/******************************************************************************
*
* Copyright (C) 2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* HAL Adaptation Interface (HAI). This interface regulates the interaction
* between standard Android HAL and Broadcom-specific HAL. It adapts
* Broadcom-specific features to the Android framework.
*
******************************************************************************/
#define LOG_TAG "NfcNciHal"
#include "HalAdaptation.h"
#include <cutils/properties.h>
#include <errno.h>
#include <pthread.h>
#include "SyncEvent.h"
#include "_OverrideLog.h"
#include "android_logmsg.h"
#include "buildcfg.h"
#include "config.h"
#include "nfc_hal_int.h"
#include "nfc_hal_post_reset.h"
extern void delete_hal_non_volatile_store(bool forceDelete);
extern void verify_hal_non_volatile_store();
extern void resetConfig();
extern "C" {
#include "userial.h"
}
extern void configureCrystalFrequency();
///////////////////////////////////////
// private declaration, definition
static nfc_stack_callback_t* gAndroidHalCallback = NULL;
static nfc_stack_data_callback_t* gAndroidHalDataCallback = NULL;
static SyncEvent gOpenCompletedEvent;
static SyncEvent gPostInitCompletedEvent;
static SyncEvent gCloseCompletedEvent;
uint32_t ScrProtocolTraceFlag = SCR_PROTO_TRACE_ALL; // 0x017F00;
static void BroadcomHalCallback(uint8_t event, tHAL_NFC_STATUS status);
static void BroadcomHalDataCallback(uint16_t data_len, uint8_t* p_data);
static bool isColdBoot = true;
extern tNFC_HAL_CFG* p_nfc_hal_cfg;
extern const uint8_t nfca_version_string[];
extern const uint8_t nfa_version_string[];
tNFC_HAL_DM_PRE_SET_MEM nfc_hal_pre_set_mem_20795a1[] = {
{0x0016403c, 0x00000008},
{0x0016403c, 0x00000000},
{0x0014008c, 0x00000001},
{0, 0}};
extern tNFC_HAL_DM_PRE_SET_MEM* p_nfc_hal_dm_pre_set_mem;
///////////////////////////////////////
int HaiInitializeLibrary(const bcm2079x_dev_t* device) {
ALOGD("%s: enter", __func__);
ALOGE("%s: ver=%s nfa=%s", __func__, nfca_version_string, nfa_version_string);
int retval = EACCES;
unsigned long freq = 0;
unsigned long num = 0;
char temp[120];
int8_t prop_value;
uint8_t logLevel = 0;
logLevel = InitializeGlobalAppLogLevel();
if (GetNumValue(NAME_GLOBAL_RESET, &num, sizeof(num))) {
if (num == 1) {
// Send commands to disable boc
p_nfc_hal_dm_pre_set_mem = nfc_hal_pre_set_mem_20795a1;
}
}
configureCrystalFrequency();
verify_hal_non_volatile_store();
if (GetNumValue(NAME_PRESERVE_STORAGE, (char*)&num, sizeof(num)) &&
(num == 1))
ALOGD("%s: preserve HAL NV store", __func__);
else {
delete_hal_non_volatile_store(false);
}
if (GetNumValue(NAME_USE_RAW_NCI_TRACE, &num, sizeof(num))) {
if (num == 1) {
// display protocol traces in raw format
ProtoDispAdapterUseRawOutput(TRUE);
}
}
// Initialize protocol logging level
