilStateDirty = true;
	}
}

void Context::setPolygonOffsetFillEnabled(bool enabled)
{
	if(mState.polygonOffsetFillEnabled != enabled)
	{
		mState.polygonOffsetFillEnabled = enabled;
		mPolygonOffsetStateDirty = true;
	}
}

bool Context::isPolygonOffsetFillEnabled() const
{
	return mState.polygonOffsetFillEnabled;
}

void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
	if(mState.polygonOffsetFactor != factor ||
	   mState.polygonOffsetUnits != units)
	{
		mState.polygonOffsetFactor = factor;
		mState.polygonOffsetUnits = units;
		mPolygonOffsetStateDirty = true;
	}
}

void Context::setSampleAlphaToCoverageEnabled(bool enabled)
{
	if(mState.sampleAlphaToCoverageEnabled != enabled)
	{
		mState.sampleAlphaToCoverageEnabled = enabled;
		mSampleStateDirty = true;
	}
}

bool Context::isSampleAlphaToCoverageEnabled() const
{
	return mState.sampleAlphaToCoverageEnabled;
}

void Context::setSampleCoverageEnabled(bool enabled)
{
	if(mState.sampleCoverageEnabled != enabled)
	{
		mState.sampleCoverageEnabled = enabled;
		mSampleStateDirty = true;
	}
}

bool Context::isSampleCoverageEnabled() const
{
	return mState.sampleCoverageEnabled;
}

void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
	if(mState.sampleCoverageValue != value ||
	   mState.sampleCoverageInvert != invert)
	{
		mState.sampleCoverageValue = value;
		mState.sampleCoverageInvert = invert;
		mSampleStateDirty = true;
	}
}

void Context::setScissorTestEnabled(bool enabled)
{
	mState.scissorTestEnabled = enabled;
}

bool Context::isScissorTestEnabled() const
{
	return mState.scissorTestEnabled;
}

void Context::setShadeModel(GLenum mode)
{
	mState.shadeModel = mode;
}

void Context::setDitherEnabled(bool enabled)
{
	if(mState.ditherEnabled != enabled)
	{
		mState.ditherEnabled = enabled;
		mDitherStateDirty = true;
	}
}

bool Context::isDitherEnabled() const
{
	return mState.ditherEnabled;
}

void Context::setLightingEnabled(bool enable)
{
	lightingEnabled = enable;
}

bool Context::isLightingEnabled() const
{
	return lightingEnabled;
}

void Context::setLightEnabled(int index, bool enable)
{
	light[index].enabled = enable;
}

bool Context::isLightEnabled(int index) const
{
	return light[index].enabled;
}

void Context::setLightAmbient(int index, float r, float g, float b, float a)
{
	light[index].ambient = {r, g, b, a};
}

void Context::setLightDiffuse(int index, float r, float g, float b, float a)
{
	light[index].diffuse = {r, g, b, a};
}

void Context::setLightSpecular(int index, float r, float g, float b, float a)
{
	light[index].specular = {r, g, b, a};
}

void Context::setLightPosition(int index, float x, float y, float z, float w)
{
	sw::float4 v = {x, y, z, w};

	// Transform from object coordinates to eye coordinates
	v = modelViewStack.current() * v;

	light[index].position = {v.x, v.y, v.z, v.w};
}

void Context::setLightDirection(int index, float x, float y, float z)
{
	// FIXME: Transform by inverse of 3x3 model-view matrix
	light[index].direction = {x, y, z};
}

void Context::setLightAttenuationConstant(int index, float constant)
{
	light[index].attenuation.constant = constant;
}

void Context::setLightAttenuationLinear(int index, float linear)
{
	light[index].attenuation.linear = linear;
}

void Context::setLightAttenuationQuadratic(int index, float quadratic)
{
	light[index].attenuation.quadratic = quadratic;
}

void Context::setSpotLightExponent(int index, float exponent)
{
	light[index].spotExponent = exponent;
}

void Context::setSpotLightCutoff(int index, float cutoff)
{
	light[index].spotCutoffAngle = cutoff;
}

void Context::setGlobalAmbient(float red, float green, float blue, float alpha)
{
	globalAmbient.red = red;
	globalAmbient.green = green;
	globalAmbient.blue = blue;
	globalAmbient.alpha = alpha;
}

void Context::setMaterialAmbient(float red, float green, float blue, float alpha)
{
	materialAmbient.red = red;
	materialAmbient.green = green;
	materialAmbient.blue = blue;
	materialAmbient.alpha = alpha;
}

void Context::setMaterialDiffuse(float red, float green, float blue, float alpha)
{
	materialDiffuse.red = red;
	materialDiffuse.green = green;
	materialDiffuse.blue = blue;
	materialDiffuse.alpha = alpha;
}

void Context::setMaterialSpecular(float red, float green, float blue, float alpha)
{
	materialSpecular.red = red;
	materialSpecular.green = green;
	materialSpecular.blue = blue;
	materialSpecular.alpha = alpha;
}

void Context::setMaterialEmission(float red, float green, float blue, float alpha)
{
	materialEmission.red = red;
	materialEmission.green = green;
	materialEmission.blue = blue;
	materialEmission.alpha = alpha;
}

void Context::setMaterialShininess(float shininess)
{
	materialShininess = shininess;
}

void Context::setLightModelTwoSide(bool enable)
{
	lightModelTwoSide = enable;
}

void Context::setFogEnabled(bool enable)
{
	fogEnabled = enable;
}

bool Context::isFogEnabled() const
{
	return fogEnabled;
}

void Context::setFogMode(GLenum mode)
{
	fogMode = mode;
}

void Context::setFogDensity(float fogDensity)
{
	this->fogDensity = fogDensity;
}

void Context::setFogStart(float fogStart)
{
	this->fogStart = fogStart;
}

void Context::setFogEnd(float fogEnd)
{
	this->fogEnd = fogEnd;
}

void Context::setFogColor(float r, float g, float b, float a)
{
	this->fogColor = {r, g, b, a};
}

void Context::setTexture2Denabled(bool enable)
{
	texture2Denabled[mState.activeSampler] = enable;
}

bool Context::isTexture2Denabled() const
{
	return texture2Denabled[mState.activeSampler];
}

void Context::setTextureExternalEnabled(bool enable)
{
	textureExternalEnabled[mState.activeSampler] = enable;
}

bool Context::isTextureExternalEnabled() const
{
	return textureExternalEnabled[mState.activeSampler];
}

void Context::setLineWidth(GLfloat width)
{
	mState.lineWidth = width;
	device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
}

void Context::setGenerateMipmapHint(GLenum hint)
{
	mState.generateMipmapHint = hint;
}

void Context::setPerspectiveCorrectionHint(GLenum hint)
{
	mState.perspectiveCorrectionHint = hint;
}

void Context::setFogHint(GLenum hint)
{
	mState.fogHint = hint;
}

void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
	mState.viewportX = x;
	mState.viewportY = y;
	mState.viewportWidth = width;
	mState.viewportHeight = height;
}

void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
	mState.scissorX = x;
	mState.scissorY = y;
	mState.scissorWidth = width;
	mState.scissorHeight = height;
}

void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
	if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
	   mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
	{
		mState.colorMaskRed = red;
		mState.colorMaskGreen = green;
		mState.colorMaskBlue = blue;
		mState.colorMaskAlpha = alpha;
		mMaskStateDirty = true;
	}
}

void Context::setDepthMask(bool mask)
{
	if(mState.depthMask != mask)
	{
		mState.depthMask = mask;
		mMaskStateDirty = true;
	}
}

void Context::setActiveSampler(unsigned int active)
{
	mState.activeSampler = active;
}

GLuint Context::getFramebufferName() const
{
	return mState.framebuffer;
}

GLuint Context::getRenderbufferName() const
{
	return mState.renderbuffer.name();
}

GLuint Context::getArrayBufferName() const
{
	return mState.arrayBuffer.name();
}

void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled)
{
	mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}

const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
	return mState.vertexAttribute[attribNum];
}

void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
                                   GLsizei stride, const void *pointer)
{
	mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer;
	mState.vertexAttribute[attribNum].mSize = size;
	mState.vertexAttribute[attribNum].mType = type;
	mState.vertexAttribute[attribNum].mNormalized = normalized;
	mState.vertexAttribute[attribNum].mStride = stride;
	mState.vertexAttribute[attribNum].mPointer = pointer;
}

const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
	return mState.vertexAttribute[attribNum].mPointer;
}

const VertexAttributeArray &Context::getVertexAttributes()
{
	return mState.vertexAttribute;
}

void Context::setPackAlignment(GLint alignment)
{
	mState.packAlignment = alignment;
}

GLint Context::getPackAlignment() const
{
	return mState.packAlignment;
}

void Context::setUnpackAlignment(GLint alignment)
{
	mState.unpackAlignment = alignment;
}

GLint Context::getUnpackAlignment() const
{
	return mState.unpackAlignment;
}

GLuint Context::createBuffer()
{
	return mResourceManager->createBuffer();
}

GLuint Context::createTexture()
{
	return mResourceManager->createTexture();
}

GLuint Context::createRenderbuffer()
{
	return mResourceManager->createRenderbuffer();
}

// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
	return mFramebufferNameSpace.allocate();
}

void Context::deleteBuffer(GLuint buffer)
{
	detachBuffer(buffer);

	mResourceManager->deleteBuffer(buffer);
}

void Context::deleteTexture(GLuint texture)
{
	detachTexture(texture);

	mResourceManager->deleteTexture(texture);
}

void Context::deleteRenderbuffer(GLuint renderbuffer)
{
	detachRenderbuffer(renderbuffer);

	mResourceManager->deleteRenderbuffer(renderbuffer);
}

void Context::deleteFramebuffer(GLuint framebuffer)
{
	detachFramebuffer(framebuffer);

	Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer);

	if(framebufferObject)
	{
		delete framebufferObject;
	}
}

Buffer *Context::getBuffer(GLuint handle)
{
	return mResourceManager->getBuffer(handle);
}

Texture *Context::getTexture(GLuint handle)
{
	return mResourceManager->getTexture(handle);
}

Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
	return mResourceManager->getRenderbuffer(handle);
}

