/****************************************************************************** * * Copyright (C) 2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * HAL Adaptation Interface (HAI). This interface regulates the interaction * between standard Android HAL and Broadcom-specific HAL. It adapts * Broadcom-specific features to the Android framework. * ******************************************************************************/ #define LOG_TAG "NfcNciHal" #include "HalAdaptation.h" #include <cutils/properties.h> #include <errno.h> #include <pthread.h> #include "SyncEvent.h" #include "_OverrideLog.h" #include "android_logmsg.h" #include "buildcfg.h" #include "config.h" #include "nfc_hal_int.h" #include "nfc_hal_post_reset.h" extern void delete_hal_non_volatile_store(bool forceDelete); extern void verify_hal_non_volatile_store(); extern void resetConfig(); extern "C" { #include "userial.h" } extern void configureCrystalFrequency(); /////////////////////////////////////// // private declaration, definition static nfc_stack_callback_t* gAndroidHalCallback = NULL; static nfc_stack_data_callback_t* gAndroidHalDataCallback = NULL; static SyncEvent gOpenCompletedEvent; static SyncEvent gPostInitCompletedEvent; static SyncEvent gCloseCompletedEvent; uint32_t ScrProtocolTraceFlag = SCR_PROTO_TRACE_ALL; // 0x017F00; static void BroadcomHalCallback(uint8_t event, tHAL_NFC_STATUS status); static void BroadcomHalDataCallback(uint16_t data_len, uint8_t* p_data); static bool isColdBoot = true; extern tNFC_HAL_CFG* p_nfc_hal_cfg; extern const uint8_t nfca_version_string[]; extern const uint8_t nfa_version_string[]; tNFC_HAL_DM_PRE_SET_MEM nfc_hal_pre_set_mem_20795a1[] = { {0x0016403c, 0x00000008}, {0x0016403c, 0x00000000}, {0x0014008c, 0x00000001}, {0, 0}}; extern tNFC_HAL_DM_PRE_SET_MEM* p_nfc_hal_dm_pre_set_mem; /////////////////////////////////////// int HaiInitializeLibrary(const bcm2079x_dev_t* device) { ALOGD("%s: enter", __func__); ALOGE("%s: ver=%s nfa=%s", __func__, nfca_version_string, nfa_version_string); int retval = EACCES; unsigned long freq = 0; unsigned long num = 0; char temp[120]; int8_t prop_value; uint8_t logLevel = 0; logLevel = InitializeGlobalAppLogLevel(); if (GetNumValue(NAME_GLOBAL_RESET, &num, sizeof(num))) { if (num == 1) { // Send commands to disable boc p_nfc_hal_dm_pre_set_mem = nfc_hal_pre_set_mem_20795a1; } } configureCrystalFrequency(); verify_hal_non_volatile_store(); if (GetNumValue(NAME_PRESERVE_STORAGE, (char*)&num, sizeof(num)) && (num == 1)) ALOGD("%s: preserve HAL NV store", __func__); else { delete_hal_non_volatile_store(false); } if (GetNumValue(NAME_USE_RAW_NCI_TRACE, &num, sizeof(num))) { if (num == 1) { // display protocol traces in raw format ProtoDispAdapterUseRawOutput(TRUE); } } // Initialize protocol logging level InitializeProtocolLogLevel(); tUSERIAL_OPEN_CFG cfg; struct tUART_CONFIG uart; if (GetStrValue(NAME_UART_PARITY, temp, sizeof(temp))) { if (strcmp(temp, "even") == 0) uart.m_iParity = USERIAL_PARITY_EVEN; else if (strcmp(temp, "odd") == 0) uart.m_iParity = USERIAL_PARITY_ODD; else if (strcmp(temp, "none") == 0) uart.m_iParity = USERIAL_PARITY_NONE; } else uart.m_iParity = USERIAL_PARITY_NONE; if (GetStrValue(NAME_UART_STOPBITS, temp, sizeof(temp))) { if (strcmp(temp, "1") == 0) uart.m_iStopbits = USERIAL_STOPBITS_1; else if (strcmp(temp, "2") == 0) uart.m_iStopbits = USERIAL_STOPBITS_2; else if (strcmp(temp, "1.5") == 0) uart.m_iStopbits = USERIAL_STOPBITS_1_5; } else if (GetNumValue(NAME_UART_STOPBITS, &num, sizeof(num))) { if (num == 1) uart.m_iStopbits = USERIAL_STOPBITS_1; else if (num == 2) uart.m_iStopbits = USERIAL_STOPBITS_2; } else uart.m_iStopbits = USERIAL_STOPBITS_1; if (GetNumValue(NAME_UART_DATABITS, &num, sizeof(num))) { if (5 <= num && num <= 8) uart.m_iDatabits = (1 << (num + 1)); } else uart.m_iDatabits = USERIAL_DATABITS_8; if (GetNumValue(NAME_UART_BAUD, &num, sizeof(num))) { if (num == 300) uart.m_iBaudrate = USERIAL_BAUD_300; else if (num == 600) uart.m_iBaudrate = USERIAL_BAUD_600; else if (num == 1200) uart.m_iBaudrate = USERIAL_BAUD_1200; else if (num == 2400) uart.m_iBaudrate = USERIAL_BAUD_2400; else if (num == 9600) uart.m_iBaudrate = USERIAL_BAUD_9600; else if (num == 19200) uart.m_iBaudrate = USERIAL_BAUD_19200; else if (num == 57600) uart.m_iBaudrate = USERIAL_BAUD_57600; else if (num == 115200) uart.m_iBaudrate = USERIAL_BAUD_115200; else if (num == 230400) uart.m_iBaudrate = USERIAL_BAUD_230400; else if (num == 460800) uart.m_iBaudrate = USERIAL_BAUD_460800; else if (num == 921600) uart.m_iBaudrate = USERIAL_BAUD_921600; } else if (GetStrValue(NAME_UART_BAUD, temp, sizeof(temp))) { if (strcmp(temp, "auto") == 0) uart.m_iBaudrate = USERIAL_BAUD_AUTO; } else uart.m_iBaudrate = USERIAL_BAUD_115200; memset(&cfg, 0, sizeof(tUSERIAL_OPEN_CFG)); cfg.fmt = uart.m_iDatabits | uart.m_iParity | uart.m_iStopbits; cfg.baud = uart.m_iBaudrate; ALOGD("%s: uart config=0x%04x, %d\n", __func__, cfg.fmt, cfg.baud); USERIAL_Init(&cfg); if (GetNumValue(NAME_NFCC_ENABLE_TIMEOUT, &num, sizeof(num))) { p_nfc_hal_cfg->nfc_hal_nfcc_enable_timeout = num; } if (GetNumValue(NAME_NFA_MAX_EE_SUPPORTED, &num, sizeof(num)) && num == 0) { // Since NFA_MAX_EE_SUPPORTED is explicetly set to 0, no UICC support is // needed. p_nfc_hal_cfg->nfc_hal_hci_uicc_support = 0; } prop_value = property_get_bool("nfc.bcm2079x.isColdboot", 0); if (prop_value) { isColdBoot = true; property_set("nfc.bcm2079x.isColdboot", "0"); } // Set 'first boot' flag based on static variable that will get set to false // after the stack has first initialized the EE. p_nfc_hal_cfg->nfc_hal_first_boot = isColdBoot ? TRUE : FALSE; HAL_NfcInitialize(); HAL_NfcSetTraceLevel(logLevel); // Initialize HAL's logging level retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiTerminateLibrary() { int retval = EACCES; ALOGD("%s: enter", __func__); HAL_NfcTerminate(); gAndroidHalCallback = NULL; gAndroidHalDataCallback = NULL; GKI_shutdown(); resetConfig(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiOpen(const bcm2079x_dev_t* device, nfc_stack_callback_t* halCallbackFunc, nfc_stack_data_callback_t* halDataCallbackFunc) { ALOGD("%s: enter", __func__); int retval = EACCES; gAndroidHalCallback = halCallbackFunc; gAndroidHalDataCallback = halDataCallbackFunc; SyncEventGuard guard(gOpenCompletedEvent); HAL_NfcOpen(BroadcomHalCallback, BroadcomHalDataCallback); gOpenCompletedEvent.wait(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } void BroadcomHalCallback(uint8_t event, tHAL_NFC_STATUS status) { ALOGD("%s: enter; event=0x%X", __func__, event); switch (event) { case HAL_NFC_OPEN_CPLT_EVT: { ALOGD("%s: HAL_NFC_OPEN_CPLT_EVT; status=0x%X", __func__, status); SyncEventGuard guard(gOpenCompletedEvent); gOpenCompletedEvent.notifyOne(); break; } case HAL_NFC_POST_INIT_CPLT_EVT: { ALOGD("%s: HAL_NFC_POST_INIT_CPLT_EVT", __func__); SyncEventGuard guard(gPostInitCompletedEvent); gPostInitCompletedEvent.notifyOne(); break; } case HAL_NFC_CLOSE_CPLT_EVT: { ALOGD("%s: HAL_NFC_CLOSE_CPLT_EVT", __func__); SyncEventGuard guard(gCloseCompletedEvent); gCloseCompletedEvent.notifyOne(); break; } case HAL_NFC_ERROR_EVT: { ALOGD("%s: HAL_NFC_ERROR_EVT", __func__); { SyncEventGuard guard(gOpenCompletedEvent); gOpenCompletedEvent.notifyOne(); } { SyncEventGuard guard(gPostInitCompletedEvent); gPostInitCompletedEvent.notifyOne(); } { SyncEventGuard guard(gCloseCompletedEvent); gCloseCompletedEvent.notifyOne(); } break; } } gAndroidHalCallback(event, status); ALOGD("%s: exit; event=0x%X", __func__, event); } void BroadcomHalDataCallback(uint16_t data_len, uint8_t* p_data) { ALOGD("%s: enter; len=%u", __func__, data_len); gAndroidHalDataCallback(data_len, p_data); } int HaiClose(const bcm2079x_dev_t* device) { ALOGD("%s: enter", __func__); int retval = EACCES; SyncEventGuard guard(gCloseCompletedEvent); HAL_NfcClose(); gCloseCompletedEvent.wait(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiCoreInitialized(const bcm2079x_dev_t* device, uint8_t* coreInitResponseParams) { ALOGD("%s: enter", __func__); int retval = EACCES; SyncEventGuard guard(gPostInitCompletedEvent); HAL_NfcCoreInitialized(0, coreInitResponseParams); gPostInitCompletedEvent.wait(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiWrite(const bcm2079x_dev_t* dev, uint16_t dataLen, const uint8_t* data) { ALOGD("%s: enter; len=%u", __func__, dataLen); int retval = EACCES; HAL_NfcWrite(dataLen, const_cast<uint8_t*>(data)); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiPreDiscover(const bcm2079x_dev_t* device) { ALOGD("%s: enter", __func__); int retval = EACCES; // This function is a clear indication that the stack is initializing // EE. So we can reset the cold-boot flag here. isColdBoot = false; retval = HAL_NfcPreDiscover() ? 1 : 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiControlGranted(const bcm2079x_dev_t* device) { ALOGD("%s: enter", __func__); int retval = EACCES; HAL_NfcControlGranted(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiPowerCycle(const bcm2079x_dev_t* device) { ALOGD("%s: enter", __func__); int retval = EACCES; HAL_NfcPowerCycle(); retval = 0; ALOGD("%s: exit %d", __func__, retval); return retval; } int HaiGetMaxNfcee(const bcm2079x_dev_t* device, uint8_t* maxNfcee) { ALOGD("%s: enter", __func__); int retval = EACCES; // This function is a clear indication that the stack is initializing // EE. So we can reset the cold-boot flag here. isColdBoot = false; if (maxNfcee) { *maxNfcee = HAL_NfcGetMaxNfcee(); ALOGD("%s: max_ee from HAL to use %d", __func__, *maxNfcee); retval = 0; } ALOGD("%s: exit %d", __func__, retval); return retval; }