InitializeProtocolLogLevel();
tUSERIAL_OPEN_CFG cfg;
struct tUART_CONFIG uart;
if (GetStrValue(NAME_UART_PARITY, temp, sizeof(temp))) {
if (strcmp(temp, "even") == 0)
uart.m_iParity = USERIAL_PARITY_EVEN;
else if (strcmp(temp, "odd") == 0)
uart.m_iParity = USERIAL_PARITY_ODD;
else if (strcmp(temp, "none") == 0)
uart.m_iParity = USERIAL_PARITY_NONE;
} else
uart.m_iParity = USERIAL_PARITY_NONE;
if (GetStrValue(NAME_UART_STOPBITS, temp, sizeof(temp))) {
if (strcmp(temp, "1") == 0)
uart.m_iStopbits = USERIAL_STOPBITS_1;
else if (strcmp(temp, "2") == 0)
uart.m_iStopbits = USERIAL_STOPBITS_2;
else if (strcmp(temp, "1.5") == 0)
uart.m_iStopbits = USERIAL_STOPBITS_1_5;
} else if (GetNumValue(NAME_UART_STOPBITS, &num, sizeof(num))) {
if (num == 1)
uart.m_iStopbits = USERIAL_STOPBITS_1;
else if (num == 2)
uart.m_iStopbits = USERIAL_STOPBITS_2;
} else
uart.m_iStopbits = USERIAL_STOPBITS_1;
if (GetNumValue(NAME_UART_DATABITS, &num, sizeof(num))) {
if (5 <= num && num <= 8) uart.m_iDatabits = (1 << (num + 1));
} else
uart.m_iDatabits = USERIAL_DATABITS_8;
if (GetNumValue(NAME_UART_BAUD, &num, sizeof(num))) {
if (num == 300)
uart.m_iBaudrate = USERIAL_BAUD_300;
else if (num == 600)
uart.m_iBaudrate = USERIAL_BAUD_600;
else if (num == 1200)
uart.m_iBaudrate = USERIAL_BAUD_1200;
else if (num == 2400)
uart.m_iBaudrate = USERIAL_BAUD_2400;
else if (num == 9600)
uart.m_iBaudrate = USERIAL_BAUD_9600;
else if (num == 19200)
uart.m_iBaudrate = USERIAL_BAUD_19200;
else if (num == 57600)
uart.m_iBaudrate = USERIAL_BAUD_57600;
else if (num == 115200)
uart.m_iBaudrate = USERIAL_BAUD_115200;
else if (num == 230400)
uart.m_iBaudrate = USERIAL_BAUD_230400;
else if (num == 460800)
uart.m_iBaudrate = USERIAL_BAUD_460800;
else if (num == 921600)
uart.m_iBaudrate = USERIAL_BAUD_921600;
} else if (GetStrValue(NAME_UART_BAUD, temp, sizeof(temp))) {
if (strcmp(temp, "auto") == 0) uart.m_iBaudrate = USERIAL_BAUD_AUTO;
} else
uart.m_iBaudrate = USERIAL_BAUD_115200;
memset(&cfg, 0, sizeof(tUSERIAL_OPEN_CFG));
cfg.fmt = uart.m_iDatabits | uart.m_iParity | uart.m_iStopbits;
cfg.baud = uart.m_iBaudrate;
ALOGD("%s: uart config=0x%04x, %d\n", __func__, cfg.fmt, cfg.baud);
USERIAL_Init(&cfg);
if (GetNumValue(NAME_NFCC_ENABLE_TIMEOUT, &num, sizeof(num))) {
p_nfc_hal_cfg->nfc_hal_nfcc_enable_timeout = num;
}
if (GetNumValue(NAME_NFA_MAX_EE_SUPPORTED, &num, sizeof(num)) && num == 0) {
// Since NFA_MAX_EE_SUPPORTED is explicetly set to 0, no UICC support is
// needed.
p_nfc_hal_cfg->nfc_hal_hci_uicc_support = 0;
}
prop_value = property_get_bool("nfc.bcm2079x.isColdboot", 0);
if (prop_value) {
isColdBoot = true;
property_set("nfc.bcm2079x.isColdboot", "0");
}
// Set 'first boot' flag based on static variable that will get set to false
// after the stack has first initialized the EE.
