/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkColorSpace.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpace_XYZ.h"
#include "SkData.h"
#include "SkICC.h"
#include "SkICCPriv.h"
#include "SkMatrix44.h"
#include "SkStream.h"
#include "Test.h"
static bool almost_equal(float a, float b) {
return SkTAbs(a - b) < 0.001f;
}
static inline void test_to_xyz_d50(skiatest::Reporter* r, SkICC* icc, bool shouldSucceed,
const float* reference) {
SkMatrix44 result(SkMatrix44::kUninitialized_Constructor);
REPORTER_ASSERT(r, shouldSucceed == icc->toXYZD50(&result));
if (shouldSucceed) {
float resultVals[16];
result.asColMajorf(resultVals);
for (int i = 0; i < 16; i++) {
REPORTER_ASSERT(r, almost_equal(resultVals[i], reference[i]));
}
}
}
DEF_TEST(ICC_ToXYZD50, r) {
const float z30Reference[16] = {
0.59825f, 0.27103f, 0.00603f, 0.0f, 0.22243f, 0.67447f, 0.07368f, 0.0f, 0.14352f, 0.05449f,
0.74519f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z30.get(), true, z30Reference);
const float z32Reference[16] = {
0.61583f, 0.28789f, 0.00513f, 0.0f, 0.20428f, 0.66972f, 0.06609f, 0.0f, 0.14409f, 0.04237f,
0.75368f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z32.get(), true, z32Reference);
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperLeft.get(), false, z32Reference);
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperRight.get(), false, z32Reference);
}
static inline void test_is_numerical_transfer_fn(skiatest::Reporter* r, SkICC* icc,
bool shouldSucceed,
const SkColorSpaceTransferFn& reference) {
SkColorSpaceTransferFn result;
REPORTER_ASSERT(r, shouldSucceed == icc->isNumericalTransferFn(&result));
if (shouldSucceed) {
REPORTER_ASSERT(r, 0 == memcmp(&result, &reference, sizeof(SkColorSpaceTransferFn)));
}
}
DEF_TEST(ICC_IsNumericalTransferFn, r) {
SkColorSpaceTransferFn referenceFn;
referenceFn.fA = 1.0f;
referenceFn.fB = 0.0f;
referenceFn.fC = 0.0f;
referenceFn.fD = 0.0f;
referenceFn.fE = 0.0f;
referenceFn.fF = 0.0f;
referenceFn.fG = 2.2f;
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z30.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z32.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperLeft.get(), false, referenceFn);
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperRight.get(), false, referenceFn);
}
DEF_TEST(ICC_Adobe, r) {
// Test that the color spaces produced by our procedural Adobe factory, and the official
// Adobe ICC profile match exactly.
sk_sp<SkData> data = GetResourceAsData("icc_profiles/AdobeRGB1998.icc");
sk_sp<SkColorSpace> fromIcc = SkColorSpace::MakeICC(data->data(), data->size());
sk_sp<SkColorSpace> procedural = SkColorSpace::MakeRGB(g2Dot2_TransferFn,
SkColorSpace::kAdobeRGB_Gamut);
REPORTER_ASSERT(r, SkColorSpace::Equals(fromIcc.get(), procedural.get()));
}
static inline void test_write_icc(skiatest::Reporter* r, const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50, bool writeToFile) {
sk_sp<SkData> profile = SkICC::WriteToICC(fn, toXYZD50);
if (writeToFile) {
SkFILEWStream stream("out.icc");
stream.write(profile->data(), profile->size());
}
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(profile->data(), profile->size());
sk_sp<SkColorSpace> reference = SkColorSpace::MakeRGB(fn, toXYZD50);
REPORTER_ASSERT(r, SkColorSpace::Equals(reference.get(), colorSpace.get()));
}
DEF_TEST(ICC_WriteICC, r) {
SkColorSpaceTransferFn adobeFn;
adobeFn.fA = 1.0f;
adobeFn.fB = 0.0f;
adobeFn.fC = 0.0f;
adobeFn.fD = 0.0f;
adobeFn.fE = 0.0f;
adobeFn.fF = 0.0f;
adobeFn.fG = 2.2f;
SkMatrix44 adobeMatrix(SkMatrix44::kUninitialized_Constructor);
adobeMatrix.set3x3RowMajorf(gAdobeRGB_toXYZD50);
test_write_icc(r, adobeFn, adobeMatrix, false);
SkColorSpaceTransferFn srgbFn;
srgbFn.fA = 1.0f / 1.055f;
srgbFn.fB = 0.055f / 1.055f;
srgbFn.fC = 1.0f / 12.92f;
srgbFn.fD = 0.04045f;
srgbFn.fE = 0.0f;
srgbFn.fF = 0.0f;
srgbFn.fG = 2.4f;
SkMatrix44 srgbMatrix(SkMatrix44::kUninitialized_Constructor);
srgbMatrix.set3x3RowMajorf(gSRGB_toXYZD50);
test_write_icc(r, srgbFn, srgbMatrix, false);
SkString adobeTag = SkICCGetColorProfileTag(adobeFn, adobeMatrix);
SkString srgbTag = SkICCGetColorProfileTag(srgbFn, srgbMatrix);
