/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* Copyright (C) 2009-2010 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file pixeltransfer.c
* Pixel transfer operations (scale, bias, table lookups, etc)
*/
#include "glheader.h"
#include "macros.h"
#include "pixeltransfer.h"
#include "imports.h"
#include "mtypes.h"
#include "util/rounding.h"
/*
* Apply scale and bias factors to an array of RGBA pixels.
*/
void
_mesa_scale_and_bias_rgba(GLuint n, GLfloat rgba[][4],
GLfloat rScale, GLfloat gScale,
GLfloat bScale, GLfloat aScale,
GLfloat rBias, GLfloat gBias,
GLfloat bBias, GLfloat aBias)
{
if (rScale != 1.0F || rBias != 0.0F) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = rgba[i][RCOMP] * rScale + rBias;
}
}
if (gScale != 1.0F || gBias != 0.0F) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][GCOMP] = rgba[i][GCOMP] * gScale + gBias;
}
}
if (bScale != 1.0F || bBias != 0.0F) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][BCOMP] = rgba[i][BCOMP] * bScale + bBias;
}
}
if (aScale != 1.0F || aBias != 0.0F) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][ACOMP] = rgba[i][ACOMP] * aScale + aBias;
}
}
}
/*
* Apply pixel mapping to an array of floating point RGBA pixels.
*/
void
_mesa_map_rgba( const struct gl_context *ctx, GLuint n, GLfloat rgba[][4] )
{
const GLfloat rscale = (GLfloat) (ctx->PixelMaps.RtoR.Size - 1);
const GLfloat gscale = (GLfloat) (ctx->PixelMaps.GtoG.Size - 1);
const GLfloat bscale = (GLfloat) (ctx->PixelMaps.BtoB.Size - 1);
const GLfloat ascale = (GLfloat) (ctx->PixelMaps.AtoA.Size - 1);
const GLfloat *rMap = ctx->PixelMaps.RtoR.Map;
const GLfloat *gMap = ctx->PixelMaps.GtoG.Map;
const GLfloat *bMap = ctx->PixelMaps.BtoB.Map;
const GLfloat *aMap = ctx->PixelMaps.AtoA.Map;
GLuint i;
for (i=0;i<n;i++) {
GLfloat r = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
GLfloat g = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
GLfloat b = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
GLfloat a = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
rgba[i][RCOMP] = rMap[(int)_mesa_lroundevenf(r * rscale)];
rgba[i][GCOMP] = gMap[(int)_mesa_lroundevenf(g * gscale)];
rgba[i][BCOMP] = bMap[(int)_mesa_lroundevenf(b * bscale)];
rgba[i][ACOMP] = aMap[(int)_mesa_lroundevenf(a * ascale)];
}
}
/*
* Map color indexes to float rgba values.
*/
void
_mesa_map_ci_to_rgba( const struct gl_context *ctx, GLuint n,
const GLuint index[], GLfloat rgba[][4] )
{
GLuint rmask = ctx->PixelMaps.ItoR.Size - 1;
GLuint gmask = ctx->PixelMaps.ItoG.Size - 1;
GLuint bmask = ctx->PixelMaps.ItoB.Size - 1;
GLuint amask = ctx->PixelMaps.ItoA.Size - 1;
const GLfloat *rMap = ctx->PixelMaps.ItoR.Map;
const GLfloat *gMap = ctx->PixelMaps.ItoG.Map;
const GLfloat *bMap = ctx->PixelMaps.ItoB.Map;
const GLfloat *aMap = ctx->PixelMaps.ItoA.Map;
GLuint i;
for (i=0;i<n;i++) {
rgba[i][RCOMP] = rMap[index[i] & rmask];
rgba[i][GCOMP] = gMap[index[i] & gmask];
rgba[i][BCOMP] = bMap[index[i] & bmask];
rgba[i][ACOMP] = aMap[index[i] & amask];
}
}
void
_mesa_scale_and_bias_depth(const struct gl_context *ctx, GLuint n,
GLfloat depthValues[])
{
const GLfloat scale = ctx->Pixel.DepthScale;