p_nfc_hal_cfg->nfc_hal_first_boot = isColdBoot ? TRUE : FALSE;
HAL_NfcInitialize();
HAL_NfcSetTraceLevel(logLevel); // Initialize HAL's logging level
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiTerminateLibrary() {
int retval = EACCES;
ALOGD("%s: enter", __func__);
HAL_NfcTerminate();
gAndroidHalCallback = NULL;
gAndroidHalDataCallback = NULL;
GKI_shutdown();
resetConfig();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiOpen(const bcm2079x_dev_t* device, nfc_stack_callback_t* halCallbackFunc,
nfc_stack_data_callback_t* halDataCallbackFunc) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
gAndroidHalCallback = halCallbackFunc;
gAndroidHalDataCallback = halDataCallbackFunc;
SyncEventGuard guard(gOpenCompletedEvent);
HAL_NfcOpen(BroadcomHalCallback, BroadcomHalDataCallback);
gOpenCompletedEvent.wait();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
void BroadcomHalCallback(uint8_t event, tHAL_NFC_STATUS status) {
ALOGD("%s: enter; event=0x%X", __func__, event);
switch (event) {
case HAL_NFC_OPEN_CPLT_EVT: {
ALOGD("%s: HAL_NFC_OPEN_CPLT_EVT; status=0x%X", __func__, status);
SyncEventGuard guard(gOpenCompletedEvent);
gOpenCompletedEvent.notifyOne();
break;
}
case HAL_NFC_POST_INIT_CPLT_EVT: {
ALOGD("%s: HAL_NFC_POST_INIT_CPLT_EVT", __func__);
SyncEventGuard guard(gPostInitCompletedEvent);
gPostInitCompletedEvent.notifyOne();
break;
}
case HAL_NFC_CLOSE_CPLT_EVT: {
ALOGD("%s: HAL_NFC_CLOSE_CPLT_EVT", __func__);
SyncEventGuard guard(gCloseCompletedEvent);
gCloseCompletedEvent.notifyOne();
break;
}
case HAL_NFC_ERROR_EVT: {
ALOGD("%s: HAL_NFC_ERROR_EVT", __func__);
{
SyncEventGuard guard(gOpenCompletedEvent);
gOpenCompletedEvent.notifyOne();
}
{
SyncEventGuard guard(gPostInitCompletedEvent);
gPostInitCompletedEvent.notifyOne();
}
{
SyncEventGuard guard(gCloseCompletedEvent);
gCloseCompletedEvent.notifyOne();
}
break;
}
}
gAndroidHalCallback(event, status);
ALOGD("%s: exit; event=0x%X", __func__, event);
}
void BroadcomHalDataCallback(uint16_t data_len, uint8_t* p_data) {
ALOGD("%s: enter; len=%u", __func__, data_len);
gAndroidHalDataCallback(data_len, p_data);
}
int HaiClose(const bcm2079x_dev_t* device) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
SyncEventGuard guard(gCloseCompletedEvent);
HAL_NfcClose();
gCloseCompletedEvent.wait();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiCoreInitialized(const bcm2079x_dev_t* device,
uint8_t* coreInitResponseParams) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
SyncEventGuard guard(gPostInitCompletedEvent);
HAL_NfcCoreInitialized(0, coreInitResponseParams);
gPostInitCompletedEvent.wait();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiWrite(const bcm2079x_dev_t* dev, uint16_t dataLen, const uint8_t* data) {
ALOGD("%s: enter; len=%u", __func__, dataLen);
int retval = EACCES;
HAL_NfcWrite(dataLen, const_cast<uint8_t*>(data));
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiPreDiscover(const bcm2079x_dev_t* device) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
// This function is a clear indication that the stack is initializing
// EE. So we can reset the cold-boot flag here.
isColdBoot = false;
retval = HAL_NfcPreDiscover() ? 1 : 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiControlGranted(const bcm2079x_dev_t* device) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
HAL_NfcControlGranted();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiPowerCycle(const bcm2079x_dev_t* device) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
HAL_NfcPowerCycle();
retval = 0;
ALOGD("%s: exit %d", __func__, retval);
return retval;
}
int HaiGetMaxNfcee(const bcm2079x_dev_t* device, uint8_t* maxNfcee) {
ALOGD("%s: enter", __func__);
int retval = EACCES;
// This function is a clear indication that the stack is initializing
// EE. So we can reset the cold-boot flag here.
isColdBoot = false;
if (maxNfcee) {
*maxNfcee = HAL_NfcGetMaxNfcee();
ALOGD("%s: max_ee from HAL to use %d", __func__, *maxNfcee);
retval = 0;
}
ALOGD("%s: exit %d", __func__, retval);
return retval;
}