Framebuffer *Context::getFramebuffer()
{
	return getFramebuffer(mState.framebuffer);
}

void Context::bindArrayBuffer(unsigned int buffer)
{
	mResourceManager->checkBufferAllocation(buffer);

	mState.arrayBuffer = getBuffer(buffer);
}

void Context::bindElementArrayBuffer(unsigned int buffer)
{
	mResourceManager->checkBufferAllocation(buffer);

	mState.elementArrayBuffer = getBuffer(buffer);
}

void Context::bindTexture(TextureType type, GLuint texture)
{
	mResourceManager->checkTextureAllocation(texture, type);

	mState.samplerTexture[type][mState.activeSampler] = getTexture(texture);
}

void Context::bindFramebuffer(GLuint framebuffer)
{
	if(!getFramebuffer(framebuffer))
	{
		mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
	}

	mState.framebuffer = framebuffer;
}

void Context::bindRenderbuffer(GLuint renderbuffer)
{
	mResourceManager->checkRenderbufferAllocation(renderbuffer);

	mState.renderbuffer = getRenderbuffer(renderbuffer);
}

void Context::setFramebufferZero(Framebuffer *buffer)
{
	delete mFramebufferNameSpace.remove(0);
	mFramebufferNameSpace.insert(0, buffer);
}

void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
	Renderbuffer *renderbufferObject = mState.renderbuffer;
	renderbufferObject->setStorage(renderbuffer);
}

Framebuffer *Context::getFramebuffer(unsigned int handle)
{
	return mFramebufferNameSpace.find(handle);
}

Buffer *Context::getArrayBuffer()
{
	return mState.arrayBuffer;
}

Buffer *Context::getElementArrayBuffer()
{
	return mState.elementArrayBuffer;
}

Texture2D *Context::getTexture2D()
{
	return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}

TextureExternal *Context::getTextureExternal()
{
	return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL));
}

Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type)
{
	GLuint texid = mState.samplerTexture[type][sampler].name();

	if(texid == 0)   // Special case: 0 refers to different initial textures based on the target
	{
		switch(type)
		{
		case TEXTURE_2D: return mTexture2DZero;
		case TEXTURE_EXTERNAL: return mTextureExternalZero;
		default: UNREACHABLE(type);
		}
	}

	return mState.samplerTexture[type][sampler];
}

bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
	switch(pname)
	{
	case GL_SAMPLE_COVERAGE_INVERT:   *params = mState.sampleCoverageInvert;         break;
	case GL_DEPTH_WRITEMASK:          *params = mState.depthMask;                    break;
	case GL_COLOR_WRITEMASK:
		params[0] = mState.colorMaskRed;
		params[1] = mState.colorMaskGreen;
		params[2] = mState.colorMaskBlue;
		params[3] = mState.colorMaskAlpha;
		break;
	case GL_CULL_FACE:                *params = mState.cullFaceEnabled;              break;
	case GL_POLYGON_OFFSET_FILL:      *params = mState.polygonOffsetFillEnabled;     break;
	case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break;
	case GL_SAMPLE_COVERAGE:          *params = mState.sampleCoverageEnabled;        break;
	case GL_SCISSOR_TEST:             *params = mState.scissorTestEnabled;           break;
	case GL_STENCIL_TEST:             *params = mState.stencilTestEnabled;           break;
	case GL_DEPTH_TEST:               *params = mState.depthTestEnabled;             break;
	case GL_BLEND:                    *params = mState.blendEnabled;                 break;
	case GL_DITHER:                   *params = mState.ditherEnabled;                break;
	case GL_LIGHT_MODEL_TWO_SIDE:     *params = lightModelTwoSide;                   break;
	default:
		return false;
	}

	return true;
}

bool Context::getFloatv(GLenum pname, GLfloat *params)
{
	// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
	// GetIntegerv as its native query function. As it would require conversion in any
	// case, this should make no difference to the calling application.
	switch(pname)
	{
	case GL_LINE_WIDTH:               *params = mState.lineWidth;            break;
	case GL_SAMPLE_COVERAGE_VALUE:    *params = mState.sampleCoverageValue;  break;
	case GL_DEPTH_CLEAR_VALUE:        *params = mState.depthClearValue;      break;
	case GL_POLYGON_OFFSET_FACTOR:    *params = mState.polygonOffsetFactor;  break;
	case GL_POLYGON_OFFSET_UNITS:     *params = mState.polygonOffsetUnits;   break;
	case GL_ALIASED_LINE_WIDTH_RANGE:
		params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
		params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
		break;
	case GL_ALIASED_POINT_SIZE_RANGE:
		params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
		params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
		break;
	case GL_SMOOTH_LINE_WIDTH_RANGE:
		params[0] = SMOOTH_LINE_WIDTH_RANGE_MIN;
		params[1] = SMOOTH_LINE_WIDTH_RANGE_MAX;
		break;
	case GL_SMOOTH_POINT_SIZE_RANGE:
		params[0] = SMOOTH_POINT_SIZE_RANGE_MIN;
		params[1] = SMOOTH_POINT_SIZE_RANGE_MAX;
		break;
	case GL_DEPTH_RANGE:
		params[0] = mState.zNear;
		params[1] = mState.zFar;
		break;
	case GL_COLOR_CLEAR_VALUE:
		params[0] = mState.colorClearValue.red;
		params[1] = mState.colorClearValue.green;
		params[2] = mState.colorClearValue.blue;
		params[3] = mState.colorClearValue.alpha;
		break;
	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
		*params = MAX_TEXTURE_MAX_ANISOTROPY;
		break;
	case GL_MODELVIEW_MATRIX:
		for(int i = 0; i < 16; i++)
		{
			params[i] = modelViewStack.current()[i % 4][i / 4];
		}
		break;
	case GL_PROJECTION_MATRIX:
		for(int i = 0; i < 16; i++)
		{
			params[i] = projectionStack.current()[i % 4][i / 4];
		}
		break;
	case GL_CURRENT_COLOR:
		for(int i = 0; i < 4; i++)
		{
			params[i] = mState.vertexAttribute[sw::Color0].mCurrentValue[i];
		}
		break;
	case GL_CURRENT_NORMAL:
		for(int i = 0; i < 3; i++)
		{
			params[i] = mState.vertexAttribute[sw::Normal].mCurrentValue[i];
		}
		break;
	case GL_CURRENT_TEXTURE_COORDS:
		for(int i = 0; i < 4; i++)
		{
			params[i] = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[i];
		}
		break;
	default:
		return false;
	}

	return true;
}

bool Context::getIntegerv(GLenum pname, GLint *params)
{
	// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
	// GetIntegerv as its native query function. As it would require conversion in any
	// case, this should make no difference to the calling application. You may find it in
	// Context::getFloatv.
	switch(pname)
	{
	case GL_ARRAY_BUFFER_BINDING:             *params = mState.arrayBuffer.name();            break;
	case GL_ELEMENT_ARRAY_BUFFER_BINDING:     *params = mState.elementArrayBuffer.name();     break;
	case GL_FRAMEBUFFER_BINDING_OES:          *params = mState.framebuffer;                   break;
	case GL_RENDERBUFFER_BINDING_OES:         *params = mState.renderbuffer.name();           break;
	case GL_PACK_ALIGNMENT:                   *params = mState.packAlignment;                 break;
	case GL_UNPACK_ALIGNMENT:                 *params = mState.unpackAlignment;               break;
	case GL_GENERATE_MIPMAP_HINT:             *params = mState.generateMipmapHint;            break;
	case GL_PERSPECTIVE_CORRECTION_HINT:      *params = mState.perspectiveCorrectionHint;     break;
	case GL_ACTIVE_TEXTURE:                   *params = (mState.activeSampler + GL_TEXTURE0); break;
	case GL_STENCIL_FUNC:                     *params = mState.stencilFunc;                   break;
	case GL_STENCIL_REF:                      *params = mState.stencilRef;                    break;
	case GL_STENCIL_VALUE_MASK:               *params = mState.stencilMask;                   break;
	case GL_STENCIL_FAIL:                     *params = mState.stencilFail;                   break;
	case GL_STENCIL_PASS_DEPTH_FAIL:          *params = mState.stencilPassDepthFail;          break;
	case GL_STENCIL_PASS_DEPTH_PASS:          *params = mState.stencilPassDepthPass;          break;
	case GL_DEPTH_FUNC:                       *params = mState.depthFunc;                     break;
	case GL_BLEND_SRC_RGB_OES:                *params = mState.sourceBlendRGB;                break;
	case GL_BLEND_SRC_ALPHA_OES:              *params = mState.sourceBlendAlpha;              break;
	case GL_BLEND_DST_RGB_OES:                *params = mState.destBlendRGB;                  break;
	case GL_BLEND_DST_ALPHA_OES:              *params = mState.destBlendAlpha;                break;
	case GL_BLEND_EQUATION_RGB_OES:           *params = mState.blendEquationRGB;              break;
	case GL_BLEND_EQUATION_ALPHA_OES:         *params = mState.blendEquationAlpha;            break;
	case GL_STENCIL_WRITEMASK:                *params = mState.stencilWritemask;              break;
	case GL_STENCIL_CLEAR_VALUE:              *params = mState.stencilClearValue;             break;
	case GL_SUBPIXEL_BITS:                    *params = 4;                                    break;
	case GL_MAX_TEXTURE_SIZE:                 *params = IMPLEMENTATION_MAX_TEXTURE_SIZE;      break;
	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:   *params = NUM_COMPRESSED_TEXTURE_FORMATS;       break;
	case GL_SAMPLE_BUFFERS:
	case GL_SAMPLES:
		{
			Framebuffer *framebuffer = getFramebuffer();
			int width, height, samples;

			if(framebuffer && (framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE_OES))
			{
				switch(pname)
				{
				case GL_SAMPLE_BUFFERS:
					if(samples > 1)
					{
						*params = 1;
					}
					else
					{
						*params = 0;
					}
					break;
				case GL_SAMPLES:
					*params = samples;
					break;
				}
			}
			else
			{
				*params = 0;
			}
		}
		break;
	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
		{
			Framebuffer *framebuffer = getFramebuffer();
			if(framebuffer)
			{
				*params = framebuffer->getImplementationColorReadType();
			}
			else
			{
				return error(GL_INVALID_OPERATION, true);
			}
		}
		break;
	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
		{
			Framebuffer *framebuffer = getFramebuffer();
			if(framebuffer)
			{
				*params = framebuffer->getImplementationColorReadFormat();
			}
			else
			{
				return error(GL_INVALID_OPERATION, true);
			}
		}
		break;
	case GL_MAX_VIEWPORT_DIMS:
		{
			int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
			params[0] = maxDimension;
			params[1] = maxDimension;
		}
		break;
	case GL_COMPRESSED_TEXTURE_FORMATS:
		{
			for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
			{
				params[i] = compressedTextureFormats[i];
			}
		}
		break;
	case GL_VIEWPORT:
		params[0] = mState.viewportX;
		params[1] = mState.viewportY;
		params[2] = mState.viewportWidth;
		params[3] = mState.viewportHeight;
		break;
	case GL_SCISSOR_BOX:
		params[0] = mState.scissorX;
		params[1] = mState.scissorY;
		params[2] = mState.scissorWidth;
		params[3] = mState.scissorHeight;
		break;
	case GL_CULL_FACE_MODE:                   *params = mState.cullMode;                 break;
	case GL_FRONT_FACE:                       *params = mState.frontFace;                break;
	case GL_RED_BITS:
	case GL_GREEN_BITS:
	case GL_BLUE_BITS:
	case GL_ALPHA_BITS:
		{
			Framebuffer *framebuffer = getFramebuffer();
			Renderbuffer *colorbuffer = framebuffer ? framebuffer->getColorbuffer() : nullptr;

