/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkColorSpace.h" #include "SkColorSpacePriv.h" #include "SkColorSpace_XYZ.h" #include "SkData.h" #include "SkICC.h" #include "SkICCPriv.h" #include "SkMatrix44.h" #include "SkStream.h" #include "Test.h" static bool almost_equal(float a, float b) { return SkTAbs(a - b) < 0.001f; } static inline void test_to_xyz_d50(skiatest::Reporter* r, SkICC* icc, bool shouldSucceed, const float* reference) { SkMatrix44 result(SkMatrix44::kUninitialized_Constructor); REPORTER_ASSERT(r, shouldSucceed == icc->toXYZD50(&result)); if (shouldSucceed) { float resultVals[16]; result.asColMajorf(resultVals); for (int i = 0; i < 16; i++) { REPORTER_ASSERT(r, almost_equal(resultVals[i], reference[i])); } } } DEF_TEST(ICC_ToXYZD50, r) { const float z30Reference[16] = { 0.59825f, 0.27103f, 0.00603f, 0.0f, 0.22243f, 0.67447f, 0.07368f, 0.0f, 0.14352f, 0.05449f, 0.74519f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, }; sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc"); sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size()); test_to_xyz_d50(r, z30.get(), true, z30Reference); const float z32Reference[16] = { 0.61583f, 0.28789f, 0.00513f, 0.0f, 0.20428f, 0.66972f, 0.06609f, 0.0f, 0.14409f, 0.04237f, 0.75368f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, }; data = GetResourceAsData("icc_profiles/HP_Z32x.icc"); sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size()); test_to_xyz_d50(r, z32.get(), true, z32Reference); data = GetResourceAsData("icc_profiles/upperLeft.icc"); sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size()); test_to_xyz_d50(r, upperLeft.get(), false, z32Reference); data = GetResourceAsData("icc_profiles/upperRight.icc"); sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size()); test_to_xyz_d50(r, upperRight.get(), false, z32Reference); } static inline void test_is_numerical_transfer_fn(skiatest::Reporter* r, SkICC* icc, bool shouldSucceed, const SkColorSpaceTransferFn& reference) { SkColorSpaceTransferFn result; REPORTER_ASSERT(r, shouldSucceed == icc->isNumericalTransferFn(&result)); if (shouldSucceed) { REPORTER_ASSERT(r, 0 == memcmp(&result, &reference, sizeof(SkColorSpaceTransferFn))); } } DEF_TEST(ICC_IsNumericalTransferFn, r) { SkColorSpaceTransferFn referenceFn; referenceFn.fA = 1.0f; referenceFn.fB = 0.0f; referenceFn.fC = 0.0f; referenceFn.fD = 0.0f; referenceFn.fE = 0.0f; referenceFn.fF = 0.0f; referenceFn.fG = 2.2f; sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc"); sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size()); test_is_numerical_transfer_fn(r, z30.get(), true, referenceFn); data = GetResourceAsData("icc_profiles/HP_Z32x.icc"); sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size()); test_is_numerical_transfer_fn(r, z32.get(), true, referenceFn); data = GetResourceAsData("icc_profiles/upperLeft.icc"); sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size()); test_is_numerical_transfer_fn(r, upperLeft.get(), false, referenceFn); data = GetResourceAsData("icc_profiles/upperRight.icc"); sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size()); test_is_numerical_transfer_fn(r, upperRight.get(), false, referenceFn); } DEF_TEST(ICC_Adobe, r) { // Test that the color spaces produced by our procedural Adobe factory, and the official // Adobe ICC profile match exactly. sk_sp<SkData> data = GetResourceAsData("icc_profiles/AdobeRGB1998.icc"); sk_sp<SkColorSpace> fromIcc = SkColorSpace::MakeICC(data->data(), data->size()); sk_sp<SkColorSpace> procedural = SkColorSpace::MakeRGB(g2Dot2_TransferFn, SkColorSpace::kAdobeRGB_Gamut); REPORTER_ASSERT(r, SkColorSpace::Equals(fromIcc.get(), procedural.get())); } static inline void test_write_icc(skiatest::Reporter* r, const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50, bool writeToFile) { sk_sp<SkData> profile = SkICC::WriteToICC(fn, toXYZD50); if (writeToFile) { SkFILEWStream stream("out.icc"); stream.write(profile->data(), profile->size()); } sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(profile->data(), profile->size()); sk_sp<SkColorSpace> reference = SkColorSpace::MakeRGB(fn, toXYZD50); REPORTER_ASSERT(r, SkColorSpace::Equals(reference.get(), colorSpace.get())); } DEF_TEST(ICC_WriteICC, r) { SkColorSpaceTransferFn adobeFn; adobeFn.fA = 1.0f; adobeFn.fB = 0.0f; adobeFn.fC = 0.0f; adobeFn.fD = 0.0f; adobeFn.fE = 0.0f; adobeFn.fF = 0.0f; adobeFn.fG = 2.2f; SkMatrix44 adobeMatrix(SkMatrix44::kUninitialized_Constructor); adobeMatrix.set3x3RowMajorf(gAdobeRGB_toXYZD50); test_write_icc(r, adobeFn, adobeMatrix, false); SkColorSpaceTransferFn srgbFn; srgbFn.fA = 1.0f / 1.055f; srgbFn.fB = 0.055f / 1.055f; srgbFn.fC = 1.0f / 12.92f; srgbFn.fD = 0.04045f; srgbFn.fE = 0.0f; srgbFn.fF = 0.0f; srgbFn.fG = 2.4f; SkMatrix44 