REPORTER_ASSERT(r, adobeTag != srgbTag);
REPORTER_ASSERT(r, srgbTag.equals("sRGB"));
REPORTER_ASSERT(r, adobeTag.equals("AdobeRGB"));
}
static inline void test_raw_transfer_fn(skiatest::Reporter* r, SkICC* icc) {
SkICC::Tables tables;
bool result = icc->rawTransferFnData(&tables);
REPORTER_ASSERT(r, result);
REPORTER_ASSERT(r, 0.0f == tables.red()[0]);
REPORTER_ASSERT(r, 0.0f == tables.green()[0]);
REPORTER_ASSERT(r, 0.0f == tables.blue()[0]);
REPORTER_ASSERT(r, 1.0f == tables.red()[tables.fRed.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.green()[tables.fGreen.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.blue()[tables.fBlue.fCount - 1]);
}
class ICCTest {
public:
static sk_sp<SkICC> MakeICC(sk_sp<SkColorSpace> space) {
return sk_sp<SkICC>(new SkICC(std::move(space)));
}
static sk_sp<SkICC> MakeICC(sk_sp<SkGammas> gammas) {
return MakeICC(sk_sp<SkColorSpace>(new SkColorSpace_XYZ(
kNonStandard_SkGammaNamed, std::move(gammas),
SkMatrix44(SkMatrix44::kIdentity_Constructor), nullptr)));
}
};
DEF_TEST(ICC_RawTransferFns, r) {
sk_sp<SkICC> srgb = ICCTest::MakeICC(SkColorSpace::MakeSRGB());
test_raw_transfer_fn(r, srgb.get());
// Lookup-table based gamma curves
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize);
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kTable_Type;
gammas->fData[i].fTable.fSize = tableSize;
gammas->fData[i].fTable.fOffset = 0;
}
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.05f;
table[2] = 0.10f;
table[3] = 0.15f;
table[4] = 0.25f;
table[5] = 0.35f;
table[6] = 0.45f;
table[7] = 0.60f;
table[8] = 0.75f;
table[9] = 1.00f;
sk_sp<SkICC> tbl = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, tbl.get());
// Parametric gamma curves
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kParam_Type;
gammas->fData[i].fParamOffset = 0;
}
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>
(memory, sizeof(SkGammas));
// Interval.
params->fD = 0.04045f;
// First equation:
params->fC = 1.0f / 12.92f;
params->fF = 0.0f;
// Second equation:
// Note that the function is continuous (it's actually sRGB).
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fE = 0.0f;
params->fG = 2.4f;
sk_sp<SkICC> param = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, param.get());
// Exponential gamma curves
gammas = sk_sp<SkGammas>(new SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kValue_Type;
gammas->fData[i].fValue = 1.4f;
}
sk_sp<SkICC> exp = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, exp.get());
gammas = sk_sp<SkGammas>(new SkGammas(3));
gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type;
gammas->fData[0].fNamed = kSRGB_SkGammaNamed;
gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed;
gammas->fData[2].fNamed = kLinear_SkGammaNamed;
sk_sp<SkICC> named = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, named.get());
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize +
sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.15f;
table[2] = 0.20f;
table[3] = 0.25f;
table[4] = 0.35f;
table[5] = 0.45f;
table[6] = 0.55f;
table[7] = 0.70f;
table[8] = 0.85f;
table[9] = 1.00f;
params = SkTAddOffset<SkColorSpaceTransferFn>(memory,
sizeof(SkGammas) + sizeof(float) * tableSize);
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fC = 1.0f / 12.92f;
params->fD = 0.04045f;
params->fE = 0.0f;
params->fF = 0.0f;
params->fG = 2.4f;
gammas->fType[0] = SkGammas::Type::kValue_Type;
gammas->fData[0].fValue = 1.2f;
gammas->fType[1] = SkGammas::Type::kTable_Type;
gammas->fData[1].fTable.fSize = tableSize;
gammas->fData[1].fTable.fOffset = 0;
gammas->fType[2] = SkGammas::Type::kParam_Type;
gammas->fData[2].fParamOffset = sizeof(float) * tableSize;
sk_sp<SkICC> nonstd = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd.get());
// Reverse order of table and exponent
gammas->fType[1] = SkGammas::Type::kValue_Type;
gammas->fData[1].fValue = 1.2f;
gammas->fType[0] = SkGammas::Type::kTable_Type;
gammas->fData[0].fTable.fSize = tableSize;
gammas->fData[0].fTable.fOffset = 0;
sk_sp<SkICC> nonstd2 = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd2.get());
}