			if(colorbuffer)
			{
				switch(pname)
				{
				case GL_RED_BITS:   *params = colorbuffer->getRedSize();   break;
				case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
				case GL_BLUE_BITS:  *params = colorbuffer->getBlueSize();  break;
				case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
				}
			}
			else
			{
				*params = 0;
			}
		}
		break;
	case GL_DEPTH_BITS:
		{
			Framebuffer *framebuffer = getFramebuffer();
			Renderbuffer *depthbuffer = framebuffer ? framebuffer->getDepthbuffer() : nullptr;

			if(depthbuffer)
			{
				*params = depthbuffer->getDepthSize();
			}
			else
			{
				*params = 0;
			}
		}
		break;
	case GL_STENCIL_BITS:
		{
			Framebuffer *framebuffer = getFramebuffer();
			Renderbuffer *stencilbuffer = framebuffer ? framebuffer->getStencilbuffer() : nullptr;

			if(stencilbuffer)
			{
				*params = stencilbuffer->getStencilSize();
			}
			else
			{
				*params = 0;
			}
		}
		break;
	case GL_TEXTURE_BINDING_2D:                  *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();                   break;
	case GL_TEXTURE_BINDING_EXTERNAL_OES:        *params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name();             break;
	case GL_MAX_LIGHTS:                          *params = MAX_LIGHTS;                                                                       break;
	case GL_MAX_MODELVIEW_STACK_DEPTH:           *params = MAX_MODELVIEW_STACK_DEPTH;                                                        break;
	case GL_MAX_PROJECTION_STACK_DEPTH:          *params = MAX_PROJECTION_STACK_DEPTH;                                                       break;
	case GL_MAX_TEXTURE_STACK_DEPTH:             *params = MAX_TEXTURE_STACK_DEPTH;                                                          break;
	case GL_MAX_TEXTURE_UNITS:                   *params = MAX_TEXTURE_UNITS;                                                                break;
	case GL_MAX_CLIP_PLANES:                     *params = MAX_CLIP_PLANES;                                                                  break;
	case GL_POINT_SIZE_ARRAY_TYPE_OES:           *params = mState.vertexAttribute[sw::PointSize].mType;                                      break;
	case GL_POINT_SIZE_ARRAY_STRIDE_OES:         *params = mState.vertexAttribute[sw::PointSize].mStride;                                    break;
	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: *params = mState.vertexAttribute[sw::PointSize].mBoundBuffer.name();                        break;
	case GL_VERTEX_ARRAY_SIZE:                   *params = mState.vertexAttribute[sw::Position].mSize;                                       break;
	case GL_VERTEX_ARRAY_TYPE:                   *params = mState.vertexAttribute[sw::Position].mType;                                       break;
	case GL_VERTEX_ARRAY_STRIDE:                 *params = mState.vertexAttribute[sw::Position].mStride;                                     break;
	case GL_VERTEX_ARRAY_BUFFER_BINDING:         *params = mState.vertexAttribute[sw::Position].mBoundBuffer.name();                         break;
	case GL_NORMAL_ARRAY_TYPE:                   *params = mState.vertexAttribute[sw::Normal].mType;                                         break;
	case GL_NORMAL_ARRAY_STRIDE:                 *params = mState.vertexAttribute[sw::Normal].mStride;                                       break;
	case GL_NORMAL_ARRAY_BUFFER_BINDING:         *params = mState.vertexAttribute[sw::Normal].mBoundBuffer.name();                           break;
	case GL_COLOR_ARRAY_SIZE:                    *params = mState.vertexAttribute[sw::Color0].mSize;                                         break;
	case GL_COLOR_ARRAY_TYPE:                    *params = mState.vertexAttribute[sw::Color0].mType;                                         break;
	case GL_COLOR_ARRAY_STRIDE:                  *params = mState.vertexAttribute[sw::Color0].mStride;                                       break;
	case GL_COLOR_ARRAY_BUFFER_BINDING:          *params = mState.vertexAttribute[sw::Color0].mBoundBuffer.name();                           break;
	case GL_TEXTURE_COORD_ARRAY_SIZE:            *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mSize;               break;
	case GL_TEXTURE_COORD_ARRAY_TYPE:            *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mType;               break;
	case GL_TEXTURE_COORD_ARRAY_STRIDE:          *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mStride;             break;
	case GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING:  *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mBoundBuffer.name(); break;
	default:
		return false;
	}

	return true;
}

bool Context::getPointerv(GLenum pname, const GLvoid **params)
{
	switch(pname)
	{
	case GL_VERTEX_ARRAY_POINTER:         *params = mState.vertexAttribute[sw::Position].mPointer;                         break;
	case GL_NORMAL_ARRAY_POINTER:         *params = mState.vertexAttribute[sw::Normal].mPointer;                           break;
	case GL_COLOR_ARRAY_POINTER:          *params = mState.vertexAttribute[sw::Color0].mPointer;                           break;
	case GL_POINT_SIZE_ARRAY_POINTER_OES: *params = mState.vertexAttribute[sw::PointSize].mPointer;                        break;
	case GL_TEXTURE_COORD_ARRAY_POINTER:  *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mPointer; break;
	default:
		return false;
	}

	return true;
}

int Context::getQueryParameterNum(GLenum pname)
{
	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
	// to the fact that it is stored internally as a float, and so would require conversion
	// if returned from Context::getIntegerv. Since this conversion is already implemented
	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
	// application.
	switch(pname)
	{
	case GL_COMPRESSED_TEXTURE_FORMATS:
		return NUM_COMPRESSED_TEXTURE_FORMATS;
	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
	case GL_ARRAY_BUFFER_BINDING:
	case GL_FRAMEBUFFER_BINDING_OES:
	case GL_RENDERBUFFER_BINDING_OES:
	case GL_PACK_ALIGNMENT:
	case GL_UNPACK_ALIGNMENT:
	case GL_GENERATE_MIPMAP_HINT:
	case GL_RED_BITS:
	case GL_GREEN_BITS:
	case GL_BLUE_BITS:
	case GL_ALPHA_BITS:
	case GL_DEPTH_BITS:
	case GL_STENCIL_BITS:
	case GL_ELEMENT_ARRAY_BUFFER_BINDING:
	case GL_CULL_FACE_MODE:
	case GL_FRONT_FACE:
	case GL_ACTIVE_TEXTURE:
	case GL_STENCIL_FUNC:
	case GL_STENCIL_VALUE_MASK:
	case GL_STENCIL_REF:
	case GL_STENCIL_FAIL:
	case GL_STENCIL_PASS_DEPTH_FAIL:
	case GL_STENCIL_PASS_DEPTH_PASS:
	case GL_DEPTH_FUNC:
	case GL_BLEND_SRC_RGB_OES:
	case GL_BLEND_SRC_ALPHA_OES:
	case GL_BLEND_DST_RGB_OES:
	case GL_BLEND_DST_ALPHA_OES:
	case GL_BLEND_EQUATION_RGB_OES:
	case GL_BLEND_EQUATION_ALPHA_OES:
	case GL_STENCIL_WRITEMASK:
	case GL_STENCIL_CLEAR_VALUE:
	case GL_SUBPIXEL_BITS:
	case GL_MAX_TEXTURE_SIZE:
	case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
	case GL_SAMPLE_BUFFERS:
	case GL_SAMPLES:
	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
	case GL_TEXTURE_BINDING_2D:
	case GL_TEXTURE_BINDING_CUBE_MAP_OES:
	case GL_TEXTURE_BINDING_EXTERNAL_OES:
		return 1;
	case GL_MAX_VIEWPORT_DIMS:
		return 2;
	case GL_VIEWPORT:
	case GL_SCISSOR_BOX:
		return 4;
	case GL_SAMPLE_COVERAGE_INVERT:
	case GL_DEPTH_WRITEMASK:
	case GL_CULL_FACE:                // CULL_FACE through DITHER are natural to IsEnabled,
	case GL_POLYGON_OFFSET_FILL:      // but can be retrieved through the Get{Type}v queries.
	case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
	case GL_SAMPLE_COVERAGE:
	case GL_SCISSOR_TEST:
	case GL_STENCIL_TEST:
	case GL_DEPTH_TEST:
	case GL_BLEND:
	case GL_DITHER:
		return 1;
	case GL_COLOR_WRITEMASK:
		return 4;
	case GL_POLYGON_OFFSET_FACTOR:
	case GL_POLYGON_OFFSET_UNITS:
	case GL_SAMPLE_COVERAGE_VALUE:
	case GL_DEPTH_CLEAR_VALUE:
	case GL_LINE_WIDTH:
		return 1;
	case GL_ALIASED_LINE_WIDTH_RANGE:
	case GL_ALIASED_POINT_SIZE_RANGE:
	case GL_DEPTH_RANGE:
		return 2;
	case GL_COLOR_CLEAR_VALUE:
		return 4;
	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
	case GL_MAX_LIGHTS:
	case GL_MAX_MODELVIEW_STACK_DEPTH:
	case GL_MAX_PROJECTION_STACK_DEPTH:
	case GL_MAX_TEXTURE_STACK_DEPTH:
	case GL_MAX_TEXTURE_UNITS:
	case GL_MAX_CLIP_PLANES:
	case GL_POINT_SIZE_ARRAY_TYPE_OES:
	case GL_POINT_SIZE_ARRAY_STRIDE_OES:
	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES:
		return 1;
	case GL_CURRENT_COLOR:
		return 4;
	case GL_CURRENT_NORMAL:
		return 3;
	case GL_CURRENT_TEXTURE_COORDS:
		return 4;
	case GL_POINT_SIZE:
	case GL_POINT_SIZE_MIN:
	case GL_POINT_SIZE_MAX:
	case GL_POINT_FADE_THRESHOLD_SIZE:
		return 1;
	case GL_POINT_DISTANCE_ATTENUATION:
		return 3;
	case GL_SMOOTH_POINT_SIZE_RANGE:
	case GL_SMOOTH_LINE_WIDTH_RANGE:
		return 2;
	case GL_SHADE_MODEL:
	case GL_MATRIX_MODE:
	case GL_MODELVIEW_STACK_DEPTH:
	case GL_PROJECTION_STACK_DEPTH:
	case GL_TEXTURE_STACK_DEPTH:
		return 1;
	case GL_MODELVIEW_MATRIX:
	case GL_PROJECTION_MATRIX:
	case GL_TEXTURE_MATRIX:
		return 16;
	case GL_ALPHA_TEST_FUNC:
	case GL_ALPHA_TEST_REF:
	case GL_BLEND_DST:
	case GL_BLEND_SRC:
	case GL_LOGIC_OP_MODE:
	case GL_VERTEX_ARRAY_SIZE:
	case GL_VERTEX_ARRAY_TYPE:
	case GL_VERTEX_ARRAY_STRIDE:
	case GL_NORMAL_ARRAY_TYPE:
	case GL_NORMAL_ARRAY_STRIDE:
	case GL_COLOR_ARRAY_SIZE:
	case GL_COLOR_ARRAY_TYPE:
	case GL_COLOR_ARRAY_STRIDE:
	case GL_TEXTURE_COORD_ARRAY_SIZE:
	case GL_TEXTURE_COORD_ARRAY_TYPE:
	case GL_TEXTURE_COORD_ARRAY_STRIDE:
	case GL_VERTEX_ARRAY_POINTER:
	case GL_NORMAL_ARRAY_POINTER:
	case GL_COLOR_ARRAY_POINTER:
	case GL_TEXTURE_COORD_ARRAY_POINTER:
	case GL_LIGHT_MODEL_TWO_SIDE:
		return 1;
	default:
		UNREACHABLE(pname);
	}

