// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Context.cpp: Implements the es1::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "Context.h" #include "main.h" #include "mathutil.h" #include "utilities.h" #include "ResourceManager.h" #include "Buffer.h" #include "Framebuffer.h" #include "Renderbuffer.h" #include "Texture.h" #include "VertexDataManager.h" #include "IndexDataManager.h" #include "libEGL/Display.h" #include "common/Surface.hpp" #include "Common/Half.hpp" #include <EGL/eglext.h> using std::abs; namespace es1 { Context::Context(egl::Display *const display, const Context *shareContext, const egl::Config *config) : egl::Context(display), config(config), modelViewStack(MAX_MODELVIEW_STACK_DEPTH), projectionStack(MAX_PROJECTION_STACK_DEPTH), textureStack0(MAX_TEXTURE_STACK_DEPTH), textureStack1(MAX_TEXTURE_STACK_DEPTH) { sw::Context *context = new sw::Context(); device = new es1::Device(context); mVertexDataManager = new VertexDataManager(this); mIndexDataManager = new IndexDataManager(); setClearColor(0.0f, 0.0f, 0.0f, 0.0f); mState.depthClearValue = 1.0f; mState.stencilClearValue = 0; mState.cullFaceEnabled = false; mState.cullMode = GL_BACK; mState.frontFace = GL_CCW; mState.depthTestEnabled = false; mState.depthFunc = GL_LESS; mState.blendEnabled = false; mState.sourceBlendRGB = GL_ONE; mState.sourceBlendAlpha = GL_ONE; mState.destBlendRGB = GL_ZERO; mState.destBlendAlpha = GL_ZERO; mState.blendEquationRGB = GL_FUNC_ADD_OES; mState.blendEquationAlpha = GL_FUNC_ADD_OES; mState.stencilTestEnabled = false; mState.stencilFunc = GL_ALWAYS; mState.stencilRef = 0; mState.stencilMask = -1; mState.stencilWritemask = -1; mState.stencilFail = GL_KEEP; mState.stencilPassDepthFail = GL_KEEP; mState.stencilPassDepthPass = GL_KEEP; mState.polygonOffsetFillEnabled = false; mState.polygonOffsetFactor = 0.0f; mState.polygonOffsetUnits = 0.0f; mState.sampleAlphaToCoverageEnabled = false; mState.sampleCoverageEnabled = false; mState.sampleCoverageValue = 1.0f; mState.sampleCoverageInvert = false; mState.scissorTestEnabled = false; mState.ditherEnabled = true; mState.shadeModel = GL_SMOOTH; mState.generateMipmapHint = GL_DONT_CARE; mState.perspectiveCorrectionHint = GL_DONT_CARE; mState.fogHint = GL_DONT_CARE; mState.lineWidth = 1.0f; mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = 0; mState.viewportHeight = 0; mState.zNear = 0.0f; mState.zFar = 1.0f; mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = 0; mState.scissorHeight = 0; mState.colorMaskRed = true; mState.colorMaskGreen = true; mState.colorMaskBlue = true; mState.colorMaskAlpha = true; mState.depthMask = true; for(int i = 0; i < MAX_TEXTURE_UNITS; i++) { mState.textureUnit[i].color = {0, 0, 0, 0}; mState.textureUnit[i].environmentMode = GL_MODULATE; mState.textureUnit[i].combineRGB = GL_MODULATE; mState.textureUnit[i].combineAlpha = GL_MODULATE; mState.textureUnit[i].src0RGB = GL_TEXTURE; mState.textureUnit[i].src1RGB = GL_PREVIOUS; mState.textureUnit[i].src2RGB = GL_CONSTANT; mState.textureUnit[i].src0Alpha = GL_TEXTURE; mState.textureUnit[i].src1Alpha = GL_PREVIOUS; mState.textureUnit[i].src2Alpha = GL_CONSTANT; mState.textureUnit[i].operand0RGB = GL_SRC_COLOR; mState.textureUnit[i].operand1RGB = GL_SRC_COLOR; mState.textureUnit[i].operand2RGB = GL_SRC_ALPHA; mState.textureUnit[i].operand0Alpha = GL_SRC_ALPHA; mState.textureUnit[i].operand1Alpha = GL_SRC_ALPHA; mState.textureUnit[i].operand2Alpha = GL_SRC_ALPHA; } if(shareContext) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero = new Texture2D(0); mTextureExternalZero = new TextureExternal(0); mState.activeSampler = 0; for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { bindTexture((TextureType)type, 0); } bindArrayBuffer(0); bindElementArrayBuffer(0); bindFramebuffer(0); bindRenderbuffer(0); mState.packAlignment = 4; mState.unpackAlignment = 4; mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mMatrixStackOverflow = false; mMatrixStackUnderflow = false; lightingEnabled = false; for(int i = 0; i < MAX_LIGHTS; i++) { light[i].enabled = false; light[i].ambient = {0.0f, 0.0f, 0.0f, 1.0f}; light[i].diffuse = {0.0f, 0.0f, 0.0f, 1.0f}; light[i].specular = {0.0f, 0.0f, 0.0f, 1.0f}; light[i].position = {0.0f, 0.0f, 1.0f, 0.0f}; light[i].direction = {0.0f, 0.0f, -1.0f}; light[i].attenuation = {1.0f, 0.0f, 0.0f}; light[i].spotExponent = 0.0f; light[i].spotCutoffAngle = 180.0f; } light[0].diffuse = {1.0f, 1.0f, 1.0f, 1.0f}; light[0].specular = {1.0f, 1.0f, 1.0f, 1.0f}; globalAmbient = {0.2f, 0.2f, 0.2f, 1.0f}; materialAmbient = {0.2f, 0.2f, 0.2f, 1.0f}; materialDiffuse = {0.8f, 0.8f, 0.8f, 1.0f}; materialSpecular = {0.0f, 0.0f, 0.0f, 1.0f}; materialEmission = {0.0f, 0.0f, 0.0f, 1.0f}; materialShininess = 0.0f; lightModelTwoSide = false; matrixMode = GL_MODELVIEW; for(int i = 0; i < MAX_TEXTURE_UNITS; i++) { texture2Denabled[i] = false; textureExternalEnabled[i] = false; } clientTexture = GL_TEXTURE0; setVertexAttrib(sw::Color0, 1.0f, 1.0f, 1.0f, 1.0f); for(int i = 0; i < MAX_TEXTURE_UNITS; i++) { setVertexAttrib(sw::TexCoord0 + i, 0.0f, 0.0f, 0.0f, 1.0f); } setVertexAttrib(sw::Normal, 0.0f, 0.0f, 1.0f, 1.0f); setVertexAttrib(sw::PointSize, 1.0f, 1.0f, 1.0f, 1.0f); clipFlags = 0; alphaTestEnabled = false; alphaTestFunc = GL_ALWAYS; alphaTestRef = 0; fogEnabled = false; fogMode = GL_EXP; fogDensity = 1.0f; fogStart = 0.0f; fogEnd = 1.0f; fogColor = {0, 0, 0, 0}; lineSmoothEnabled = false; colorMaterialEnabled = false; normalizeEnabled = false; rescaleNormalEnabled = false; multisampleEnabled = true; sampleAlphaToOneEnabled = false; colorLogicOpEnabled = false; logicalOperation = GL_COPY; pointSpriteEnabled = false; pointSmoothEnabled = false; pointSizeMin = 0.0f; pointSizeMax = 1.0f; pointDistanceAttenuation = {1.0f, 0.0f, 0.0f}; pointFadeThresholdSize = 1.0f; mHasBeenCurrent = false; markAllStateDirty(); } Context::~Context() { while(!mFramebufferNameSpace.empty()) { deleteFramebuffer(mFramebufferNameSpace.firstName()); } for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++) { mState.samplerTexture[type][sampler] = nullptr; } } for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mState.vertexAttribute[i].mBoundBuffer = nullptr; } mState.arrayBuffer = nullptr; mState.elementArrayBuffer = nullptr; mState.renderbuffer = nullptr; mTexture2DZero = nullptr; mTextureExternalZero = nullptr; delete mVertexDataManager; delete mIndexDataManager; mResourceManager->release(); delete device; } void Context::makeCurrent(gl::Surface *surface) { if(!mHasBeenCurrent) { mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = surface ? surface->getWidth() : 0; mState.viewportHeight = surface ? surface->getHeight() : 0; mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = surface ? surface->getWidth() : 0; mState.scissorHeight = surface ? surface->getHeight() : 0; mHasBeenCurrent = true; } // Wrap the existing resources into GL objects and assign them to the '0' names egl::Image *defaultRenderTarget = surface ? surface->getRenderTarget() : nullptr; egl::Image *depthStencil = surface ? surface->getDepthStencil() : nullptr; Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil); Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); if(defaultRenderTarget) { defaultRenderTarget->release(); } if(depthStencil) { depthStencil->release(); } markAllStateDirty(); } EGLint Context::getClientVersion() const { return 1; } EGLint Context::getConfigID() const { return config->mConfigID; } // This function will set all of the state-related dirty flags, so that all state is set during next pre-draw. void Context::markAllStateDirty() { mDepthStateDirty = true; mMaskStateDirty = true; mBlendStateDirty = true; mStencilStateDirty = true; mPolygonOffsetStateDirty = true; mSampleStateDirty = true; mDitherStateDirty = true; mFrontFaceDirty = true; } void Context::setClearColor(float red, float green, float blue, float alpha) { mState.colorClearValue.red = red; mState.colorClearValue.green = green; mState.colorClearValue.blue = blue; mState.colorClearValue.alpha = alpha; } void Context::setClearDepth(float depth) { mState.depthClearValue = depth; } void Context::setClearStencil(int stencil) { mState.stencilClearValue = stencil; } void Context::setCullFaceEnabled(bool enabled) { mState.cullFaceEnabled = enabled; } bool Context::isCullFaceEnabled() const { return mState.cullFaceEnabled; } void Context::setCullMode(GLenum mode) { mState.cullMode = mode; } void Context::setFrontFace(GLenum front) { if(mState.frontFace != front) { mState.frontFace = front; mFrontFaceDirty = true; } } void Context::setDepthTestEnabled(bool enabled) { if(mState.depthTestEnabled != enabled) { mState.depthTestEnabled = enabled; mDepthStateDirty = true; } } bool Context::isDepthTestEnabled() const { return mState.depthTestEnabled; } void Context::setDepthFunc(GLenum depthFunc) { if(mState.depthFunc != depthFunc) { mState.depthFunc = depthFunc; mDepthStateDirty = true; } } void Context::setDepthRange(float zNear, float zFar) { mState.zNear = zNear; mState.zFar = zFar; } void Context::setAlphaTestEnabled(bool enabled) { alphaTestEnabled = enabled; } bool Context::isAlphaTestEnabled() const { return alphaTestEnabled; } void Context::setAlphaFunc(GLenum alphaFunc, GLclampf reference) { alphaTestFunc = alphaFunc; alphaTestRef = reference; } void Context::setBlendEnabled(bool enabled) { if(mState.blendEnabled != enabled) { mState.blendEnabled = enabled; mBlendStateDirty = true; } } bool Context::isBlendEnabled() const { return mState.blendEnabled; } void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) { if(mState.sourceBlendRGB != sourceRGB || mState.sourceBlendAlpha != sourceAlpha || mState.destBlendRGB != destRGB || mState.destBlendAlpha != destAlpha) { mState.sourceBlendRGB = sourceRGB; mState.destBlendRGB = destRGB; mState.sourceBlendAlpha = sourceAlpha; mState.destBlendAlpha = destAlpha; mBlendStateDirty = true; } } void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) { if(mState.blendEquationRGB != rgbEquation || mState.blendEquationAlpha != alphaEquation) { mState.blendEquationRGB = rgbEquation; mState.blendEquationAlpha = alphaEquation; mBlendStateDirty = true; } } void Context::setStencilTestEnabled(bool enabled) { if(mState.stencilTestEnabled != enabled) { mState.stencilTestEnabled = enabled; mStencilStateDirty = true; } } bool Context::isStencilTestEnabled() const { return mState.stencilTestEnabled; } void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) { if(mState.stencilFunc != stencilFunc || mState.stencilRef != stencilRef || mState.stencilMask != stencilMask) { mState.stencilFunc = stencilFunc; mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; mState.stencilMask = stencilMask; mStencilStateDirty = true; } } void Context::setStencilWritemask(GLuint stencilWritemask) { if(mState.stencilWritemask != stencilWritemask) { mState.stencilWritemask = stencilWritemask; mStencilStateDirty = true; } } void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) { if(mState.stencilFail != stencilFail || mState.stencilPassDepthFail != stencilPassDepthFail || mState.stencilPassDepthPass != stencilPassDepthPass) { mState.stencilFail = stencilFail; mState.stencilPassDepthFail = stencilPassDepthFail; mState.stencilPassDepthPass = stencilPassDepthPass; mStencilStateDirty = true; } } void Context::setPolygonOffsetFillEnabled(bool enabled) { if(mState.polygonOffsetFillEnabled != enabled) { mState.polygonOffsetFillEnabled = enabled; mPolygonOffsetStateDirty = true; } } bool Context::isPolygonOffsetFillEnabled() const { return mState.polygonOffsetFillEnabled; } void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) { if(mState.polygonOffsetFactor != factor || mState.polygonOffsetUnits != units) { mState.polygonOffsetFactor = factor; mState.polygonOffsetUnits = units; mPolygonOffsetStateDirty = true; } } void Context::setSampleAlphaToCoverageEnabled(bool enabled) { if(mState.sampleAlphaToCoverageEnabled != enabled) { mState.sampleAlphaToCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleAlphaToCoverageEnabled() const { return mState.sampleAlphaToCoverageEnabled; } void Context::setSampleCoverageEnabled(bool enabled) { if(mState.sampleCoverageEnabled != enabled) { mState.sampleCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleCoverageEnabled() const { return mState.sampleCoverageEnabled; } void Context::setSampleCoverageParams(GLclampf value, bool invert) { if(mState.sampleCoverageValue != value || mState.sampleCoverageInvert != invert) { mState.sampleCoverageValue = value; mState.sampleCoverageInvert = invert; mSampleStateDirty = true; } } void Context::setScissorTestEnabled(bool enabled) { mState.scissorTestEnabled = enabled; } bool Context::isScissorTestEnabled() const { return mState.scissorTestEnabled; } void Context::setShadeModel(GLenum mode) { mState.shadeModel = mode; } void Context::setDitherEnabled(bool enabled) { if(mState.ditherEnabled != enabled) { mState.ditherEnabled = enabled; mDitherStateDirty = true; } } bool Context::isDitherEnabled() const { return mState.ditherEnabled; } void Context::setLightingEnabled(bool enable) { lightingEnabled = enable; } bool Context::isLightingEnabled() const { return lightingEnabled; } void Context::setLightEnabled(int index, bool enable) { light[index].enabled = enable; } bool Context::isLightEnabled(int index) const { return light[index].enabled; } void Context::setLightAmbient(int index, float r, float g, float b, float a) { light[index].ambient = {r, g, b, a}; } void Context::setLightDiffuse(int index, float r, float g, float b, float a) { light[index].diffuse = {r, g, b, a}; } void Context::setLightSpecular(int index, float r, float g, float b, float a) { light[index].specular = {r, g, b, a}; } void Context::setLightPosition(int index, float x, float y, float z, float w) { sw::float4 v = {x, y, z, w}; // Transform from object coordinates to eye coordinates v = modelViewStack.current() * v; light[index].position = {v.x, v.y, v.z, v.w}; } void Context::setLightDirection(int index, float x, float y, float z) { // FIXME: Transform by inverse of 3x3 model-view matrix light[index].direction = {x, y, z}; } void Context::setLightAttenuationConstant(int index, float constant) { light[index].attenuation.constant = constant; } void Context::setLightAttenuationLinear(int index, float linear) { light[index].attenuation.linear = linear; } void Context::setLightAttenuationQuadratic(int index, float quadratic) { light[index].attenuation.quadratic = quadratic; } void Context::setSpotLightExponent(int index, float exponent) { light[index].spotExponent = exponent; } void Context::setSpotLightCutoff(int index, float cutoff) { light[index].spotCutoffAngle = cutoff; } void Context::setGlobalAmbient(float red, float green, float blue, float alpha) { globalAmbient.red = red; globalAmbient.green = green; globalAmbient.blue = blue; globalAmbient.alpha = alpha; } void Context::setMaterialAmbient(float red, float green, float blue, float alpha) { materialAmbient.red = red; materialAmbient.green = green; materialAmbient.blue = blue; materialAmbient.alpha = alpha; } void Context::setMaterialDiffuse(float red, float green, float blue, float alpha) { materialDiffuse.red = red; materialDiffuse.green = green; materialDiffuse.blue = blue; materialDiffuse.alpha = alpha; } void Context::setMaterialSpecular(float red, float green, float blue, float alpha) { materialSpecular.red = red; materialSpecular.green = green; materialSpecular.blue = blue; materialSpecular.alpha = alpha; } void Context::setMaterialEmission(float red, float green, float blue, float alpha) { materialEmission.red = red; materialEmission.green = green; materialEmission.blue = blue; materialEmission.alpha = alpha; } void Context::setMaterialShininess(float shininess) { materialShininess = shininess; } void Context::setLightModelTwoSide(bool enable) { lightModelTwoSide = enable; } void Context::setFogEnabled(bool enable) { fogEnabled = enable; } bool Context::isFogEnabled() const { return fogEnabled; } void Context::setFogMode(GLenum mode) { fogMode = mode; } void Context::setFogDensity(float fogDensity) { this->fogDensity = fogDensity; } void Context::setFogStart(float fogStart) { this->fogStart = fogStart; } void Context::setFogEnd(float fogEnd) { this->fogEnd = fogEnd; } void Context::setFogColor(float r, float g, float b, float a) { this->fogColor = {r, g, b, a}; } void Context::setTexture2Denabled(bool enable) { texture2Denabled[mState.activeSampler] = enable; } bool Context::isTexture2Denabled() const { return texture2Denabled[mState.activeSampler]; } void Context::setTextureExternalEnabled(bool enable) { textureExternalEnabled[mState.activeSampler] = enable; } bool Context::isTextureExternalEnabled() const { return textureExternalEnabled[mState.activeSampler]; } void Context::setLineWidth(GLfloat width) { mState.lineWidth = width; device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX)); } void Context::setGenerateMipmapHint(GLenum hint) { mState.generateMipmapHint = hint; } void Context::setPerspectiveCorrectionHint(GLenum hint) { mState.perspectiveCorrectionHint = hint; } void Context::setFogHint(GLenum hint) { mState.fogHint = hint; } void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.viewportX = x; mState.viewportY = y; mState.viewportWidth = width; mState.viewportHeight = height; } void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.scissorX = x; mState.scissorY = y; mState.scissorWidth = width; mState.scissorHeight = height; } void Context::setColorMask(bool red, bool green, bool blue, bool alpha) { if(mState.colorMaskRed != red || mState.colorMaskGreen != green || mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha) { mState.colorMaskRed = red; mState.colorMaskGreen = green; mState.colorMaskBlue = blue; mState.colorMaskAlpha = alpha; mMaskStateDirty = true; } } void Context::setDepthMask(bool mask) { if(mState.depthMask != mask) { mState.depthMask = mask; mMaskStateDirty = true; } } void Context::setActiveSampler(unsigned int active) { mState.activeSampler = active; } GLuint Context::getFramebufferName() const { return mState.framebuffer; } GLuint Context::getRenderbufferName() const { return mState.renderbuffer.name(); } GLuint Context::getArrayBufferName() const { return mState.arrayBuffer.name(); } void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled) { mState.vertexAttribute[attribNum].mArrayEnabled = enabled; } const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) { return mState.vertexAttribute[attribNum]; } void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, GLsizei stride, const void *pointer) { mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer; mState.vertexAttribute[attribNum].mSize = size; mState.vertexAttribute[attribNum].mType = type; mState.vertexAttribute[attribNum].mNormalized = normalized; mState.vertexAttribute[attribNum].mStride = stride; mState.vertexAttribute[attribNum].mPointer = pointer; } const void *Context::getVertexAttribPointer(unsigned int attribNum) const { return mState.vertexAttribute[attribNum].mPointer; } const VertexAttributeArray &Context::getVertexAttributes() { return mState.vertexAttribute; } void Context::setPackAlignment(GLint alignment) { mState.packAlignment = alignment; } GLint Context::getPackAlignment() const { return