srgbMatrix(SkMatrix44::kUninitialized_Constructor); srgbMatrix.set3x3RowMajorf(gSRGB_toXYZD50); test_write_icc(r, srgbFn, srgbMatrix, false); SkString adobeTag = SkICCGetColorProfileTag(adobeFn, adobeMatrix); SkString srgbTag = SkICCGetColorProfileTag(srgbFn, srgbMatrix); REPORTER_ASSERT(r, adobeTag != srgbTag); REPORTER_ASSERT(r, srgbTag.equals("sRGB")); REPORTER_ASSERT(r, adobeTag.equals("AdobeRGB")); } static inline void test_raw_transfer_fn(skiatest::Reporter* r, SkICC* icc) { SkICC::Tables tables; bool result = icc->rawTransferFnData(&tables); REPORTER_ASSERT(r, result); REPORTER_ASSERT(r, 0.0f == tables.red()[0]); REPORTER_ASSERT(r, 0.0f == tables.green()[0]); REPORTER_ASSERT(r, 0.0f == tables.blue()[0]); REPORTER_ASSERT(r, 1.0f == tables.red()[tables.fRed.fCount - 1]); REPORTER_ASSERT(r, 1.0f == tables.green()[tables.fGreen.fCount - 1]); REPORTER_ASSERT(r, 1.0f == tables.blue()[tables.fBlue.fCount - 1]); } class ICCTest { public: static sk_sp<SkICC> MakeICC(sk_sp<SkColorSpace> space) { return sk_sp<SkICC>(new SkICC(std::move(space))); } static sk_sp<SkICC> MakeICC(sk_sp<SkGammas> gammas) { return MakeICC(sk_sp<SkColorSpace>(new SkColorSpace_XYZ( kNonStandard_SkGammaNamed, std::move(gammas), SkMatrix44(SkMatrix44::kIdentity_Constructor), nullptr))); } }; DEF_TEST(ICC_RawTransferFns, r) { sk_sp<SkICC> srgb = ICCTest::MakeICC(SkColorSpace::MakeSRGB()); test_raw_transfer_fn(r, srgb.get()); // Lookup-table based gamma curves constexpr size_t tableSize = 10; void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize); sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(3)); for (int i = 0; i < 3; ++i) { gammas->fType[i] = SkGammas::Type::kTable_Type; gammas->fData[i].fTable.fSize = tableSize; gammas->fData[i].fTable.fOffset = 0; } float* table = SkTAddOffset<float>(memory, sizeof(SkGammas)); table[0] = 0.00f; table[1] = 0.05f; table[2] = 0.10f; table[3] = 0.15f; table[4] = 0.25f; table[5] = 0.35f; table[6] = 0.45f; table[7] = 0.60f; table[8] = 0.75f; table[9] = 1.00f; sk_sp<SkICC> tbl = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, tbl.get()); // Parametric gamma curves memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn)); gammas = sk_sp<SkGammas>(new (memory) SkGammas(3)); for (int i = 0; i < 3; ++i) { gammas->fType[i] = SkGammas::Type::kParam_Type; gammas->fData[i].fParamOffset = 0; } SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn> (memory, sizeof(SkGammas)); // Interval. params->fD = 0.04045f; // First equation: params->fC = 1.0f / 12.92f; params->fF = 0.0f; // Second equation: // Note that the function is continuous (it's actually sRGB). params->fA = 1.0f / 1.055f; params->fB = 0.055f / 1.055f; params->fE = 0.0f; params->fG = 2.4f; sk_sp<SkICC> param = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, param.get()); // Exponential gamma curves gammas = sk_sp<SkGammas>(new SkGammas(3)); for (int i = 0; i < 3; ++i) { gammas->fType[i] = SkGammas::Type::kValue_Type; gammas->fData[i].fValue = 1.4f; } sk_sp<SkICC> exp = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, exp.get()); gammas = sk_sp<SkGammas>(new SkGammas(3)); gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type; gammas->fData[0].fNamed = kSRGB_SkGammaNamed; gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed; gammas->fData[2].fNamed = kLinear_SkGammaNamed; sk_sp<SkICC> named = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, named.get()); memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize + sizeof(SkColorSpaceTransferFn)); gammas = sk_sp<SkGammas>(new (memory) SkGammas(3)); table = SkTAddOffset<float>(memory, sizeof(SkGammas)); table[0] = 0.00f; table[1] = 0.15f; table[2] = 0.20f; table[3] = 0.25f; table[4] = 0.35f; table[5] = 0.45f; table[6] = 0.55f; table[7] = 0.70f; table[8] = 0.85f; table[9] = 1.00f; params = SkTAddOffset<SkColorSpaceTransferFn>(memory, sizeof(SkGammas) + sizeof(float) * tableSize); params->fA = 1.0f / 1.055f; params->fB = 0.055f / 1.055f; params->fC = 1.0f / 12.92f; params->fD = 0.04045f; params->fE = 0.0f; params->fF = 0.0f; params->fG = 2.4f; gammas->fType[0] = SkGammas::Type::kValue_Type; gammas->fData[0].fValue = 1.2f; gammas->fType[1] = SkGammas::Type::kTable_Type; gammas->fData[1].fTable.fSize = tableSize; gammas->fData[1].fTable.fOffset = 0; gammas->fType[2] = SkGammas::Type::kParam_Type; gammas->fData[2].fParamOffset = sizeof(float) * tableSize; sk_sp<SkICC> nonstd = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, nonstd.get()); // Reverse order of table and exponent gammas->fType[1] = SkGammas::Type::kValue_Type; gammas->fData[1].fValue = 1.2f; gammas->fType[0] = SkGammas::Type::kTable_Type; gammas->fData[0].fTable.fSize = tableSize; gammas->fData[0].fTable.fOffset = 0; sk_sp<SkICC> nonstd2 = ICCTest::MakeICC(gammas); test_raw_transfer_fn(r, nonstd2.get()); }