	return -1;
}

bool Context::isQueryParameterInt(GLenum pname)
{
	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
	// to the fact that it is stored internally as a float, and so would require conversion
	// if returned from Context::getIntegerv. Since this conversion is already implemented
	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
	// application.
	switch(pname)
	{
	case GL_COMPRESSED_TEXTURE_FORMATS:
	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
	case GL_ARRAY_BUFFER_BINDING:
	case GL_FRAMEBUFFER_BINDING_OES:
	case GL_RENDERBUFFER_BINDING_OES:
	case GL_PACK_ALIGNMENT:
	case GL_UNPACK_ALIGNMENT:
	case GL_GENERATE_MIPMAP_HINT:
	case GL_RED_BITS:
	case GL_GREEN_BITS:
	case GL_BLUE_BITS:
	case GL_ALPHA_BITS:
	case GL_DEPTH_BITS:
	case GL_STENCIL_BITS:
	case GL_ELEMENT_ARRAY_BUFFER_BINDING:
	case GL_CULL_FACE_MODE:
	case GL_FRONT_FACE:
	case GL_ACTIVE_TEXTURE:
	case GL_STENCIL_FUNC:
	case GL_STENCIL_VALUE_MASK:
	case GL_STENCIL_REF:
	case GL_STENCIL_FAIL:
	case GL_STENCIL_PASS_DEPTH_FAIL:
	case GL_STENCIL_PASS_DEPTH_PASS:
	case GL_DEPTH_FUNC:
	case GL_BLEND_SRC_RGB_OES:
	case GL_BLEND_SRC_ALPHA_OES:
	case GL_BLEND_DST_RGB_OES:
	case GL_BLEND_DST_ALPHA_OES:
	case GL_BLEND_EQUATION_RGB_OES:
	case GL_BLEND_EQUATION_ALPHA_OES:
	case GL_STENCIL_WRITEMASK:
	case GL_STENCIL_CLEAR_VALUE:
	case GL_SUBPIXEL_BITS:
	case GL_MAX_TEXTURE_SIZE:
	case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
	case GL_SAMPLE_BUFFERS:
	case GL_SAMPLES:
	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
	case GL_TEXTURE_BINDING_2D:
	case GL_TEXTURE_BINDING_CUBE_MAP_OES:
	case GL_TEXTURE_BINDING_EXTERNAL_OES:
	case GL_MAX_VIEWPORT_DIMS:
	case GL_VIEWPORT:
	case GL_SCISSOR_BOX:
	case GL_MAX_LIGHTS:
	case GL_MAX_MODELVIEW_STACK_DEPTH:
	case GL_MAX_PROJECTION_STACK_DEPTH:
	case GL_MAX_TEXTURE_STACK_DEPTH:
	case GL_MAX_TEXTURE_UNITS:
	case GL_MAX_CLIP_PLANES:
	case GL_POINT_SIZE_ARRAY_TYPE_OES:
	case GL_POINT_SIZE_ARRAY_STRIDE_OES:
	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES:
		return true;
	}

	return false;
}

bool Context::isQueryParameterFloat(GLenum pname)
{
	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
	// to the fact that it is stored internally as a float, and so would require conversion
	// if returned from Context::getIntegerv. Since this conversion is already implemented
	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
	// application.
	switch(pname)
	{
	case GL_POLYGON_OFFSET_FACTOR:
	case GL_POLYGON_OFFSET_UNITS:
	case GL_SAMPLE_COVERAGE_VALUE:
	case GL_DEPTH_CLEAR_VALUE:
	case GL_LINE_WIDTH:
	case GL_ALIASED_LINE_WIDTH_RANGE:
	case GL_ALIASED_POINT_SIZE_RANGE:
	case GL_SMOOTH_LINE_WIDTH_RANGE:
	case GL_SMOOTH_POINT_SIZE_RANGE:
	case GL_DEPTH_RANGE:
	case GL_COLOR_CLEAR_VALUE:
	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
	case GL_LIGHT_MODEL_AMBIENT:
	case GL_POINT_SIZE_MIN:
	case GL_POINT_SIZE_MAX:
	case GL_POINT_DISTANCE_ATTENUATION:
	case GL_POINT_FADE_THRESHOLD_SIZE:
		return true;
	}

	return false;
}

bool Context::isQueryParameterBool(GLenum pname)
{
	switch(pname)
	{
	case GL_SAMPLE_COVERAGE_INVERT:
	case GL_DEPTH_WRITEMASK:
	case GL_CULL_FACE:                // CULL_FACE through DITHER are natural to IsEnabled,
	case GL_POLYGON_OFFSET_FILL:      // but can be retrieved through the Get{Type}v queries.
	case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
	case GL_SAMPLE_COVERAGE:
	case GL_SCISSOR_TEST:
	case GL_STENCIL_TEST:
	case GL_DEPTH_TEST:
	case GL_BLEND:
	case GL_DITHER:
	case GL_COLOR_WRITEMASK:
	case GL_LIGHT_MODEL_TWO_SIDE:
		return true;
	}

	return false;
}

bool Context::isQueryParameterPointer(GLenum pname)
{
	switch(pname)
	{
	case GL_VERTEX_ARRAY_POINTER:
	case GL_NORMAL_ARRAY_POINTER:
	case GL_COLOR_ARRAY_POINTER:
	case GL_TEXTURE_COORD_ARRAY_POINTER:
	case GL_POINT_SIZE_ARRAY_POINTER_OES:
		return true;
	}

	return false;
}

// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
bool Context::applyRenderTarget()
{
	Framebuffer *framebuffer = getFramebuffer();
	int width, height, samples;

	if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE_OES)
	{
		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES, false);
	}

	egl::Image *renderTarget = framebuffer->getRenderTarget();
	device->setRenderTarget(0, renderTarget);
	if(renderTarget) renderTarget->release();

	egl::Image *depthBuffer = framebuffer->getDepthBuffer();
	device->setDepthBuffer(depthBuffer);
	if(depthBuffer) depthBuffer->release();

	egl::Image *stencilBuffer = framebuffer->getStencilBuffer();
	device->setStencilBuffer(stencilBuffer);
	if(stencilBuffer) stencilBuffer->release();

	Viewport viewport;
	float zNear = clamp01(mState.zNear);
	float zFar = clamp01(mState.zFar);

	viewport.x0 = mState.viewportX;
	viewport.y0 = mState.viewportY;
	viewport.width = mState.viewportWidth;
	viewport.height = mState.viewportHeight;
	viewport.minZ = zNear;
	viewport.maxZ = zFar;

	device->setViewport(viewport);

	if(mState.scissorTestEnabled)
	{
		sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight};
		scissor.clip(0, 0, width, height);

		device->setScissorRect(scissor);
		device->setScissorEnable(true);
	}
	else
	{
		device->setScissorEnable(false);
	}

	return true;
}

// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
void Context::applyState(GLenum drawMode)
{
	Framebuffer *framebuffer = getFramebuffer();

	if(mState.cullFaceEnabled)
	{
		device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace));
	}
	else
	{
		device->setCullMode(sw::CULL_NONE);
	}

	if(mDepthStateDirty)
	{
		if(mState.depthTestEnabled)
		{
			device->setDepthBufferEnable(true);
			device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
		}
		else
		{
			device->setDepthBufferEnable(false);
		}

		mDepthStateDirty = false;
	}

	if(mBlendStateDirty)
	{
		if(mState.blendEnabled)
		{
			device->setAlphaBlendEnable(true);
			device->setSeparateAlphaBlendEnable(true);

			device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
			device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
			device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));

			device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
			device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
			device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
		}
		else
		{
			device->setAlphaBlendEnable(false);
		}

		mBlendStateDirty = false;
	}

	if(mStencilStateDirty || mFrontFaceDirty)
	{
		if(mState.stencilTestEnabled && framebuffer->hasStencil())
		{
			device->setStencilEnable(true);
			device->setTwoSidedStencil(true);