mState.packAlignment; } void Context::setUnpackAlignment(GLint alignment) { mState.unpackAlignment = alignment; } GLint Context::getUnpackAlignment() const { return mState.unpackAlignment; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { return mFramebufferNameSpace.allocate(); } void Context::deleteBuffer(GLuint buffer) { detachBuffer(buffer); mResourceManager->deleteBuffer(buffer); } void Context::deleteTexture(GLuint texture) { detachTexture(texture); mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { detachRenderbuffer(renderbuffer); mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFramebuffer(GLuint framebuffer) { detachFramebuffer(framebuffer); Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer); if(framebufferObject) { delete framebufferObject; } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Texture *Context::getTexture(GLuint handle) { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } Framebuffer *Context::getFramebuffer() { return getFramebuffer(mState.framebuffer); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.arrayBuffer = getBuffer(buffer); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.elementArrayBuffer = getBuffer(buffer); } void Context::bindTexture(TextureType type, GLuint texture) { mResourceManager->checkTextureAllocation(texture, type); mState.samplerTexture[type][mState.activeSampler] = getTexture(texture); } void Context::bindFramebuffer(GLuint framebuffer) { if(!getFramebuffer(framebuffer)) { mFramebufferNameSpace.insert(framebuffer, new Framebuffer()); } mState.framebuffer = framebuffer; } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.renderbuffer = getRenderbuffer(renderbuffer); } void Context::setFramebufferZero(Framebuffer *buffer) { delete mFramebufferNameSpace.remove(0); mFramebufferNameSpace.insert(0, buffer); } void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer) { Renderbuffer *renderbufferObject = mState.renderbuffer; renderbufferObject->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) { return mFramebufferNameSpace.find(handle); } Buffer *Context::getArrayBuffer() { return mState.arrayBuffer; } Buffer *Context::getElementArrayBuffer() { return mState.elementArrayBuffer; } Texture2D *Context::getTexture2D() { return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); } TextureExternal *Context::getTextureExternal() { return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL)); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) { GLuint texid = mState.samplerTexture[type][sampler].name(); if(texid == 0) // Special case: 0 refers to different initial textures based on the target { switch(type) { case TEXTURE_2D: return mTexture2DZero; case TEXTURE_EXTERNAL: return mTextureExternalZero; default: UNREACHABLE(type); } } return mState.samplerTexture[type][sampler]; } bool Context::getBooleanv(GLenum pname, GLboolean *params) { switch(pname) { case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break; case GL_COLOR_WRITEMASK: params[0] = mState.colorMaskRed; params[1] = mState.colorMaskGreen; params[2] = mState.colorMaskBlue; params[3] = mState.colorMaskAlpha; break; case GL_CULL_FACE: *params = mState.cullFaceEnabled; break; case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFillEnabled; break; case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break; case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverageEnabled; break; case GL_SCISSOR_TEST: *params = mState.scissorTestEnabled; break; case GL_STENCIL_TEST: *params = mState.stencilTestEnabled; break; case GL_DEPTH_TEST: *params = mState.depthTestEnabled; break; case GL_BLEND: *params = mState.blendEnabled; break; case GL_DITHER: *params = mState.ditherEnabled; break; case GL_LIGHT_MODEL_TWO_SIDE: *params = lightModelTwoSide; break; default: return false; } return true; } bool Context::getFloatv(GLenum pname, GLfloat *params) { // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. switch(pname) { case GL_LINE_WIDTH: *params = mState.lineWidth; break; case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break; case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break; case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = ALIASED_LINE_WIDTH_RANGE_MIN; params[1] = ALIASED_LINE_WIDTH_RANGE_MAX; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = ALIASED_POINT_SIZE_RANGE_MIN; params[1] = ALIASED_POINT_SIZE_RANGE_MAX; break; case GL_SMOOTH_LINE_WIDTH_RANGE: params[0] = SMOOTH_LINE_WIDTH_RANGE_MIN; params[1] = SMOOTH_LINE_WIDTH_RANGE_MAX; break; case GL_SMOOTH_POINT_SIZE_RANGE: params[0] = SMOOTH_POINT_SIZE_RANGE_MIN; params[1] = SMOOTH_POINT_SIZE_RANGE_MAX; break; case GL_DEPTH_RANGE: params[0] = mState.zNear; params[1] = mState.zFar; break; case GL_COLOR_CLEAR_VALUE: params[0] = mState.colorClearValue.red; params[1] = mState.colorClearValue.green; params[2] = mState.colorClearValue.blue; params[3] = mState.colorClearValue.alpha; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: *params = MAX_TEXTURE_MAX_ANISOTROPY; break; case GL_MODELVIEW_MATRIX: for(int i = 0; i < 16; i++) { params[i] = modelViewStack.current()[i % 4][i / 4]; } break; case GL_PROJECTION_MATRIX: for(int i = 0; i < 16; i++) { params[i] = projectionStack.current()[i % 4][i / 4]; } break; case GL_CURRENT_COLOR: for(int i = 0; i < 4; i++) { params[i] = mState.vertexAttribute[sw::Color0].mCurrentValue[i]; } break; case GL_CURRENT_NORMAL: for(int i = 0; i < 3; i++) { params[i] = mState.vertexAttribute[sw::Normal].mCurrentValue[i]; } break; case GL_CURRENT_TEXTURE_COORDS: for(int i = 0; i < 4; i++) { params[i] = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[i]; } break; default: return false; } return true; } bool Context::getIntegerv(GLenum pname, GLint *params) { // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. You may find it in // Context::getFloatv. switch(pname) { case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break; case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break; case GL_FRAMEBUFFER_BINDING_OES: *params = mState.framebuffer; break; case GL_RENDERBUFFER_BINDING_OES: *params = mState.renderbuffer.name(); break; case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; case GL_PERSPECTIVE_CORRECTION_HINT: *params = mState.perspectiveCorrectionHint; break; case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; case GL_STENCIL_FUNC: *params = mState.stencilFunc; break; case GL_STENCIL_REF: *params = mState.stencilRef; break; case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break; case GL_STENCIL_FAIL: *params = mState.stencilFail; break; case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break; case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break; case GL_DEPTH_FUNC: *params = mState.depthFunc; break; case GL_BLEND_SRC_RGB_OES: *params = mState.sourceBlendRGB; break; case GL_BLEND_SRC_ALPHA_OES: *params = mState.sourceBlendAlpha; break; case GL_BLEND_DST_RGB_OES: *params = mState.destBlendRGB; break; case GL_BLEND_DST_ALPHA_OES: *params = mState.destBlendAlpha; break; case GL_BLEND_EQUATION_RGB_OES: *params = mState.blendEquationRGB; break; case GL_BLEND_EQUATION_ALPHA_OES: *params = mState.blendEquationAlpha; break; case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break; case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break; case GL_SAMPLE_BUFFERS: case GL_SAMPLES: { Framebuffer *framebuffer = getFramebuffer(); int width, height, samples; if(framebuffer && (framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE_OES)) { switch(pname) { case GL_SAMPLE_BUFFERS: if(samples > 1) { *params = 1; } else { *params = 0; } break; case GL_SAMPLES: *params = samples; break; } } else { *params = 0; } } break; case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: { Framebuffer *framebuffer = getFramebuffer(); if(framebuffer) { *params = framebuffer->getImplementationColorReadType(); } else { return error(GL_INVALID_OPERATION, true); } } break; case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: { Framebuffer *framebuffer = getFramebuffer(); if(framebuffer) { *params = framebuffer->getImplementationColorReadFormat(); } else { return error(GL_INVALID_OPERATION, true); } } break; case GL_MAX_VIEWPORT_DIMS: { int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; params[0] = maxDimension; params[1] = maxDimension; } break; case GL_COMPRESSED_TEXTURE_FORMATS: { for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++) { params[i] = compressedTextureFormats[i]; } } break; case GL_VIEWPORT: params[0] = mState.viewportX; params[1] = mState.viewportY; params[2] = mState.viewportWidth; params[3] = mState.viewportHeight; break; case GL_SCISSOR_BOX: params[0] = mState.scissorX; params[1] = mState.scissorY; params[2] = mState.scissorWidth; params[3] = mState.scissorHeight; break; case GL_CULL_FACE_MODE: *params = mState.cullMode; break; case GL_FRONT_FACE: *params = mState.frontFace; break; case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: { Framebuffer *framebuffer = getFramebuffer(); Renderbuffer *colorbuffer = framebuffer ? framebuffer->getColorbuffer() : nullptr; if(colorbuffer) { switch(pname) { case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; } } else { *params = 0; } } break; case GL_DEPTH_BITS: { Framebuffer *framebuffer = getFramebuffer(); Renderbuffer *depthbuffer = framebuffer ? framebuffer->getDepthbuffer() : nullptr; if(depthbuffer) { *params = depthbuffer->getDepthSize(); } else { *params = 0; } } break; case GL_STENCIL_BITS: { Framebuffer *framebuffer = getFramebuffer(); Renderbuffer *stencilbuffer = framebuffer ? framebuffer->getStencilbuffer() : nullptr; if(stencilbuffer) { *params = stencilbuffer->getStencilSize(); } else { *params = 0; } } break; case GL_TEXTURE_BINDING_2D: *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name(); break; case GL_TEXTURE_BINDING_EXTERNAL_OES: *params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name(); break; case GL_MAX_LIGHTS: *params = MAX_LIGHTS; break; case GL_MAX_MODELVIEW_STACK_DEPTH: *params = MAX_MODELVIEW_STACK_DEPTH; break; case GL_MAX_PROJECTION_STACK_DEPTH: *params = MAX_PROJECTION_STACK_DEPTH; break; case GL_MAX_TEXTURE_STACK_DEPTH: *params = MAX_TEXTURE_STACK_DEPTH; break; case GL_MAX_TEXTURE_UNITS: *params = MAX_TEXTURE_UNITS; break; case GL_MAX_CLIP_PLANES: *params = MAX_CLIP_PLANES; break; case GL_POINT_SIZE_ARRAY_TYPE_OES: *params = mState.vertexAttribute[sw::PointSize].mType; break; case GL_POINT_SIZE_ARRAY_STRIDE_OES: *params = mState.vertexAttribute[sw::PointSize].mStride; break; case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: *params = mState.vertexAttribute[sw::PointSize].mBoundBuffer.name(); break; case GL_VERTEX_ARRAY_SIZE: *params = mState.vertexAttribute[sw::Position].mSize; break; case GL_VERTEX_ARRAY_TYPE: *params = mState.vertexAttribute[sw::Position].mType; break; case GL_VERTEX_ARRAY_STRIDE: *params = mState.vertexAttribute[sw::Position].mStride; break; case GL_VERTEX_ARRAY_BUFFER_BINDING: *params = mState.vertexAttribute[sw::Position].mBoundBuffer.name(); break; case GL_NORMAL_ARRAY_TYPE: *params = mState.vertexAttribute[sw::Normal].mType; break; case GL_NORMAL_ARRAY_STRIDE: *params = mState.vertexAttribute[sw::Normal].mStride; break; case GL_NORMAL_ARRAY_BUFFER_BINDING: *params = mState.vertexAttribute[sw::Normal].mBoundBuffer.name(); break; case GL_COLOR_ARRAY_SIZE: *params = mState.vertexAttribute[sw::Color0].mSize; break; case GL_COLOR_ARRAY_TYPE: *params = mState.vertexAttribute[sw::Color0].mType; break; case GL_COLOR_ARRAY_STRIDE: *params = mState.vertexAttribute[sw::Color0].mStride; break; case GL_COLOR_ARRAY_BUFFER_BINDING: *params = mState.vertexAttribute[sw::Color0].mBoundBuffer.name(); break; case GL_TEXTURE_COORD_ARRAY_SIZE: *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mSize; break; case GL_TEXTURE_COORD_ARRAY_TYPE: *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mType; break; case GL_TEXTURE_COORD_ARRAY_STRIDE: *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mStride; break; case GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING: *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mBoundBuffer.name(); break; default: return false; } return true; } bool Context::getPointerv(GLenum pname, const GLvoid **params) { switch(pname) { case GL_VERTEX_ARRAY_POINTER: *params = mState.vertexAttribute[sw::Position].mPointer; break; case GL_NORMAL_ARRAY_POINTER: *params = mState.vertexAttribute[sw::Normal].mPointer; break; case GL_COLOR_ARRAY_POINTER: *params = mState.vertexAttribute[sw::Color0].mPointer; break; case GL_POINT_SIZE_ARRAY_POINTER_OES: *params = mState.vertexAttribute[sw::PointSize].mPointer; break; case GL_TEXTURE_COORD_ARRAY_POINTER: *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mPointer; break; default: return false; } return true; } int Context::getQueryParameterNum(GLenum pname) { // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch(pname) { case GL_COMPRESSED_TEXTURE_FORMATS: return NUM_COMPRESSED_TEXTURE_FORMATS; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: case GL_FRAMEBUFFER_BINDING_OES: case GL_RENDERBUFFER_BINDING_OES: case GL_PACK_ALIGNMENT: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB_OES: case GL_BLEND_SRC_ALPHA_OES: case GL_BLEND_DST_RGB_OES: case GL_BLEND_DST_ALPHA_OES: case GL_BLEND_EQUATION_RGB_OES: case GL_BLEND_EQUATION_ALPHA_OES: case GL_STENCIL_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP_OES: case GL_TEXTURE_BINDING_EXTERNAL_OES: return 1; case GL_MAX_VIEWPORT_DIMS: return 2; case GL_VIEWPORT: case GL_SCISSOR_BOX: return 4; case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: return 1; case GL_COLOR_WRITEMASK: return 4; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: return 1; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: return 2; case GL_COLOR_CLEAR_VALUE: return 4; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: case GL_MAX_LIGHTS: case GL_MAX_MODELVIEW_STACK_DEPTH: case GL_MAX_PROJECTION_STACK_DEPTH: case GL_MAX_TEXTURE_STACK_DEPTH: case GL_MAX_TEXTURE_UNITS: case GL_MAX_CLIP_PLANES: case GL_POINT_SIZE_ARRAY_TYPE_OES: case GL_POINT_SIZE_ARRAY_STRIDE_OES: case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: return 1; case GL_CURRENT_COLOR: return 4; case GL_CURRENT_NORMAL: return 3; case GL_CURRENT_TEXTURE_COORDS: return 4; case GL_POINT_SIZE: case GL_POINT_SIZE_MIN: case GL_POINT_SIZE_MAX: case GL_POINT_FADE_THRESHOLD_SIZE: return 1; case GL_POINT_DISTANCE_ATTENUATION: return 3; case GL_SMOOTH_POINT_SIZE_RANGE: case GL_SMOOTH_LINE_WIDTH_RANGE: return 2; case GL_SHADE_MODEL: case GL_MATRIX_MODE: case GL_MODELVIEW_STACK_DEPTH: case GL_PROJECTION_STACK_DEPTH: case GL_TEXTURE_STACK_DEPTH: return 1; case GL_MODELVIEW_MATRIX: case GL_PROJECTION_MATRIX: case GL_TEXTURE_MATRIX: return 16; case GL_ALPHA_TEST_FUNC: case GL_ALPHA_TEST_REF: case GL_BLEND_DST: case GL_BLEND_SRC: case GL_LOGIC_OP_MODE: case GL_VERTEX_ARRAY_SIZE: case GL_VERTEX_ARRAY_TYPE: case GL_VERTEX_ARRAY_STRIDE: case GL_NORMAL_ARRAY_TYPE: case GL_NORMAL_ARRAY_STRIDE: case GL_COLOR_ARRAY_SIZE: case GL_COLOR_ARRAY_TYPE: case GL_COLOR_ARRAY_STRIDE: case GL_TEXTURE_COORD_ARRAY_SIZE: case GL_TEXTURE_COORD_ARRAY_TYPE: case GL_TEXTURE_COORD_ARRAY_STRIDE: case GL_VERTEX_ARRAY_POINTER: case GL_NORMAL_ARRAY_POINTER: case GL_COLOR_ARRAY_POINTER: case GL_TEXTURE_COORD_ARRAY_POINTER: case GL_LIGHT_MODEL_TWO_SIDE: return 1; default: UNREACHABLE(pname); } return -1; } bool Context::isQueryParameterInt(GLenum pname) { // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch(pname) { case GL_COMPRESSED_TEXTURE_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: case GL_FRAMEBUFFER_BINDING_OES: case GL_RENDERBUFFER_BINDING_OES: case GL_PACK_ALIGNMENT: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB_OES: case GL_BLEND_SRC_ALPHA_OES: case GL_BLEND_DST_RGB_OES: case GL_BLEND_DST_ALPHA_OES: case GL_BLEND_EQUATION_RGB_OES: case GL_BLEND_EQUATION_ALPHA_OES: case GL_STENCIL_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP_OES: case GL_TEXTURE_BINDING_EXTERNAL_OES: case GL_MAX_VIEWPORT_DIMS: case GL_VIEWPORT: case GL_SCISSOR_BOX: case GL_MAX_LIGHTS: case GL_MAX_MODELVIEW_STACK_DEPTH: case GL_MAX_PROJECTION_STACK_DEPTH: case GL_MAX_TEXTURE_STACK_DEPTH: case GL_MAX_TEXTURE_UNITS: case GL_MAX_CLIP_PLANES: case GL_POINT_SIZE_ARRAY_TYPE_OES: case GL_POINT_SIZE_ARRAY_STRIDE_OES: case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: return true; } return false; } bool Context::isQueryParameterFloat(GLenum pname) { // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch(pname) { case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_SMOOTH_LINE_WIDTH_RANGE: case GL_SMOOTH_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: case GL_COLOR_CLEAR_VALUE: case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: case GL_LIGHT_MODEL_AMBIENT: case GL_POINT_SIZE_MIN: case GL_POINT_SIZE_MAX: case GL_POINT_DISTANCE_ATTENUATION: case GL_POINT_FADE_THRESHOLD_SIZE: return true; } return false; } bool Context::isQueryParameterBool(GLenum pname) { switch(pname) { case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_COLOR_WRITEMASK: case GL_LIGHT_MODEL_TWO_SIDE: return true; } return false; } bool Context::isQueryParameterPointer(GLenum pname) { switch(pname) { case GL_VERTEX_ARRAY_POINTER: case GL_NORMAL_ARRAY_POINTER: case GL_COLOR_ARRAY_POINTER: case GL_TEXTURE_COORD_ARRAY_POINTER: case GL_POINT_SIZE_ARRAY_POINTER_OES: return true; } return false; } // Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle bool Context::applyRenderTarget() { Framebuffer *framebuffer = getFramebuffer(); int width, height, samples; if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE_OES) { return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES, false); } egl::Image *renderTarget = framebuffer->getRenderTarget(); device->setRenderTarget(0, renderTarget); if(renderTarget) renderTarget->release(); egl::Image *depthBuffer = framebuffer->getDepthBuffer(); device->setDepthBuffer(depthBuffer); if(depthBuffer) depthBuffer->release(); egl::Image *stencilBuffer = framebuffer->getStencilBuffer(); device->setStencilBuffer(stencilBuffer); if(stencilBuffer) stencilBuffer->release(); Viewport viewport; float zNear = clamp01(mState.zNear); float zFar = clamp01(mState.zFar); viewport.x0 = mState.viewportX; viewport.y0 = mState.viewportY; viewport.width = mState.viewportWidth; viewport.height = mState.viewportHeight; viewport.minZ = zNear; viewport.maxZ = zFar; device->setViewport(viewport); if(mState.scissorTestEnabled) { sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight}; scissor.clip(0, 0, width, height); device->setScissorRect(scissor); device->setScissorEnable(true); } else { device->setScissorEnable(false); } return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) void Context::applyState(GLenum drawMode) { Framebuffer *framebuffer = getFramebuffer(); if(mState.cullFaceEnabled) { device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace)); } else { device->setCullMode(sw::CULL_NONE); } if(mDepthStateDirty) { if(mState.depthTestEnabled) { device->setDepthBufferEnable(true); device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc)); } else { device->setDepthBufferEnable(false); } mDepthStateDirty = false; } if(mBlendStateDirty) { if(mState.blendEnabled) { device->setAlphaBlendEnable(true); device->setSeparateAlphaBlendEnable(true); device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB)); device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB)); device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB)); device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha)); device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha)); device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha)); } else { device->setAlphaBlendEnable(false); } mBlendStateDirty = false; } if(mStencilStateDirty || mFrontFaceDirty) { if(mState.stencilTestEnabled && framebuffer->hasStencil()) { device->setStencilEnable(true); device->setTwoSidedStencil(true); // get the maximum size of the stencil ref Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1; device->setStencilWriteMask(mState.stencilWritemask); device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMask(mState.stencilMask); device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); device->setStencilWriteMaskCCW(mState.stencilWritemask); device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMaskCCW(mState.stencilMask); device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); } else { device->setStencilEnable(false); } mStencilStateDirty = false; mFrontFaceDirty = false; } if(mMaskStateDirty) { device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha)); device->setDepthWriteEnable(mState.depthMask); mMaskStateDirty = false; } if(mPolygonOffsetStateDirty) { if(mState.polygonOffsetFillEnabled) { Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); if(depthbuffer) { device->setSlopeDepthBias(mState.polygonOffsetFactor); float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize())); device->setDepthBias(depthBias); } } else { device->setSlopeDepthBias(0); device->setDepthBias(0); } mPolygonOffsetStateDirty = false; } if(mSampleStateDirty) { if(mState.sampleAlphaToCoverageEnabled) { device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE); } else { device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE); } if(mState.sampleCoverageEnabled) { unsigned int mask = 0; if(mState.sampleCoverageValue != 0) { int width, height, samples; framebuffer->completeness(width, height, samples); float threshold = 0.5f; for(int i = 0; i < samples; i++) { mask <<= 1; if((i + 1) * mState.sampleCoverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if(mState.sampleCoverageInvert) { mask = ~mask; } device->setMultiSampleMask(mask); } else { device->setMultiSampleMask(0xFFFFFFFF); } mSampleStateDirty = false; } if(mDitherStateDirty) { // UNIMPLEMENTED(); // FIXME mDitherStateDirty = false; } switch(mState.shadeModel) { default: UNREACHABLE(mState.shadeModel); case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break; case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break; } device->setLightingEnable(lightingEnabled); device->setGlobalAmbient(sw::Color<float>(globalAmbient.red, globalAmbient.green, globalAmbient.blue, globalAmbient.alpha)); for(int i = 0; i < MAX_LIGHTS; i++) { device->setLightEnable(i, light[i].enabled); device->setLightAmbient(i, sw::Color<float>(light[i].ambient.red, light[i].ambient.green, light[i].ambient.blue, light[i].ambient.alpha)); device->setLightDiffuse(i, sw::Color<float>(light[i].diffuse.red, light[i].diffuse.green, light[i].diffuse.blue, light[i].diffuse.alpha)); device->setLightSpecular(i, sw::Color<float>(light[i].specular.red, light[i].specular.green, light[i].specular.blue, light[i].specular.alpha)); device->setLightAttenuation(i, light[i].attenuation.constant, light[i].attenuation.linear, light[i].attenuation.quadratic); if(light[i].position.w != 0.0f) { device->setLightPosition(i, sw::Point(light[i].position.x / light[i].position.w, light[i].position.y / light[i].position.w, light[i].position.z / light[i].position.w)); } else // Directional light { // Hack: set the position far way float max = sw::max(abs(light[i].position.x), abs(light[i].position.y), abs(light[i].position.z)); device->setLightPosition(i, sw::Point(1e10f * (light[i].position.x / max), 1e10f * (light[i].position.y / max), 1e10f * (light[i].position.z / max))); } } device->setMaterialAmbient(sw::Color<float>(materialAmbient.red, materialAmbient.green, materialAmbient.blue, materialAmbient.alpha)); device->setMaterialDiffuse(sw::Color<float>(materialDiffuse.red, materialDiffuse.green, materialDiffuse.blue, materialDiffuse.alpha)); device->setMaterialSpecular(sw::Color<float>(materialSpecular.red, materialSpecular.green, materialSpecular.blue, materialSpecular.alpha)); device->setMaterialEmission(sw::Color<float>(materialEmission.red, materialEmission.green, materialEmission.blue, materialEmission.alpha)); device->setMaterialShininess(materialShininess); device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); device->setProjectionMatrix(projectionStack.current()); device->setModelMatrix(modelViewStack.current()); device->setTextureMatrix(0, textureStack0.current()); device->setTextureMatrix(1, textureStack1.current()); device->setTextureTransform(0, textureStack0.isIdentity() ? 0 : 4, false); device->setTextureTransform(1, textureStack1.isIdentity() ? 0 : 4, false); device->setTexGen(0, sw::TEXGEN_NONE); device->setTexGen(1, sw::TEXGEN_NONE); device->setAlphaTestEnable(alphaTestEnabled); device->setAlphaCompare(es2sw::ConvertAlphaComparison(alphaTestFunc)); device->setAlphaReference(alphaTestRef * 0xFF); device->setFogEnable(fogEnabled); device->setFogColor(sw::Color<float>(fogColor.red, fogColor.green, fogColor.blue, fogColor.alpha)); device->setFogDensity(fogDensity); device->setFogStart(fogStart); device->setFogEnd(fogEnd); switch(fogMode) { case GL_LINEAR: device->setVertexFogMode(sw::FOG_LINEAR); break; case GL_EXP: device->setVertexFogMode(sw::FOG_EXP); break; case GL_EXP2: device->setVertexFogMode(sw::FOG_EXP2); break; default: UNREACHABLE(fogMode); } device->setColorLogicOpEnabled(colorLogicOpEnabled); device->setLogicalOperation(es2sw::ConvertLogicalOperation(logicalOperation)); device->setNormalizeNormals(normalizeEnabled || rescaleNormalEnabled); } GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count) { TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS]; GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes); if(err != GL_NO_ERROR) { return err; } device->resetInputStreams(false); for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { sw::Resource *resource = attributes[i].vertexBuffer; const void *buffer = (char*)resource->data() + attributes[i].offset; int stride = attributes[i].stride; buffer = (char*)buffer + stride * base; sw::Stream attribute(resource, buffer, stride); attribute.type = attributes[i].type; attribute.count = attributes[i].count; attribute.normalized = attributes[i].normalized; device->setInputStream(i, attribute); } return GL_NO_ERROR; } // Applies the indices and element array bindings GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) { GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo); if(err == GL_NO_ERROR) { device->setIndexBuffer(indexInfo->indexBuffer); } return err; } void Context::applyTextures() { for(int unit = 0; unit < MAX_TEXTURE_UNITS; unit++) { Texture *texture = nullptr; if(textureExternalEnabled[unit]) { texture = getSamplerTexture(unit, TEXTURE_EXTERNAL); } else if(texture2Denabled[unit]) { texture = getSamplerTexture(unit, TEXTURE_2D); } if(texture && texture->isSamplerComplete()) { texture->autoGenerateMipmaps(); GLenum wrapS = texture->getWrapS(); GLenum wrapT = texture->getWrapT(); GLenum minFilter = texture->getMinFilter(); GLenum magFilter = texture->getMagFilter(); GLfloat maxAnisotropy = texture->getMaxAnisotropy(); device->setAddressingModeU(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapS)); device->setAddressingModeV(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapT)); device->setTextureFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy)); device->setMipmapFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertMipMapFilter(minFilter)); device->setMaxAnisotropy(sw::SAMPLER_PIXEL, unit, maxAnisotropy); applyTexture(unit, texture); device->setConstantColor(unit, sw::Color<float>(mState.textureUnit[unit].color.red, mState.textureUnit[unit].color.green, mState.textureUnit[unit].color.blue, mState.textureUnit[unit].color.alpha)); if(mState.textureUnit[unit].environmentMode != GL_COMBINE) { device->setFirstArgument(unit, sw::TextureStage::SOURCE_TEXTURE); // Cs device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR); device->setSecondArgument(unit, sw::TextureStage::SOURCE_CURRENT); // Cp device->setSecondModifier(unit, sw::TextureStage::MODIFIER_COLOR); device->setThirdArgument(unit, sw::TextureStage::SOURCE_CONSTANT); // Cc device->setThirdModifier(unit, sw::TextureStage::MODIFIER_COLOR); device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_TEXTURE); // As device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); device->setSecondArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT); // Ap device->setSecondModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); device->setThirdArgumentAlpha(unit, sw::TextureStage::SOURCE_CONSTANT); // Ac device->setThirdModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); GLenum texFormat = texture->getFormat(GL_TEXTURE_2D, 0); switch(mState.textureUnit[unit].environmentMode) { case GL_REPLACE: if(IsAlpha(texFormat)) // GL_ALPHA { // Cv = Cp, Av = As device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); } else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) { // Cv = Cs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) { // Cv = Cs, Av = As