/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009-2010 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file pixeltransfer.c * Pixel transfer operations (scale, bias, table lookups, etc) */ #include "glheader.h" #include "macros.h" #include "pixeltransfer.h" #include "imports.h" #include "mtypes.h" #include "util/rounding.h" /* * Apply scale and bias factors to an array of RGBA pixels. */ void _mesa_scale_and_bias_rgba(GLuint n, GLfloat rgba[][4], GLfloat rScale, GLfloat gScale, GLfloat bScale, GLfloat aScale, GLfloat rBias, GLfloat gBias, GLfloat bBias, GLfloat aBias) { if (rScale != 1.0F || rBias != 0.0F) { GLuint i; for (i = 0; i < n; i++) { rgba[i][RCOMP] = rgba[i][RCOMP] * rScale + rBias; } } if (gScale != 1.0F || gBias != 0.0F) { GLuint i; for (i = 0; i < n; i++) { rgba[i][GCOMP] = rgba[i][GCOMP] * gScale + gBias; } } if (bScale != 1.0F || bBias != 0.0F) { GLuint i; for (i = 0; i < n; i++) { rgba[i][BCOMP] = rgba[i][BCOMP] * bScale + bBias; } } if (aScale != 1.0F || aBias != 0.0F) { GLuint i; for (i = 0; i < n; i++) { rgba[i][ACOMP] = rgba[i][ACOMP] * aScale + aBias; } } } /* * Apply pixel mapping to an array of floating point RGBA pixels. */ void _mesa_map_rgba( const struct gl_context *ctx, GLuint n, GLfloat rgba[][4] ) { const GLfloat rscale = (GLfloat) (ctx->PixelMaps.RtoR.Size - 1); const GLfloat gscale = (GLfloat) (ctx->PixelMaps.GtoG.Size - 1); const GLfloat bscale = (GLfloat) (ctx->PixelMaps.BtoB.Size - 1); const GLfloat ascale = (GLfloat) (ctx->PixelMaps.AtoA.Size - 1); const GLfloat *rMap = ctx->PixelMaps.RtoR.Map; const GLfloat *gMap = ctx->PixelMaps.GtoG.Map; const GLfloat *bMap = ctx->PixelMaps.BtoB.Map; const GLfloat *aMap = ctx->PixelMaps.AtoA.Map; GLuint i; for (i=0;i<n;i++) { GLfloat r = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); GLfloat g = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); GLfloat b = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); GLfloat a = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); rgba[i][RCOMP] = rMap[(int)_mesa_lroundevenf(r * rscale)]; rgba[i][GCOMP] = gMap[(int)_mesa_lroundevenf(g * gscale)]; rgba[i][BCOMP] = bMap[(int)_mesa_lroundevenf(b * bscale)]; rgba[i][ACOMP] = aMap[(int)_mesa_lroundevenf(a * ascale)]; } } /* * Map color indexes to float rgba values. */ void _mesa_map_ci_to_rgba( const struct gl_context *ctx, GLuint n, const GLuint index[], GLfloat rgba[][4] ) { GLuint rmask = ctx->PixelMaps.ItoR.Size - 1; GLuint gmask = ctx->PixelMaps.ItoG.Size - 1; GLuint bmask = ctx->PixelMaps.ItoB.Size - 1; GLuint amask = ctx->PixelMaps.ItoA.Size - 1; const GLfloat *rMap = ctx->PixelMaps.ItoR.Map; const GLfloat *gMap = ctx->PixelMaps.ItoG.Map; const GLfloat *bMap = ctx->PixelMaps.ItoB.Map; const GLfloat *aMap = ctx->PixelMaps.ItoA.Map; GLuint i; for (i=0;i<n;i++) { rgba[i][RCOMP] = rMap[index[i] & rmask]; rgba[i][GCOMP] = gMap[index[i] & gmask]; rgba[i][BCOMP] = bMap[index[i] & bmask]; rgba[i][ACOMP] = aMap[index[i] & amask]; } } void _mesa_scale_and_bias_depth(const struct gl_context *ctx, GLuint n, GLfloat depthValues[]) { const GLfloat scale = ctx->Pixel.DepthScale; const GLfloat bias = ctx->Pixel.DepthBias; GLuint i; for (i = 0; i < n; i++) { GLfloat d = depthValues[i] * scale + bias; depthValues[i] = CLAMP(d, 0.0F, 1.0F); } } void _mesa_scale_and_bias_depth_uint(const struct gl_context *ctx, GLuint n, GLuint depthValues[]) { const GLdouble max = (double) 0xffffffff; const GLdouble scale = ctx->Pixel.DepthScale; const GLdouble bias = ctx->Pixel.DepthBias * max; GLuint i; for (i = 0; i < n; i++) { GLdouble d = (GLdouble) depthValues[i] * scale + bias; d = CLAMP(d, 0.0, max); depthValues[i] = (GLuint) d; } } /** * Apply various pixel transfer operations to an array of RGBA pixels * as indicated by the transferOps bitmask */ void _mesa_apply_rgba_transfer_ops(struct gl_context *ctx, GLbitfield transferOps, GLuint n, GLfloat rgba[][4]) { /* scale & bias */ if (transferOps & IMAGE_SCALE_BIAS_BIT) { _mesa_scale_and_bias_rgba(n, rgba, ctx->Pixel.RedScale, ctx->Pixel.GreenScale, ctx->Pixel.BlueScale, ctx->Pixel.AlphaScale, ctx->Pixel.RedBias, ctx->Pixel.GreenBias, ctx->Pixel.BlueBias, ctx->Pixel.AlphaBias); } /* color map lookup */ if (transferOps & IMAGE_MAP_COLOR_BIT) { _mesa_map_rgba( ctx, n, rgba ); } /* clamping to [0,1] */ if (transferOps & IMAGE_CLAMP_BIT) { GLuint i; for (i = 0; i < n; i++) { rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); } } } /* * Apply color index shift and offset to an array of pixels. */ void _mesa_shift_and_offset_ci(const struct gl_context *ctx, GLuint n, GLuint indexes[]) { GLint shift = ctx->Pixel.IndexShift; GLint offset = ctx->Pixel.IndexOffset; GLuint i; if (shift > 0) { for (i=0;i<n;i++) { indexes[i] = (indexes[i] << shift) + offset; } } else if (shift < 0) { shift = -shift; for (i=0;i<n;i++) { indexes[i] = (indexes[i] >> shift) + offset; } } else { for (i=0;i<n;i++) { indexes[i] = indexes[i] + offset; } } } /** * Apply color index shift, offset and table lookup to an array * of color indexes; */ void _mesa_apply_ci_transfer_ops(const struct gl_context *ctx, GLbitfield transferOps, GLuint n, GLuint indexes[]) { if (transferOps & IMAGE_SHIFT_OFFSET_BIT) { _mesa_shift_and_offset_ci(ctx, n, indexes); } if (transferOps & IMAGE_MAP_COLOR_BIT) { const GLuint mask = ctx->PixelMaps.ItoI.Size - 1; GLuint i; for (i = 0; i < n; i++) { const GLuint j = indexes[i] & mask; indexes[i] = _mesa_lroundevenf(ctx->PixelMaps.ItoI.Map[j]); } } } /** * Apply stencil index shift, offset and table lookup to an array * of stencil values. */ void _mesa_apply_stencil_transfer_ops(const struct gl_context *ctx, GLuint n, GLubyte stencil[]) { if (ctx->Pixel.IndexShift != 0 || ctx->Pixel.IndexOffset != 0) { const GLint offset = ctx->Pixel.IndexOffset; GLint shift = ctx->Pixel.IndexShift; GLuint i; if (shift > 0) { for (i = 0; i < n; i++) { stencil[i] = (stencil[i] << shift) + offset; } } else if (shift < 0) { shift = -shift; for (i = 0; i < n; i++) { stencil[i] = (stencil[i] >> shift) + offset; } } else { for (i = 0; i < n; i++) { stencil[i] = stencil[i] + offset; } } } if (ctx->Pixel.MapStencilFlag) { GLuint mask = ctx->PixelMaps.StoS.Size - 1; GLuint i; for (i = 0; i < n; i++) { stencil[i] = (GLubyte) ctx->PixelMaps.StoS.Map[ stencil[i] & mask ]; } } }