			// get the maximum size of the stencil ref
			Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
			GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;

			device->setStencilWriteMask(mState.stencilWritemask);
			device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));

			device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
			device->setStencilMask(mState.stencilMask);

			device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
			device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
			device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));

			device->setStencilWriteMaskCCW(mState.stencilWritemask);
			device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));

			device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
			device->setStencilMaskCCW(mState.stencilMask);

			device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
			device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
			device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
		}
		else
		{
			device->setStencilEnable(false);
		}

		mStencilStateDirty = false;
		mFrontFaceDirty = false;
	}

	if(mMaskStateDirty)
	{
		device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
		device->setDepthWriteEnable(mState.depthMask);

		mMaskStateDirty = false;
	}

	if(mPolygonOffsetStateDirty)
	{
		if(mState.polygonOffsetFillEnabled)
		{
			Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
			if(depthbuffer)
			{
				device->setSlopeDepthBias(mState.polygonOffsetFactor);
				float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
				device->setDepthBias(depthBias);
			}
		}
		else
		{
			device->setSlopeDepthBias(0);
			device->setDepthBias(0);
		}

		mPolygonOffsetStateDirty = false;
	}

	if(mSampleStateDirty)
	{
		if(mState.sampleAlphaToCoverageEnabled)
		{
			device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
		}
		else
		{
			device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
		}

		if(mState.sampleCoverageEnabled)
		{
			unsigned int mask = 0;
			if(mState.sampleCoverageValue != 0)
			{
				int width, height, samples;
				framebuffer->completeness(width, height, samples);

				float threshold = 0.5f;

				for(int i = 0; i < samples; i++)
				{
					mask <<= 1;

					if((i + 1) * mState.sampleCoverageValue >= threshold)
					{
						threshold += 1.0f;
						mask |= 1;
					}
				}
			}

			if(mState.sampleCoverageInvert)
			{
				mask = ~mask;
			}

			device->setMultiSampleMask(mask);
		}
		else
		{
			device->setMultiSampleMask(0xFFFFFFFF);
		}

		mSampleStateDirty = false;
	}

	if(mDitherStateDirty)
	{
	//	UNIMPLEMENTED();   // FIXME

		mDitherStateDirty = false;
	}

	switch(mState.shadeModel)
	{
	default: UNREACHABLE(mState.shadeModel);
	case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break;
	case GL_FLAT:   device->setShadingMode(sw::SHADING_FLAT);    break;
	}

	device->setLightingEnable(lightingEnabled);
	device->setGlobalAmbient(sw::Color<float>(globalAmbient.red, globalAmbient.green, globalAmbient.blue, globalAmbient.alpha));

	for(int i = 0; i < MAX_LIGHTS; i++)
	{
		device->setLightEnable(i, light[i].enabled);
		device->setLightAmbient(i, sw::Color<float>(light[i].ambient.red, light[i].ambient.green, light[i].ambient.blue, light[i].ambient.alpha));
		device->setLightDiffuse(i, sw::Color<float>(light[i].diffuse.red, light[i].diffuse.green, light[i].diffuse.blue, light[i].diffuse.alpha));
		device->setLightSpecular(i, sw::Color<float>(light[i].specular.red, light[i].specular.green, light[i].specular.blue, light[i].specular.alpha));
		device->setLightAttenuation(i, light[i].attenuation.constant, light[i].attenuation.linear, light[i].attenuation.quadratic);

		if(light[i].position.w != 0.0f)
		{
			device->setLightPosition(i, sw::Point(light[i].position.x / light[i].position.w, light[i].position.y / light[i].position.w, light[i].position.z / light[i].position.w));
		}
		else   // Directional light
		{
			// Hack: set the position far way
			float max = sw::max(abs(light[i].position.x), abs(light[i].position.y), abs(light[i].position.z));
			device->setLightPosition(i, sw::Point(1e10f * (light[i].position.x / max), 1e10f * (light[i].position.y / max), 1e10f * (light[i].position.z / max)));
		}
	}

	device->setMaterialAmbient(sw::Color<float>(materialAmbient.red, materialAmbient.green, materialAmbient.blue, materialAmbient.alpha));
	device->setMaterialDiffuse(sw::Color<float>(materialDiffuse.red, materialDiffuse.green, materialDiffuse.blue, materialDiffuse.alpha));
	device->setMaterialSpecular(sw::Color<float>(materialSpecular.red, materialSpecular.green, materialSpecular.blue, materialSpecular.alpha));
	device->setMaterialEmission(sw::Color<float>(materialEmission.red, materialEmission.green, materialEmission.blue, materialEmission.alpha));
	device->setMaterialShininess(materialShininess);

	device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
	device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
	device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
	device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);

	device->setProjectionMatrix(projectionStack.current());
	device->setModelMatrix(modelViewStack.current());
	device->setTextureMatrix(0, textureStack0.current());
	device->setTextureMatrix(1, textureStack1.current());
	device->setTextureTransform(0, textureStack0.isIdentity() ? 0 : 4, false);
	device->setTextureTransform(1, textureStack1.isIdentity() ? 0 : 4, false);
	device->setTexGen(0, sw::TEXGEN_NONE);
	device->setTexGen(1, sw::TEXGEN_NONE);

	device->setAlphaTestEnable(alphaTestEnabled);
	device->setAlphaCompare(es2sw::ConvertAlphaComparison(alphaTestFunc));
	device->setAlphaReference(alphaTestRef * 0xFF);

	device->setFogEnable(fogEnabled);
	device->setFogColor(sw::Color<float>(fogColor.red, fogColor.green, fogColor.blue, fogColor.alpha));
	device->setFogDensity(fogDensity);
	device->setFogStart(fogStart);
	device->setFogEnd(fogEnd);

	switch(fogMode)
	{
	case GL_LINEAR: device->setVertexFogMode(sw::FOG_LINEAR); break;
	case GL_EXP:    device->setVertexFogMode(sw::FOG_EXP);    break;
	case GL_EXP2:   device->setVertexFogMode(sw::FOG_EXP2);   break;
	default: UNREACHABLE(fogMode);
	}

	device->setColorLogicOpEnabled(colorLogicOpEnabled);
	device->setLogicalOperation(es2sw::ConvertLogicalOperation(logicalOperation));

	device->setNormalizeNormals(normalizeEnabled || rescaleNormalEnabled);
}

GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count)
{
	TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];

	GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes);
	if(err != GL_NO_ERROR)
	{
		return err;
	}

	device->resetInputStreams(false);

	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
	{
		sw::Resource *resource = attributes[i].vertexBuffer;
		const void *buffer = (char*)resource->data() + attributes[i].offset;

		int stride = attributes[i].stride;

		buffer = (char*)buffer + stride * base;

		sw::Stream attribute(resource, buffer, stride);

		attribute.type = attributes[i].type;
		attribute.count = attributes[i].count;
		attribute.normalized = attributes[i].normalized;

		device->setInputStream(i, attribute);
	}

	return GL_NO_ERROR;
}

// Applies the indices and element array bindings
GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
	GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo);

	if(err == GL_NO_ERROR)
	{
		device->setIndexBuffer(indexInfo->indexBuffer);
	}

	return err;
}

void Context::applyTextures()
{
	for(int unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
	{
		Texture *texture = nullptr;

		if(textureExternalEnabled[unit])
		{
			texture = getSamplerTexture(unit, TEXTURE_EXTERNAL);
		}
		else if(texture2Denabled[unit])
		{
			texture = getSamplerTexture(unit, TEXTURE_2D);
		}

		if(texture && texture->isSamplerComplete())
		{
			texture->autoGenerateMipmaps();

			GLenum wrapS = texture->getWrapS();
			GLenum wrapT = texture->getWrapT();
			GLenum minFilter = texture->getMinFilter();
			GLenum magFilter = texture->getMagFilter();
			GLfloat maxAnisotropy = texture->getMaxAnisotropy();

			device->setAddressingModeU(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapS));
			device->setAddressingModeV(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapT));

			device->setTextureFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy));
			device->setMipmapFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertMipMapFilter(minFilter));
			device->setMaxAnisotropy(sw::SAMPLER_PIXEL, unit, maxAnisotropy);

			applyTexture(unit, texture);

			device->setConstantColor(unit, sw::Color<float>(mState.textureUnit[unit].color.red, mState.textureUnit[unit].color.green, mState.textureUnit[unit].color.blue, mState.textureUnit[unit].color.alpha));

			if(mState.textureUnit[unit].environmentMode != GL_COMBINE)
			{
				device->setFirstArgument(unit, sw::TextureStage::SOURCE_TEXTURE);    // Cs
				device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
				device->setSecondArgument(unit, sw::TextureStage::SOURCE_CURRENT);   // Cp
				device->setSecondModifier(unit, sw::TextureStage::MODIFIER_COLOR);
				device->setThirdArgument(unit, sw::TextureStage::SOURCE_CONSTANT);   // Cc
				device->setThirdModifier(unit, sw::TextureStage::MODIFIER_COLOR);

				device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_TEXTURE);    // As
				device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
				device->setSecondArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT);   // Ap
				device->setSecondModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
				device->setThirdArgumentAlpha(unit, sw::TextureStage::SOURCE_CONSTANT);   // Ac
				device->setThirdModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);

				GLenum texFormat = texture->getFormat(GL_TEXTURE_2D, 0);

				switch(mState.textureUnit[unit].environmentMode)
				{
				case GL_REPLACE:
					if(IsAlpha(texFormat))   // GL_ALPHA
					{
						// Cv = Cp, Av = As
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
					}
					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
					{
						// Cv = Cs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
					{
						// Cv = Cs, Av = As
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
					}
					else UNREACHABLE(texFormat);
					break;
				case GL_MODULATE:
					if(IsAlpha(texFormat))   // GL_ALPHA
					{
						// Cv = Cp, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
					{
						// Cv = CpCs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
					{
						// Cv = CpCs, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else UNREACHABLE(texFormat);
					break;
				case GL_DECAL:
					if(texFormat == GL_ALPHA ||
					   texFormat == GL_LUMINANCE ||
					   texFormat == GL_LUMINANCE_ALPHA)
					{
						// undefined   // FIXME: Log
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
					{
						// Cv = Cs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
					{
						// Cv = Cp(1 - As) + CsAs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_BLENDTEXTUREALPHA);   // Alpha * (Arg1 - Arg2) + Arg2
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else UNREACHABLE(texFormat);
					break;
				case GL_BLEND:
					if(IsAlpha(texFormat))   // GL_ALPHA
					{
						// Cv = Cp, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
					{
						// Cv = Cp(1 - Cs) + CcCs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_LERP);   // Arg3 * (Arg1 - Arg2) + Arg2
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
					{
						// Cv = Cp(1 - Cs) + CcCs, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_LERP);   // Arg3 * (Arg1 - Arg2) + Arg2
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else UNREACHABLE(texFormat);
					break;
				case GL_ADD:
					if(IsAlpha(texFormat))   // GL_ALPHA
					{
						// Cv = Cp, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
					{
						// Cv = Cp + Cs, Av = Ap
						device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
					}
					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
					{
						// Cv = Cp + Cs, Av = ApAs
						device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
					}
					else UNREACHABLE(texFormat);
					break;
				default:
					UNREACHABLE(mState.textureUnit[unit].environmentMode);
				}
			}
			else   // GL_COMBINE
			{
				device->setFirstArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0RGB));
				device->setFirstModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0RGB));
				device->setSecondArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1RGB));
				device->setSecondModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1RGB));
				device->setThirdArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2RGB));
				device->setThirdModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2RGB));