device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); } else UNREACHABLE(texFormat); break; case GL_MODULATE: if(IsAlpha(texFormat)) // GL_ALPHA { // Cv = Cp, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) { // Cv = CpCs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) { // Cv = CpCs, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else UNREACHABLE(texFormat); break; case GL_DECAL: if(texFormat == GL_ALPHA || texFormat == GL_LUMINANCE || texFormat == GL_LUMINANCE_ALPHA) { // undefined // FIXME: Log device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) { // Cv = Cs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) { // Cv = Cp(1 - As) + CsAs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_BLENDTEXTUREALPHA); // Alpha * (Arg1 - Arg2) + Arg2 device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else UNREACHABLE(texFormat); break; case GL_BLEND: if(IsAlpha(texFormat)) // GL_ALPHA { // Cv = Cp, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) { // Cv = Cp(1 - Cs) + CcCs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2 device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) { // Cv = Cp(1 - Cs) + CcCs, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2 device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else UNREACHABLE(texFormat); break; case GL_ADD: if(IsAlpha(texFormat)) // GL_ALPHA { // Cv = Cp, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) { // Cv = Cp + Cs, Av = Ap device->setStageOperation(unit, sw::TextureStage::STAGE_ADD); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); } else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) { // Cv = Cp + Cs, Av = ApAs device->setStageOperation(unit, sw::TextureStage::STAGE_ADD); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); } else UNREACHABLE(texFormat); break; default: UNREACHABLE(mState.textureUnit[unit].environmentMode); } } else // GL_COMBINE { device->setFirstArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0RGB)); device->setFirstModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0RGB)); device->setSecondArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1RGB)); device->setSecondModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1RGB)); device->setThirdArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2RGB)); device->setThirdModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2RGB)); device->setStageOperation(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineRGB)); device->setFirstArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0Alpha)); device->setFirstModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0Alpha)); device->setSecondArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1Alpha)); device->setSecondModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1Alpha)); device->setThirdArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2Alpha)); device->setThirdModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2Alpha)); device->setStageOperationAlpha(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineAlpha)); } } else { applyTexture(unit, nullptr); device->setFirstArgument(unit, sw::TextureStage::SOURCE_CURRENT); device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR); device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT); device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); } } } void Context::setTextureEnvMode(GLenum texEnvMode) { mState.textureUnit[mState.activeSampler].environmentMode = texEnvMode; } void Context::setTextureEnvColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) { mState.textureUnit[mState.activeSampler].color = {red, green, blue, alpha}; } void Context::setCombineRGB(GLenum combineRGB) { mState.textureUnit[mState.activeSampler].combineRGB = combineRGB; } void Context::setCombineAlpha(GLenum combineAlpha) { mState.textureUnit[mState.activeSampler].combineAlpha = combineAlpha; } void Context::setOperand0RGB(GLenum operand) { mState.textureUnit[mState.activeSampler].operand0RGB = operand; } void Context::setOperand1RGB(GLenum operand) { mState.textureUnit[mState.activeSampler].operand1RGB = operand; } void Context::setOperand2RGB(GLenum operand) { mState.textureUnit[mState.activeSampler].operand2RGB = operand; } void Context::setOperand0Alpha(GLenum operand) { mState.textureUnit[mState.activeSampler].operand0Alpha = operand; } void Context::setOperand1Alpha(GLenum operand) { mState.textureUnit[mState.activeSampler].operand1Alpha = operand; } void Context::setOperand2Alpha(GLenum operand) { mState.textureUnit[mState.activeSampler].operand2Alpha = operand; } void Context::setSrc0RGB(GLenum src) { mState.textureUnit[mState.activeSampler].src0RGB = src; } void Context::setSrc1RGB(GLenum src) { mState.textureUnit[mState.activeSampler].src1RGB = src; } void Context::setSrc2RGB(GLenum src) { mState.textureUnit[mState.activeSampler].src2RGB = src; } void Context::setSrc0Alpha(GLenum src) { mState.textureUnit[mState.activeSampler].src0Alpha = src; } void Context::setSrc1Alpha(GLenum src) { mState.textureUnit[mState.activeSampler].src1Alpha = src; } void Context::setSrc2Alpha(GLenum src) { mState.textureUnit[mState.activeSampler].src2Alpha = src; } void Context::applyTexture(int index, Texture *baseTexture) { sw::Resource *resource = 0; if(baseTexture) { resource = baseTexture->getResource(); } device->setTextureResource(index, resource); if(baseTexture) { int topLevel = baseTexture->getTopLevel(); if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES) { Texture2D *texture = static_cast<Texture2D*>(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel; if(surfaceLevel < 0) { surfaceLevel = 0; } else if(surfaceLevel > topLevel) { surfaceLevel = topLevel; } egl::Image *surface = texture->getImage(surfaceLevel); device->setTextureLevel(index, 0, mipmapLevel, surface, sw::TEXTURE_2D); } } else UNIMPLEMENTED(); } else { device->setTextureLevel(index, 0, 0, 0, sw::TEXTURE_NULL); } } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { Framebuffer *framebuffer = getFramebuffer(); int framebufferWidth, framebufferHeight, framebufferSamples; if(!framebuffer || (framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE_OES)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES); } if(getFramebufferName() != 0 && framebufferSamples != 0) { return error(GL_INVALID_OPERATION); } if(format != GL_RGBA || type != GL_UNSIGNED_BYTE) { if(format != framebuffer->getImplementationColorReadFormat() || type != framebuffer->getImplementationColorReadType()) { return error(GL_INVALID_OPERATION); } } GLsizei outputPitch = gl::ComputePitch(width, format, type, mState.packAlignment); // Sized query sanity check if(bufSize) { int requiredSize = outputPitch * height; if(requiredSize > *bufSize) { return error(GL_INVALID_OPERATION); } } egl::Image *renderTarget = framebuffer->getRenderTarget(); if(!renderTarget) { return error(GL_OUT_OF_MEMORY); } sw::Rect rect = {x, y, x + width, y + height}; rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight()); unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, 0, sw::LOCK_READONLY); unsigned char *dest = (unsigned char*)pixels; int inputPitch = (int)renderTarget->getPitch(); for(int j = 0; j < rect.y1 - rect.y0; j++) { unsigned short *dest16 = (unsigned short*)dest; unsigned int *dest32 = (unsigned int*)dest; if(renderTarget->getExternalFormat() == sw::FORMAT_A8B8G8R8 && format == GL_RGBA && type == GL_UNSIGNED_BYTE) { memcpy(dest, source, (rect.x1 - rect.x0) * 4); } else if(renderTarget->getExternalFormat() == sw::FORMAT_A8R8G8B8 && format == GL_RGBA && type == GL_UNSIGNED_BYTE) { for(int i = 0; i < rect.x1 - rect.x0; i++) { unsigned int argb = *(unsigned int*)(source + 4 * i); dest32[i] = (argb & 0xFF00FF00) | ((argb & 0x000000FF) << 16) | ((argb & 0x00FF0000) >> 16); } } else if(renderTarget->getExternalFormat() == sw::FORMAT_X8R8G8B8 && format == GL_RGBA && type == GL_UNSIGNED_BYTE) { for(int i = 0; i < rect.x1 - rect.x0; i++) { unsigned int xrgb = *(unsigned int*)(source + 4 * i); dest32[i] = (xrgb & 0xFF00FF00) | ((xrgb & 0x000000FF) << 16) | ((xrgb & 0x00FF0000) >> 16) | 0xFF000000; } } else if(renderTarget->getExternalFormat() == sw::FORMAT_X8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) { for(int i = 0; i < rect.x1 - rect.x0; i++) { unsigned int xrgb = *(unsigned int*)(source + 4 * i); dest32[i] = xrgb | 0xFF000000; } } else if(renderTarget->getExternalFormat() == sw::FORMAT_A8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) { memcpy(dest, source, (rect.x1 - rect.x0) * 4); } else if(renderTarget->getExternalFormat() == sw::FORMAT_A1R5G5B5 && format == GL_BGRA_EXT && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT) { memcpy(dest, source, (rect.x1 - rect.x0) * 2); } else if(renderTarget->getExternalFormat() == sw::FORMAT_R5G6B5 && format == 0x80E0 && type == GL_UNSIGNED_SHORT_5_6_5) // GL_BGR_EXT { memcpy(dest, source, (rect.x1 - rect.x0) * 2); } else { for(int i = 0; i < rect.x1 - rect.x0; i++) { float r; float g; float b; float a; switch(renderTarget->getExternalFormat()) { case sw::FORMAT_R5G6B5: { unsigned short rgb = *(unsigned short*)(source + 2 * i); a = 1.0f; b = (rgb & 0x001F) * (1.0f / 0x001F); g = (rgb & 0x07E0) * (1.0f / 0x07E0); r = (rgb & 0xF800) * (1.0f / 0xF800); } break; case sw::FORMAT_A1R5G5B5: { unsigned short argb = *(unsigned short*)(source + 2 * i); a = (argb & 0x8000) ? 