const GLfloat bias = ctx->Pixel.DepthBias;
GLuint i;
for (i = 0; i < n; i++) {
GLfloat d = depthValues[i] * scale + bias;
depthValues[i] = CLAMP(d, 0.0F, 1.0F);
}
}
void
_mesa_scale_and_bias_depth_uint(const struct gl_context *ctx, GLuint n,
GLuint depthValues[])
{
const GLdouble max = (double) 0xffffffff;
const GLdouble scale = ctx->Pixel.DepthScale;
const GLdouble bias = ctx->Pixel.DepthBias * max;
GLuint i;
for (i = 0; i < n; i++) {
GLdouble d = (GLdouble) depthValues[i] * scale + bias;
d = CLAMP(d, 0.0, max);
depthValues[i] = (GLuint) d;
}
}
/**
* Apply various pixel transfer operations to an array of RGBA pixels
* as indicated by the transferOps bitmask
*/
void
_mesa_apply_rgba_transfer_ops(struct gl_context *ctx, GLbitfield transferOps,
GLuint n, GLfloat rgba[][4])
{
/* scale & bias */
if (transferOps & IMAGE_SCALE_BIAS_BIT) {
_mesa_scale_and_bias_rgba(n, rgba,
ctx->Pixel.RedScale, ctx->Pixel.GreenScale,
ctx->Pixel.BlueScale, ctx->Pixel.AlphaScale,
ctx->Pixel.RedBias, ctx->Pixel.GreenBias,
ctx->Pixel.BlueBias, ctx->Pixel.AlphaBias);
}
/* color map lookup */
if (transferOps & IMAGE_MAP_COLOR_BIT) {
_mesa_map_rgba( ctx, n, rgba );
}
/* clamping to [0,1] */
if (transferOps & IMAGE_CLAMP_BIT) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
}
}
}
/*
* Apply color index shift and offset to an array of pixels.
*/
void
_mesa_shift_and_offset_ci(const struct gl_context *ctx,
GLuint n, GLuint indexes[])
{
GLint shift = ctx->Pixel.IndexShift;
GLint offset = ctx->Pixel.IndexOffset;
GLuint i;
if (shift > 0) {
for (i=0;i<n;i++) {
indexes[i] = (indexes[i] << shift) + offset;
}
}
else if (shift < 0) {
shift = -shift;
for (i=0;i<n;i++) {
indexes[i] = (indexes[i] >> shift) + offset;
}
}
else {
for (i=0;i<n;i++) {
indexes[i] = indexes[i] + offset;
}
}
}
/**
* Apply color index shift, offset and table lookup to an array
* of color indexes;
*/
void
_mesa_apply_ci_transfer_ops(const struct gl_context *ctx,
GLbitfield transferOps,
GLuint n, GLuint indexes[])
{
if (transferOps & IMAGE_SHIFT_OFFSET_BIT) {
_mesa_shift_and_offset_ci(ctx, n, indexes);
}
if (transferOps & IMAGE_MAP_COLOR_BIT) {
const GLuint mask = ctx->PixelMaps.ItoI.Size - 1;
GLuint i;
for (i = 0; i < n; i++) {
const GLuint j = indexes[i] & mask;
indexes[i] = _mesa_lroundevenf(ctx->PixelMaps.ItoI.Map[j]);
}
}
}
/**
* Apply stencil index shift, offset and table lookup to an array
* of stencil values.
*/
void
_mesa_apply_stencil_transfer_ops(const struct gl_context *ctx, GLuint n,
GLubyte stencil[])
{
if (ctx->Pixel.IndexShift != 0 || ctx->Pixel.IndexOffset != 0) {
const GLint offset = ctx->Pixel.IndexOffset;
GLint shift = ctx->Pixel.IndexShift;
GLuint i;
if (shift > 0) {
for (i = 0; i < n; i++) {
stencil[i] = (stencil[i] << shift) + offset;
}
}
else if (shift < 0) {
shift = -shift;
for (i = 0; i < n; i++) {
stencil[i] = (stencil[i] >> shift) + offset;
}
}
else {
for (i = 0; i < n; i++) {
stencil[i] = stencil[i] + offset;
}
}
}
if (ctx->Pixel.MapStencilFlag) {
GLuint mask = ctx->PixelMaps.StoS.Size - 1;
GLuint i;
for (i = 0; i < n; i++) {
stencil[i] = (GLubyte) ctx->PixelMaps.StoS.Map[ stencil[i] & mask ];
}
}
}