				device->setStageOperation(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineRGB));

				device->setFirstArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0Alpha));
				device->setFirstModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0Alpha));
				device->setSecondArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1Alpha));
				device->setSecondModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1Alpha));
				device->setThirdArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2Alpha));
				device->setThirdModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2Alpha));

				device->setStageOperationAlpha(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineAlpha));
			}
		}
		else
		{
			applyTexture(unit, nullptr);

			device->setFirstArgument(unit, sw::TextureStage::SOURCE_CURRENT);
			device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
			device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);

			device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT);
			device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
			device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
		}
	}
}

void Context::setTextureEnvMode(GLenum texEnvMode)
{
	mState.textureUnit[mState.activeSampler].environmentMode = texEnvMode;
}

void Context::setTextureEnvColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
	mState.textureUnit[mState.activeSampler].color = {red, green, blue, alpha};
}

void Context::setCombineRGB(GLenum combineRGB)
{
	mState.textureUnit[mState.activeSampler].combineRGB = combineRGB;
}

void Context::setCombineAlpha(GLenum combineAlpha)
{
	mState.textureUnit[mState.activeSampler].combineAlpha = combineAlpha;
}

void Context::setOperand0RGB(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand0RGB = operand;
}

void Context::setOperand1RGB(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand1RGB = operand;
}

void Context::setOperand2RGB(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand2RGB = operand;
}

void Context::setOperand0Alpha(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand0Alpha = operand;
}

void Context::setOperand1Alpha(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand1Alpha = operand;
}

void Context::setOperand2Alpha(GLenum operand)
{
	mState.textureUnit[mState.activeSampler].operand2Alpha = operand;
}

void Context::setSrc0RGB(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src0RGB = src;
}

void Context::setSrc1RGB(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src1RGB = src;
}

void Context::setSrc2RGB(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src2RGB = src;
}

void Context::setSrc0Alpha(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src0Alpha = src;
}

void Context::setSrc1Alpha(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src1Alpha = src;
}

void Context::setSrc2Alpha(GLenum src)
{
	mState.textureUnit[mState.activeSampler].src2Alpha = src;
}

void Context::applyTexture(int index, Texture *baseTexture)
{
	sw::Resource *resource = 0;

	if(baseTexture)
	{
		resource = baseTexture->getResource();
	}

	device->setTextureResource(index, resource);

	if(baseTexture)
	{
		int topLevel = baseTexture->getTopLevel();

		if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES)
		{
			Texture2D *texture = static_cast<Texture2D*>(baseTexture);

			for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
			{
				int surfaceLevel = mipmapLevel;

				if(surfaceLevel < 0)
				{
					surfaceLevel = 0;
				}
				else if(surfaceLevel > topLevel)
				{
					surfaceLevel = topLevel;
				}

				egl::Image *surface = texture->getImage(surfaceLevel);
				device->setTextureLevel(index, 0, mipmapLevel, surface, sw::TEXTURE_2D);
			}
		}
		else UNIMPLEMENTED();
	}
	else
	{
		device->setTextureLevel(index, 0, 0, 0, sw::TEXTURE_NULL);
	}
}

void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
                         GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
	Framebuffer *framebuffer = getFramebuffer();
	int framebufferWidth, framebufferHeight, framebufferSamples;

	if(!framebuffer || (framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE_OES))
	{
		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
	}

	if(getFramebufferName() != 0 && framebufferSamples != 0)
	{
		return error(GL_INVALID_OPERATION);
	}

	if(format != GL_RGBA || type != GL_UNSIGNED_BYTE)
	{
		if(format != framebuffer->getImplementationColorReadFormat() || type != framebuffer->getImplementationColorReadType())
		{
			return error(GL_INVALID_OPERATION);
		}
	}

	GLsizei outputPitch = gl::ComputePitch(width, format, type, mState.packAlignment);

	// Sized query sanity check
	if(bufSize)
	{
		int requiredSize = outputPitch * height;
		if(requiredSize > *bufSize)
		{
			return error(GL_INVALID_OPERATION);
		}
	}

	egl::Image *renderTarget = framebuffer->getRenderTarget();

	if(!renderTarget)
	{
		return error(GL_OUT_OF_MEMORY);
	}

	sw::Rect rect = {x, y, x + width, y + height};
	rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());

	unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, 0, sw::LOCK_READONLY);
	unsigned char *dest = (unsigned char*)pixels;
	int inputPitch = (int)renderTarget->getPitch();

	for(int j = 0; j < rect.y1 - rect.y0; j++)
	{
		unsigned short *dest16 = (unsigned short*)dest;
		unsigned int *dest32 = (unsigned int*)dest;

		if(renderTarget->getExternalFormat() == sw::FORMAT_A8B8G8R8 &&
		   format == GL_RGBA && type == GL_UNSIGNED_BYTE)
		{
			memcpy(dest, source, (rect.x1 - rect.x0) * 4);
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_A8R8G8B8 &&
				format == GL_RGBA && type == GL_UNSIGNED_BYTE)
		{
			for(int i = 0; i < rect.x1 - rect.x0; i++)
			{
				unsigned int argb = *(unsigned int*)(source + 4 * i);

				dest32[i] = (argb & 0xFF00FF00) | ((argb & 0x000000FF) << 16) | ((argb & 0x00FF0000) >> 16);
			}
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_X8R8G8B8 &&
				format == GL_RGBA && type == GL_UNSIGNED_BYTE)
		{
			for(int i = 0; i < rect.x1 - rect.x0; i++)
			{
				unsigned int xrgb = *(unsigned int*)(source + 4 * i);

				dest32[i] = (xrgb & 0xFF00FF00) | ((xrgb & 0x000000FF) << 16) | ((xrgb & 0x00FF0000) >> 16) | 0xFF000000;
			}
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_X8R8G8B8 &&
				format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
		{
			for(int i = 0; i < rect.x1 - rect.x0; i++)
			{
				unsigned int xrgb = *(unsigned int*)(source + 4 * i);

				dest32[i] = xrgb | 0xFF000000;
			}
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_A8R8G8B8 &&
				format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
		{
			memcpy(dest, source, (rect.x1 - rect.x0) * 4);
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_A1R5G5B5 &&
				format == GL_BGRA_EXT && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT)
		{
			memcpy(dest, source, (rect.x1 - rect.x0) * 2);
		}
		else if(renderTarget->getExternalFormat() == sw::FORMAT_R5G6B5 &&
				format == 0x80E0 && type == GL_UNSIGNED_SHORT_5_6_5)   // GL_BGR_EXT
		{
			memcpy(dest, source, (rect.x1 - rect.x0) * 2);
		}
		else
		{
			for(int i = 0; i < rect.x1 - rect.x0; i++)
			{
				float r;
				float g;
				float b;
				float a;

				switch(renderTarget->getExternalFormat())
				{
				case sw::FORMAT_R5G6B5:
					{
						unsigned short rgb = *(unsigned short*)(source + 2 * i);

						a = 1.0f;
						b = (rgb & 0x001F) * (1.0f / 0x001F);
						g = (rgb & 0x07E0) * (1.0f / 0x07E0);
						r = (rgb & 0xF800) * (1.0f / 0xF800);
					}
					break;
				case sw::FORMAT_A1R5G5B5:
					{
						unsigned short argb = *(unsigned short*)(source + 2 * i);

						a = (argb & 0x8000) ? 1.0f : 0.0f;
						b = (argb & 0x001F) * (1.0f / 0x001F);
						g = (argb & 0x03E0) * (1.0f / 0x03E0);
						r = (argb & 0x7C00) * (1.0f / 0x7C00);
					}
					break;
				case sw::FORMAT_A8R8G8B8:
					{
						unsigned int argb = *(unsigned int*)(source + 4 * i);

						a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
						b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
						g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
						r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
					}
					break;
				case sw::FORMAT_A8B8G8R8:
					{
						unsigned int abgr = *(unsigned int*)(source + 4 * i);

						a = (abgr & 0xFF000000) * (1.0f / 0xFF000000);
						b = (abgr & 0x00FF0000) * (1.0f / 0x00FF0000);
						g = (abgr & 0x0000FF00) * (1.0f / 0x0000FF00);
						r = (abgr & 0x000000FF) * (1.0f / 0x000000FF);
					}
					break;
				case sw::FORMAT_X8R8G8B8:
					{
						unsigned int xrgb = *(unsigned int*)(source + 4 * i);

						a = 1.0f;
						b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
						g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
						r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
					}
					break;
				case sw::FORMAT_X8B8G8R8:
					{
						unsigned int xbgr = *(unsigned int*)(source + 4 * i);

						a = 1.0f;
						b = (xbgr & 0x00FF0000) * (1.0f / 0x00FF0000);
						g = (xbgr & 0x0000FF00) * (1.0f / 0x0000FF00);
						r = (xbgr & 0x000000FF) * (1.0f / 0x000000FF);
					}
					break;
				case sw::FORMAT_A2R10G10B10:
					{
						unsigned int argb = *(unsigned int*)(source + 4 * i);

						a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
						b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
						g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
						r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
					}
					break;
				default:
					UNIMPLEMENTED();   // FIXME
					UNREACHABLE(renderTarget->getExternalFormat());
				}