1.0f : 0.0f; b = (argb & 0x001F) * (1.0f / 0x001F); g = (argb & 0x03E0) * (1.0f / 0x03E0); r = (argb & 0x7C00) * (1.0f / 0x7C00); } break; case sw::FORMAT_A8R8G8B8: { unsigned int argb = *(unsigned int*)(source + 4 * i); a = (argb & 0xFF000000) * (1.0f / 0xFF000000); b = (argb & 0x000000FF) * (1.0f / 0x000000FF); g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00); r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000); } break; case sw::FORMAT_A8B8G8R8: { unsigned int abgr = *(unsigned int*)(source + 4 * i); a = (abgr & 0xFF000000) * (1.0f / 0xFF000000); b = (abgr & 0x00FF0000) * (1.0f / 0x00FF0000); g = (abgr & 0x0000FF00) * (1.0f / 0x0000FF00); r = (abgr & 0x000000FF) * (1.0f / 0x000000FF); } break; case sw::FORMAT_X8R8G8B8: { unsigned int xrgb = *(unsigned int*)(source + 4 * i); a = 1.0f; b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF); g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00); r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000); } break; case sw::FORMAT_X8B8G8R8: { unsigned int xbgr = *(unsigned int*)(source + 4 * i); a = 1.0f; b = (xbgr & 0x00FF0000) * (1.0f / 0x00FF0000); g = (xbgr & 0x0000FF00) * (1.0f / 0x0000FF00); r = (xbgr & 0x000000FF) * (1.0f / 0x000000FF); } break; case sw::FORMAT_A2R10G10B10: { unsigned int argb = *(unsigned int*)(source + 4 * i); a = (argb & 0xC0000000) * (1.0f / 0xC0000000); b = (argb & 0x000003FF) * (1.0f / 0x000003FF); g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00); r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000); } break; default: UNIMPLEMENTED(); // FIXME UNREACHABLE(renderTarget->getExternalFormat()); } switch(format) { case GL_RGBA: switch(type) { case GL_UNSIGNED_BYTE: dest[4 * i + 0] = (unsigned char)(255 * r + 0.5f); dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f); dest[4 * i + 2] = (unsigned char)(255 * b + 0.5f); dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f); break; default: UNREACHABLE(type); } break; case GL_BGRA_EXT: switch(type) { case GL_UNSIGNED_BYTE: dest[4 * i + 0] = (unsigned char)(255 * b + 0.5f); dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f); dest[4 * i + 2] = (unsigned char)(255 * r + 0.5f); dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f); break; case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT: // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section // this type is packed as follows: // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------------------------- // | 4th | 3rd | 2nd | 1st component | // -------------------------------------------------------------------------------- // in the case of BGRA_EXT, B is the first component, G the second, and so forth. dest16[i] = ((unsigned short)(15 * a + 0.5f) << 12)| ((unsigned short)(15 * r + 0.5f) << 8) | ((unsigned short)(15 * g + 0.5f) << 4) | ((unsigned short)(15 * b + 0.5f) << 0); break; case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT: // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section // this type is packed as follows: // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------------------------- // | 4th | 3rd | 2nd | 1st component | // -------------------------------------------------------------------------------- // in the case of BGRA_EXT, B is the first component, G the second, and so forth. dest16[i] = ((unsigned short)( a + 0.5f) << 15) | ((unsigned short)(31 * r + 0.5f) << 10) | ((unsigned short)(31 * g + 0.5f) << 5) | ((unsigned short)(31 * b + 0.5f) << 0); break; default: UNREACHABLE(type); } break; case GL_RGB: switch(type) { case GL_UNSIGNED_SHORT_5_6_5: dest16[i] = ((unsigned short)(31 * b + 0.5f) << 0) | ((unsigned short)(63 * g + 0.5f) << 5) | ((unsigned short)(31 * r + 0.5f) << 11); break; default: UNREACHABLE(type); } break; default: UNREACHABLE(format); } } } source += inputPitch; dest += outputPitch; } renderTarget->unlock(); renderTarget->release(); } void Context::clear(GLbitfield mask) { Framebuffer *framebuffer = getFramebuffer(); if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE_OES) { return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES); } if(!applyRenderTarget()) { return; } float depth = clamp01(mState.depthClearValue); int stencil = mState.stencilClearValue & 0x000000FF; if(mask & GL_COLOR_BUFFER_BIT) { unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) | (mState.colorMaskGreen ? 0x2 : 0) | (mState.colorMaskBlue ? 0x4 : 0) | (mState.colorMaskAlpha ? 0x8 : 0); if(rgbaMask != 0) { device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask); } } if(mask & GL_DEPTH_BUFFER_BIT) { if(mState.depthMask != 0) { device->clearDepth(depth); } } if(mask & GL_STENCIL_BUFFER_BIT) { if(mState.stencilWritemask != 0) { device->clearStencil(stencil, mState.stencilWritemask); } } } void Context::drawArrays(GLenum mode, GLint first, GLsizei count) { sw::DrawType primitiveType; int primitiveCount; if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount)) return error(GL_INVALID_ENUM); if(primitiveCount <= 0) { return; } if(!applyRenderTarget()) { return; } applyState(mode); GLenum err = applyVertexBuffer(0, first, count); if(err != GL_NO_ERROR) { return error(err); } applyTextures(); if(!cullSkipsDraw(mode)) { device->drawPrimitive(primitiveType, primitiveCount); } } void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices) { if(!indices && !mState.elementArrayBuffer) { return error(GL_INVALID_OPERATION); } sw::DrawType primitiveType; int primitiveCount; if(!es2sw::ConvertPrimitiveType(mode, count, type, primitiveType, primitiveCount)) return error(GL_INVALID_ENUM); if(primitiveCount <= 0) { return; } if(!applyRenderTarget()) { return; } applyState(mode); TranslatedIndexData indexInfo; GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo); if(err != GL_NO_ERROR) { return error(err); } GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount); if(err != GL_NO_ERROR) { return error(err); } applyTextures(); if(!cullSkipsDraw(mode)) { device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount); } } void Context::drawTexture(GLfloat x, GLfloat y, GLfloat z, GLfloat width, GLfloat height) { es1::Framebuffer *framebuffer = getFramebuffer(); es1::Renderbuffer *renderbuffer = framebuffer ? framebuffer->getColorbuffer() : nullptr; if(!renderbuffer) { return; } float targetWidth = (float)renderbuffer->getWidth(); float targetHeight = (float)renderbuffer->getHeight(); float x0 = 2.0f * x / targetWidth - 1.0f; float y0 = 2.0f * y / targetHeight - 1.0f; float x1 = 2.0f * (x + width) / targetWidth - 1.0f; float y1 = 2.0f * (y + height) / targetHeight - 1.0f; float Zw = sw::clamp(mState.zNear + z * (mState.zFar - mState.zNear), mState.zNear, mState.zFar); float vertices[][3] = {{x0, y0, Zw}, {x0, y1, Zw}, {x1, y0, Zw}, {x1, y1, Zw}}; ASSERT(mState.samplerTexture[TEXTURE_2D][1].name() == 0); // Multi-texturing unimplemented es1::Texture *texture = getSamplerTexture(0, TEXTURE_2D); float textureWidth = (float)texture->getWidth(GL_TEXTURE_2D, 0); float textureHeight = (float)texture->getHeight(GL_TEXTURE_2D, 0); int Ucr = texture->getCropRectU(); int Vcr = texture->getCropRectV(); int Wcr = texture->getCropRectW(); int Hcr = texture->getCropRectH(); float texCoords[][2] = {{Ucr / textureWidth, Vcr / textureHeight}, {Ucr / textureWidth, (Vcr + Hcr) / textureHeight}, {(Ucr + Wcr) / textureWidth, Vcr / textureHeight}, {(Ucr + Wcr) / textureWidth, (Vcr + Hcr) / textureHeight}}; VertexAttribute oldPositionAttribute = mState.vertexAttribute[sw::Position]; VertexAttribute oldTexCoord0Attribute = mState.vertexAttribute[sw::TexCoord0]; gl::BindingPointer<Buffer> oldArrayBuffer = mState.arrayBuffer; mState.arrayBuffer = nullptr; glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), vertices); glEnableClientState(GL_VERTEX_ARRAY); glTexCoordPointer(2, GL_FLOAT, 2 * sizeof(float), texCoords); glEnableClientState(GL_TEXTURE_COORD_ARRAY); sw::Matrix P = projectionStack.current(); sw::Matrix M = modelViewStack.current(); sw::Matrix T = textureStack0.current(); projectionStack.identity(); modelViewStack.identity(); textureStack0.identity(); drawArrays(GL_TRIANGLE_STRIP, 0, 4); // Restore state mState.vertexAttribute[sw::Position] = oldPositionAttribute; mState.vertexAttribute[sw::TexCoord0] = oldTexCoord0Attribute; mState.arrayBuffer = oldArrayBuffer; oldArrayBuffer = nullptr; oldPositionAttribute.mBoundBuffer = nullptr; oldTexCoord0Attribute.mBoundBuffer = nullptr; textureStack0.load(T); modelViewStack.load(M); projectionStack.load(P); } void Context::blit(sw::Surface *source, const sw::SliceRect &sRect, sw::Surface *dest, const sw::SliceRect &dRect) { sw::SliceRectF sRectF((float)sRect.x0, (float)sRect.y0, (float)sRect.x1, (float)sRect.y1, sRect.slice); device->blit(source, sRectF, dest, dRect, false); } void Context::finish() { device->finish(); } void Context::flush() { // We don't queue anything without processing it as fast as possible } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } void Context::recordMatrixStackOverflow() { mMatrixStackOverflow = true; } void Context::recordMatrixStackUnderflow() { mMatrixStackUnderflow = true; } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if(mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if(mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if(mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if(mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if(mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION_OES; } if(mMatrixStackOverflow) { mMatrixStackOverflow = false; return GL_INVALID_FRAMEBUFFER_OPERATION_OES; } if(mMatrixStackUnderflow) { mMatrixStackUnderflow = false; return GL_INVALID_FRAMEBUFFER_OPERATION_OES; } return GL_NO_ERROR; } int Context::getSupportedMultisampleCount(int requested) { int supported = 0; for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--) { if(supported >= requested) { return supported; } supported = multisampleCount[i]; } return supported; } void