				switch(format)
				{
				case GL_RGBA:
					switch(type)
					{
					case GL_UNSIGNED_BYTE:
						dest[4 * i + 0] = (unsigned char)(255 * r + 0.5f);
						dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
						dest[4 * i + 2] = (unsigned char)(255 * b + 0.5f);
						dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
						break;
					default: UNREACHABLE(type);
					}
					break;
				case GL_BGRA_EXT:
					switch(type)
					{
					case GL_UNSIGNED_BYTE:
						dest[4 * i + 0] = (unsigned char)(255 * b + 0.5f);
						dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
						dest[4 * i + 2] = (unsigned char)(255 * r + 0.5f);
						dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
						break;
					case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
						// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
						// this type is packed as follows:
						//   15   14   13   12   11   10    9    8    7    6    5    4    3    2    1    0
						//  --------------------------------------------------------------------------------
						// |       4th         |        3rd         |        2nd        |   1st component   |
						//  --------------------------------------------------------------------------------
						// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
						dest16[i] =
							((unsigned short)(15 * a + 0.5f) << 12)|
							((unsigned short)(15 * r + 0.5f) << 8) |
							((unsigned short)(15 * g + 0.5f) << 4) |
							((unsigned short)(15 * b + 0.5f) << 0);
						break;
					case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
						// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
						// this type is packed as follows:
						//   15   14   13   12   11   10    9    8    7    6    5    4    3    2    1    0
						//  --------------------------------------------------------------------------------
						// | 4th |          3rd           |           2nd          |      1st component     |
						//  --------------------------------------------------------------------------------
						// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
						dest16[i] =
							((unsigned short)(     a + 0.5f) << 15) |
							((unsigned short)(31 * r + 0.5f) << 10) |
							((unsigned short)(31 * g + 0.5f) << 5) |
							((unsigned short)(31 * b + 0.5f) << 0);
						break;
					default: UNREACHABLE(type);
					}
					break;
				case GL_RGB:
					switch(type)
					{
					case GL_UNSIGNED_SHORT_5_6_5:
						dest16[i] =
							((unsigned short)(31 * b + 0.5f) << 0) |
							((unsigned short)(63 * g + 0.5f) << 5) |
							((unsigned short)(31 * r + 0.5f) << 11);
						break;
					default: UNREACHABLE(type);
					}
					break;
				default: UNREACHABLE(format);
				}
			}
		}

		source += inputPitch;
		dest += outputPitch;
	}

	renderTarget->unlock();
	renderTarget->release();
}

void Context::clear(GLbitfield mask)
{
	Framebuffer *framebuffer = getFramebuffer();

	if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE_OES)
	{
		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
	}

	if(!applyRenderTarget())
	{
		return;
	}

	float depth = clamp01(mState.depthClearValue);
	int stencil = mState.stencilClearValue & 0x000000FF;

	if(mask & GL_COLOR_BUFFER_BIT)
	{
		unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) |
		                        (mState.colorMaskGreen ? 0x2 : 0) |
		                        (mState.colorMaskBlue ? 0x4 : 0) |
		                        (mState.colorMaskAlpha ? 0x8 : 0);

		if(rgbaMask != 0)
		{
			device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask);
		}
	}

	if(mask & GL_DEPTH_BUFFER_BIT)
	{
		if(mState.depthMask != 0)
		{
			device->clearDepth(depth);
		}
	}

	if(mask & GL_STENCIL_BUFFER_BIT)
	{
		if(mState.stencilWritemask != 0)
		{
			device->clearStencil(stencil, mState.stencilWritemask);
		}
	}
}

void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
	sw::DrawType primitiveType;
	int primitiveCount;

	if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount))
		return error(GL_INVALID_ENUM);

	if(primitiveCount <= 0)
	{
		return;
	}

	if(!applyRenderTarget())
	{
		return;
	}

	applyState(mode);

	GLenum err = applyVertexBuffer(0, first, count);
	if(err != GL_NO_ERROR)
	{
		return error(err);
	}

	applyTextures();

	if(!cullSkipsDraw(mode))
	{
		device->drawPrimitive(primitiveType, primitiveCount);
	}
}

void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices)
{
	if(!indices && !mState.elementArrayBuffer)
	{
		return error(GL_INVALID_OPERATION);
	}

	sw::DrawType primitiveType;
	int primitiveCount;

	if(!es2sw::ConvertPrimitiveType(mode, count, type, primitiveType, primitiveCount))
		return error(GL_INVALID_ENUM);

	if(primitiveCount <= 0)
	{
		return;
	}

	if(!applyRenderTarget())
	{
		return;
	}

	applyState(mode);

	TranslatedIndexData indexInfo;
	GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
	if(err != GL_NO_ERROR)
	{
		return error(err);
	}

	GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
	err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount);
	if(err != GL_NO_ERROR)
	{
		return error(err);
	}

	applyTextures();

	if(!cullSkipsDraw(mode))
	{
		device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount);
	}
}

void Context::drawTexture(GLfloat x, GLfloat y, GLfloat z, GLfloat width, GLfloat height)
{
	es1::Framebuffer *framebuffer = getFramebuffer();
	es1::Renderbuffer *renderbuffer = framebuffer ? framebuffer->getColorbuffer() : nullptr;
	if(!renderbuffer)
	{
		return;
	}

	float targetWidth = (float)renderbuffer->getWidth();
	float targetHeight = (float)renderbuffer->getHeight();
	float x0 = 2.0f * x / targetWidth - 1.0f;
	float y0 = 2.0f * y / targetHeight - 1.0f;
	float x1 = 2.0f * (x + width) / targetWidth - 1.0f;
	float y1 = 2.0f * (y + height) / targetHeight - 1.0f;
	float Zw = sw::clamp(mState.zNear + z * (mState.zFar - mState.zNear), mState.zNear, mState.zFar);

	float vertices[][3] = {{x0, y0, Zw},
	                       {x0, y1, Zw},
	                       {x1, y0, Zw},
	                       {x1, y1, Zw}};

	ASSERT(mState.samplerTexture[TEXTURE_2D][1].name() == 0);   // Multi-texturing unimplemented
	es1::Texture *texture = getSamplerTexture(0, TEXTURE_2D);
	float textureWidth = (float)texture->getWidth(GL_TEXTURE_2D, 0);
	float textureHeight = (float)texture->getHeight(GL_TEXTURE_2D, 0);
	int Ucr = texture->getCropRectU();
	int Vcr = texture->getCropRectV();
	int Wcr = texture->getCropRectW();
	int Hcr = texture->getCropRectH();

	float texCoords[][2] = {{Ucr / textureWidth, Vcr / textureHeight},
	                        {Ucr / textureWidth, (Vcr + Hcr) / textureHeight},
	                        {(Ucr + Wcr) / textureWidth, Vcr / textureHeight},
	                        {(Ucr + Wcr) / textureWidth, (Vcr + Hcr) / textureHeight}};

	VertexAttribute oldPositionAttribute = mState.vertexAttribute[sw::Position];
	VertexAttribute oldTexCoord0Attribute = mState.vertexAttribute[sw::TexCoord0];
	gl::BindingPointer<Buffer> oldArrayBuffer = mState.arrayBuffer;
	mState.arrayBuffer = nullptr;

	glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), vertices);
	glEnableClientState(GL_VERTEX_ARRAY);
	glTexCoordPointer(2, GL_FLOAT, 2 * sizeof(float), texCoords);
	glEnableClientState(GL_TEXTURE_COORD_ARRAY);

	sw::Matrix P = projectionStack.current();
	sw::Matrix M = modelViewStack.current();
	sw::Matrix T = textureStack0.current();

	projectionStack.identity();
	modelViewStack.identity();
	textureStack0.identity();

	drawArrays(GL_TRIANGLE_STRIP, 0, 4);

	// Restore state
	mState.vertexAttribute[sw::Position] = oldPositionAttribute;
	mState.vertexAttribute[sw::TexCoord0] = oldTexCoord0Attribute;
	mState.arrayBuffer = oldArrayBuffer;
	oldArrayBuffer = nullptr;
	oldPositionAttribute.mBoundBuffer = nullptr;
	oldTexCoord0Attribute.mBoundBuffer = nullptr;
	textureStack0.load(T);
	modelViewStack.load(M);
	projectionStack.load(P);
}

void Context::blit(sw::Surface *source, const sw::SliceRect &sRect, sw::Surface *dest, const sw::SliceRect &dRect)
{
	sw::SliceRectF sRectF((float)sRect.x0, (float)sRect.y0, (float)sRect.x1, (float)sRect.y1, sRect.slice);
	device->blit(source, sRectF, dest, dRect, false);
}

void Context::finish()
{
	device->finish();
}

void Context::flush()
{
	// We don't queue anything without processing it as fast as possible
}

void Context::recordInvalidEnum()
{
	mInvalidEnum = true;
}

void Context::recordInvalidValue()
{
	mInvalidValue = true;
}

void Context::recordInvalidOperation()
{
	mInvalidOperation = true;
}

void Context::recordOutOfMemory()
{
	mOutOfMemory = true;
}

void Context::recordInvalidFramebufferOperation()
{
	mInvalidFramebufferOperation = true;
}

void Context::recordMatrixStackOverflow()
{
	mMatrixStackOverflow = true;
}

void Context::recordMatrixStackUnderflow()
{
	mMatrixStackUnderflow = true;
}

// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
	if(mInvalidEnum)
	{
		mInvalidEnum = false;

		return GL_INVALID_ENUM;
	}

	if(mInvalidValue)
	{
		mInvalidValue = false;

		return GL_INVALID_VALUE;
	}

	if(mInvalidOperation)
	{
		mInvalidOperation = false;

		return GL_INVALID_OPERATION;
	}

	if(mOutOfMemory)
	{
		mOutOfMemory = false;

		return GL_OUT_OF_MEMORY;
	}

	if(mInvalidFramebufferOperation)
	{
		mInvalidFramebufferOperation = false;

		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
	}

	if(mMatrixStackOverflow)
	{
		mMatrixStackOverflow = false;

		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
	}

	if(mMatrixStackUnderflow)
	{
		mMatrixStackUnderflow = false;

		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
	}

	return GL_NO_ERROR;
}

int Context::getSupportedMultisampleCount(int requested)
{
	int supported = 0;

	for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--)
	{
		if(supported >= requested)
		{
			return supported;
		}

		supported = multisampleCount[i];
	}

	return supported;
}

void Context::detachBuffer(GLuint buffer)
{
	// [OpenGL ES 2.0.24] section 2.9 page 22:
	// If a buffer object is deleted while it is bound, all bindings to that object in the current context
	// (i.e. in the thread that called Delete-Buffers) are reset to zero.

	if(mState.arrayBuffer.name() == buffer)
	{
		mState.arrayBuffer = nullptr;
	}

	if(mState.elementArrayBuffer.name() == buffer)
	{
		mState.elementArrayBuffer = nullptr;
	}

	for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
	{
		if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
		{
			mState.vertexAttribute[attribute].mBoundBuffer = nullptr;
		}
	}
}

void Context::detachTexture(GLuint texture)
{
	// [OpenGL ES 2.0.24] section 3.8 page 84:
	// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
	// rebound to texture object zero

	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
	{
		for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
		{
			if(mState.samplerTexture[type][sampler].name() == texture)
			{
				mState.samplerTexture[type][sampler] = nullptr;
			}
		}
	}

	// [OpenGL ES 2.0.24] section 4.4 page 112:
	// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
	// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
	// image was attached in the currently bound framebuffer.

	Framebuffer *framebuffer = getFramebuffer();

	if(framebuffer)
	{
		framebuffer->detachTexture(texture);
	}
}

void Context::detachFramebuffer(GLuint framebuffer)
{
	// [OpenGL ES 2.0.24] section 4.4 page 107:
	// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
	// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.

	if(mState.framebuffer == framebuffer)
	{
		bindFramebuffer(0);
	}
}

void Context::detachRenderbuffer(GLuint renderbuffer)
{
	// [OpenGL ES 2.0.24] section 4.4 page 109:
	// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
	// had been executed with the target RENDERBUFFER and name of zero.

	if(mState.renderbuffer.name() == renderbuffer)
	{
		bindRenderbuffer(0);
	}

	// [OpenGL ES 2.0.24] section 4.4 page 111:
	// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
	// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
	// point to which this image was attached in the currently bound framebuffer.

	Framebuffer *framebuffer = getFramebuffer();

	if(framebuffer)
	{
		framebuffer->detachRenderbuffer(renderbuffer);
	}
}

bool Context::cullSkipsDraw(GLenum drawMode)
{
	return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}

bool Context::isTriangleMode(GLenum drawMode)
{
	switch(drawMode)
	{
	case GL_TRIANGLES:
	case GL_TRIANGLE_FAN:
	case GL_TRIANGLE_STRIP:
		return true;
	case GL_POINTS:
	case GL_LINES:
	case GL_LINE_LOOP:
	case GL_LINE_STRIP:
		return false;
	default: UNREACHABLE(drawMode);
	}

	return false;
}

void Context::setVertexAttrib(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
	ASSERT(index < MAX_VERTEX_ATTRIBS);

	mState.vertexAttribute[index].mCurrentValue[0] = x;
	mState.vertexAttribute[index].mCurrentValue[1] = y;
	mState.vertexAttribute[index].mCurrentValue[2] = z;
	mState.vertexAttribute[index].mCurrentValue[3] = w;

	mVertexDataManager->dirtyCurrentValue(index);
}

void Context::bindTexImage(gl::Surface *surface)
{
	es1::Texture2D *textureObject = getTexture2D();

	if(textureObject)
	{
		textureObject->bindTexImage(surface);
	}
}

EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
	switch(target)
	{
	case EGL_GL_TEXTURE_2D_KHR:
		break;
	case EGL_GL_RENDERBUFFER_KHR:
		break;
	default:
		return EGL_BAD_PARAMETER;
	}

	if(textureLevel >= IMPLEMENTATION_MAX_TEXTURE_LEVELS)
	{
		return EGL_BAD_MATCH;
	}

	if(target == EGL_GL_TEXTURE_2D_KHR)
	{
		Texture *texture = getTexture(name);

		if(!texture || texture->getTarget() != GL_TEXTURE_2D)
		{
			return EGL_BAD_PARAMETER;
		}

		if(texture->isShared(GL_TEXTURE_2D, textureLevel))   // Bound to an EGLSurface or already an EGLImage sibling
		{
			return EGL_BAD_ACCESS;
		}

		if(textureLevel != 0 && !texture->isSamplerComplete())
		{
			return EGL_BAD_PARAMETER;
		}

		if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getTopLevel() == 0))
		{
			return EGL_BAD_PARAMETER;
		}
	}
	else if(target == EGL_GL_RENDERBUFFER_KHR)
	{
		Renderbuffer *renderbuffer = getRenderbuffer(name);

		if(!renderbuffer)
		{
			return EGL_BAD_PARAMETER;
		}

		if(renderbuffer->isShared())   // Already an EGLImage sibling
		{
			return EGL_BAD_ACCESS;
		}
	}
	else UNREACHABLE(target);

	return EGL_SUCCESS;
}

egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
	if(target == EGL_GL_TEXTURE_2D_KHR)
	{
		es1::Texture *texture = getTexture(name);

		return texture->createSharedImage(GL_TEXTURE_2D, textureLevel);
	}
	else if(target == EGL_GL_RENDERBUFFER_KHR)
	{
		es1::Renderbuffer *renderbuffer = getRenderbuffer(name);

		return renderbuffer->createSharedImage();
	}
	else UNREACHABLE(target);

	return nullptr;
}

egl::Image *Context::getSharedImage(GLeglImageOES image)
{
	return display->getSharedImage(image);
}

Device *Context::getDevice()
{
	return device;
}

void Context::setMatrixMode(GLenum mode)
{
	matrixMode = mode;
}

sw::MatrixStack &Context::currentMatrixStack()
{
	switch(matrixMode)
	{
	case GL_MODELVIEW:
		return modelViewStack;
	case GL_PROJECTION:
		return projectionStack;
	case GL_TEXTURE:
		switch(mState.activeSampler)
		{
		case 0: return textureStack0;
		case 1: return textureStack1;
		}
		break;
	}

	UNREACHABLE(matrixMode);
	return textureStack0;
}

void Context::loadIdentity()
{
	currentMatrixStack().identity();
}

void Context::load(const GLfloat *m)
{
	currentMatrixStack().load(m);
}

void Context::pushMatrix()
{
	if(!currentMatrixStack().push())
	{
		return error(GL_STACK_OVERFLOW);
	}
}

void Context::popMatrix()
{
	if(!currentMatrixStack().pop())
	{
		return error(GL_STACK_OVERFLOW);
	}
}

void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
	currentMatrixStack().rotate(angle, x, y, z);
}

void Context::translate(GLfloat x, GLfloat y, GLfloat z)
{
	currentMatrixStack().translate(x, y, z);
}

void Context::scale(GLfloat x, GLfloat y, GLfloat z)
{
	currentMatrixStack().scale(x, y, z);
}

void Context::multiply(const GLfloat *m)
{
	currentMatrixStack().multiply(m);
}

void Context::frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
{
	currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar);
}

void Context::ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
{
	currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar);
}

void Context::setClipPlane(int index, const float plane[4])
{
	sw::Plane clipPlane = modelViewStack.current() * sw::Plane(plane);
	device->setClipPlane(index, &clipPlane.A);
}

void Context::setClipPlaneEnabled(int index, bool enable)
{
	clipFlags = (clipFlags & ~((int)!enable << index)) | ((int)enable << index);
	device->setClipFlags(clipFlags);
}

bool Context::isClipPlaneEnabled(int index) const
{
	return (clipFlags & (1 << index)) != 0;
}

void Context::setColorLogicOpEnabled(bool enable)
{
	colorLogicOpEnabled = enable;
}

bool Context::isColorLogicOpEnabled() const
{
	return colorLogicOpEnabled;
}

void Context::setLogicalOperation(GLenum logicOp)
{
	logicalOperation = logicOp;
}

void Context::setLineSmoothEnabled(bool enable)
{
	lineSmoothEnabled = enable;
}

bool Context::isLineSmoothEnabled() const
{
	return lineSmoothEnabled;
}

void Context::setColorMaterialEnabled(bool enable)
{
	colorMaterialEnabled = enable;
}

bool Context::isColorMaterialEnabled() const
{
	return colorMaterialEnabled;
}

void Context::setNormalizeEnabled(bool enable)
{
	normalizeEnabled = enable;
}

bool Context::isNormalizeEnabled() const
{
	return normalizeEnabled;
}

void Context::setRescaleNormalEnabled(bool enable)
{
	rescaleNormalEnabled = enable;
}

bool Context::isRescaleNormalEnabled() const
{
	return rescaleNormalEnabled;
}

void Context::setVertexArrayEnabled(bool enable)
{
	mState.vertexAttribute[sw::Position].mArrayEnabled = enable;
}

bool Context::isVertexArrayEnabled() const
{
	return mState.vertexAttribute[sw::Position].mArrayEnabled;
}

void Context::setNormalArrayEnabled(bool enable)
{
	mState.vertexAttribute[sw::Normal].mArrayEnabled = enable;
}

bool Context::isNormalArrayEnabled() const
{
	return mState.vertexAttribute[sw::Normal].mArrayEnabled;
}

void Context::setColorArrayEnabled(bool enable)
{
	mState.vertexAttribute[sw::Color0].mArrayEnabled = enable;
}

bool Context::isColorArrayEnabled() const
{
	return mState.vertexAttribute[sw::Color0].mArrayEnabled;
}

void Context::setPointSizeArrayEnabled(bool enable)
{
	mState.vertexAttribute[sw::PointSize].mArrayEnabled = enable;
}

bool Context::isPointSizeArrayEnabled() const
{
	return mState.vertexAttribute[sw::PointSize].mArrayEnabled;
}

void Context::setTextureCoordArrayEnabled(bool enable)
{
	mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled = enable;
}

bool Context::isTextureCoordArrayEnabled() const
{
	return mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled;
}

void Context::setMultisampleEnabled(bool enable)
{
	multisampleEnabled = enable;
}

bool Context::isMultisampleEnabled() const
{
	return multisampleEnabled;
}

void Context::setSampleAlphaToOneEnabled(bool enable)
{
	sampleAlphaToOneEnabled = enable;
}

bool Context::isSampleAlphaToOneEnabled() const
{
	return sampleAlphaToOneEnabled;
}

void Context::setPointSpriteEnabled(bool enable)
{
	pointSpriteEnabled = enable;
}

bool Context::isPointSpriteEnabled() const
{
	return pointSpriteEnabled;
}

void Context::setPointSmoothEnabled(bool enable)
{
	pointSmoothEnabled = enable;
}

bool Context::isPointSmoothEnabled() const
{
	return pointSmoothEnabled;
}

void Context::setPointSizeMin(float min)
{
	pointSizeMin = min;
}

void Context::setPointSizeMax(float max)
{
	pointSizeMax = max;
}

void Context::setPointDistanceAttenuation(float a, float b, float c)
{
	pointDistanceAttenuation = {a, b, c};
}

void Context::setPointFadeThresholdSize(float threshold)
{
	pointFadeThresholdSize = threshold;
}

void Context::clientActiveTexture(GLenum texture)
{
	clientTexture = texture;
}

GLenum Context::getClientActiveTexture() const
{
	return clientTexture;
}

unsigned int Context::getActiveTexture() const
{
	return mState.activeSampler;
}

}

egl::Context *es1CreateContext(egl::Display *display, const egl::Context *shareContext, const egl::Config *config)
{
	ASSERT(!shareContext || shareContext->getClientVersion() == 1);   // Should be checked by eglCreateContext
	return new es1::Context(display, static_cast<const es1::Context*>(shareContext), config);
}