Context::detachBuffer(GLuint buffer) { // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. if(mState.arrayBuffer.name() == buffer) { mState.arrayBuffer = nullptr; } if(mState.elementArrayBuffer.name() == buffer) { mState.elementArrayBuffer = nullptr; } for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer) { mState.vertexAttribute[attribute].mBoundBuffer = nullptr; } } } void Context::detachTexture(GLuint texture) { // [OpenGL ES 2.0.24] section 3.8 page 84: // If a texture object is deleted, it is as if all texture units which are bound to that texture object are // rebound to texture object zero for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++) { if(mState.samplerTexture[type][sampler].name() == texture) { mState.samplerTexture[type][sampler] = nullptr; } } } // [OpenGL ES 2.0.24] section 4.4 page 112: // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this // image was attached in the currently bound framebuffer. Framebuffer *framebuffer = getFramebuffer(); if(framebuffer) { framebuffer->detachTexture(texture); } } void Context::detachFramebuffer(GLuint framebuffer) { // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if(mState.framebuffer == framebuffer) { bindFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { // [OpenGL ES 2.0.24] section 4.4 page 109: // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer // had been executed with the target RENDERBUFFER and name of zero. if(mState.renderbuffer.name() == renderbuffer) { bindRenderbuffer(0); } // [OpenGL ES 2.0.24] section 4.4 page 111: // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment // point to which this image was attached in the currently bound framebuffer. Framebuffer *framebuffer = getFramebuffer(); if(framebuffer) { framebuffer->detachRenderbuffer(renderbuffer); } } bool Context::cullSkipsDraw(GLenum drawMode) { return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode); } bool Context::isTriangleMode(GLenum drawMode) { switch(drawMode) { case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: return true; case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: return false; default: UNREACHABLE(drawMode); } return false; } void Context::setVertexAttrib(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { ASSERT(index < MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].mCurrentValue[0] = x; mState.vertexAttribute[index].mCurrentValue[1] = y; mState.vertexAttribute[index].mCurrentValue[2] = z; mState.vertexAttribute[index].mCurrentValue[3] = w; mVertexDataManager->dirtyCurrentValue(index); } void Context::bindTexImage(gl::Surface *surface) { es1::Texture2D *textureObject = getTexture2D(); if(textureObject) { textureObject->bindTexImage(surface); } } EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel) { switch(target) { case EGL_GL_TEXTURE_2D_KHR: break; case EGL_GL_RENDERBUFFER_KHR: break; default: return EGL_BAD_PARAMETER; } if(textureLevel >= IMPLEMENTATION_MAX_TEXTURE_LEVELS) { return EGL_BAD_MATCH; } if(target == EGL_GL_TEXTURE_2D_KHR) { Texture *texture = getTexture(name); if(!texture || texture->getTarget() != GL_TEXTURE_2D) { return EGL_BAD_PARAMETER; } if(texture->isShared(GL_TEXTURE_2D, textureLevel)) // Bound to an EGLSurface or already an EGLImage sibling { return EGL_BAD_ACCESS; } if(textureLevel != 0 && !texture->isSamplerComplete()) { return EGL_BAD_PARAMETER; } if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getTopLevel() == 0)) { return EGL_BAD_PARAMETER; } } else if(target == EGL_GL_RENDERBUFFER_KHR) { Renderbuffer *renderbuffer = getRenderbuffer(name); if(!renderbuffer) { return EGL_BAD_PARAMETER; } if(renderbuffer->isShared()) // Already an EGLImage sibling { return EGL_BAD_ACCESS; } } else UNREACHABLE(target); return EGL_SUCCESS; } egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel) { if(target == EGL_GL_TEXTURE_2D_KHR) { es1::Texture *texture = getTexture(name); return texture->createSharedImage(GL_TEXTURE_2D, textureLevel); } else if(target == EGL_GL_RENDERBUFFER_KHR) { es1::Renderbuffer *renderbuffer = getRenderbuffer(name); return renderbuffer->createSharedImage(); } else UNREACHABLE(target); return nullptr; } egl::Image *Context::getSharedImage(GLeglImageOES image) { return display->getSharedImage(image); } Device *Context::getDevice() { return device; } void Context::setMatrixMode(GLenum mode) { matrixMode = mode; } sw::MatrixStack &Context::currentMatrixStack() { switch(matrixMode) { case GL_MODELVIEW: return modelViewStack; case GL_PROJECTION: return projectionStack; case GL_TEXTURE: switch(mState.activeSampler) { case 0: return textureStack0; case 1: return textureStack1; } break; } UNREACHABLE(matrixMode); return textureStack0; } void Context::loadIdentity() { currentMatrixStack().identity(); } void Context::load(const GLfloat *m) { currentMatrixStack().load(m); } void Context::pushMatrix() { if(!currentMatrixStack().push()) { return error(GL_STACK_OVERFLOW); } } void Context::popMatrix() { if(!currentMatrixStack().pop()) { return error(GL_STACK_OVERFLOW); } } void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { currentMatrixStack().rotate(angle, x, y, z); } void Context::translate(GLfloat x, GLfloat y, GLfloat z) { currentMatrixStack().translate(x, y, z); } void Context::scale(GLfloat x, GLfloat y, GLfloat z) { currentMatrixStack().scale(x, y, z); } void Context::multiply(const GLfloat *m) { currentMatrixStack().multiply(m); } void Context::frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar) { currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar); } void Context::ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar) { currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar); } void Context::setClipPlane(int index, const float plane[4]) { sw::Plane clipPlane = modelViewStack.current() * sw::Plane(plane); device->setClipPlane(index, &clipPlane.A); } void Context::setClipPlaneEnabled(int index, bool enable) { clipFlags = (clipFlags & ~((int)!enable << index)) | ((int)enable << index); device->setClipFlags(clipFlags); } bool Context::isClipPlaneEnabled(int index) const { return (clipFlags & (1 << index)) != 0; } void Context::setColorLogicOpEnabled(bool enable) { colorLogicOpEnabled = enable; } bool Context::isColorLogicOpEnabled() const { return colorLogicOpEnabled; } void Context::setLogicalOperation(GLenum logicOp) { logicalOperation = logicOp; } void Context::setLineSmoothEnabled(bool enable) { lineSmoothEnabled = enable; } bool Context::isLineSmoothEnabled() const { return lineSmoothEnabled; } void Context::setColorMaterialEnabled(bool enable) { colorMaterialEnabled = enable; } bool Context::isColorMaterialEnabled() const { return colorMaterialEnabled; } void Context::setNormalizeEnabled(bool enable) { normalizeEnabled = enable; } bool Context::isNormalizeEnabled() const { return normalizeEnabled; } void Context::setRescaleNormalEnabled(bool enable) { rescaleNormalEnabled = enable; } bool Context::isRescaleNormalEnabled() const { return rescaleNormalEnabled; } void Context::setVertexArrayEnabled(bool enable) { mState.vertexAttribute[sw::Position].mArrayEnabled = enable; } bool Context::isVertexArrayEnabled() const { return mState.vertexAttribute[sw::Position].mArrayEnabled; } void Context::setNormalArrayEnabled(bool enable) { mState.vertexAttribute[sw::Normal].mArrayEnabled = enable; } bool Context::isNormalArrayEnabled() const { return mState.vertexAttribute[sw::Normal].mArrayEnabled; } void Context::setColorArrayEnabled(bool enable) { mState.vertexAttribute[sw::Color0].mArrayEnabled = enable; } bool Context::isColorArrayEnabled() const { return mState.vertexAttribute[sw::Color0].mArrayEnabled; } void Context::setPointSizeArrayEnabled(bool enable) { mState.vertexAttribute[sw::PointSize].mArrayEnabled = enable; } bool Context::isPointSizeArrayEnabled() const { return mState.vertexAttribute[sw::PointSize].mArrayEnabled; } void Context::setTextureCoordArrayEnabled(bool enable) { mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled = enable; } bool Context::isTextureCoordArrayEnabled() const { return mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled; } void Context::setMultisampleEnabled(bool enable) { multisampleEnabled = enable; } bool Context::isMultisampleEnabled() const { return multisampleEnabled; } void Context::setSampleAlphaToOneEnabled(bool enable) { sampleAlphaToOneEnabled = enable; } bool Context::isSampleAlphaToOneEnabled() const { return sampleAlphaToOneEnabled; } void Context::setPointSpriteEnabled(bool enable) { pointSpriteEnabled = enable; } bool Context::isPointSpriteEnabled() const { return pointSpriteEnabled; } void Context::setPointSmoothEnabled(bool enable) { pointSmoothEnabled = enable; } bool Context::isPointSmoothEnabled() const { return pointSmoothEnabled; } void Context::setPointSizeMin(float min) { pointSizeMin = min; } void Context::setPointSizeMax(float max) { pointSizeMax = max; } void Context::setPointDistanceAttenuation(float a, float b, float c) { pointDistanceAttenuation = {a, b, c}; } void Context::setPointFadeThresholdSize(float threshold) { pointFadeThresholdSize = threshold; } void Context::clientActiveTexture(GLenum texture) { clientTexture = texture; } GLenum Context::getClientActiveTexture() const { return clientTexture; } unsigned int Context::getActiveTexture() const { return mState.activeSampler; } } egl::Context *es1CreateContext(egl::Display *display, const egl::Context *shareContext, const egl::Config *config) { ASSERT(!shareContext || shareContext->getClientVersion() == 1); // Should be checked by eglCreateContext return new es1::Context(display, static_cast<const es1::Context*>(shareContext), config); }