/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-tilegx-linux.c ----*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2010-2015 Tilera Corp.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* Contributed by Zhi-Gang Liu */
#if defined(VGP_tilegx_linux)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_stacks.h" // VG_(register_stack)
#include "pub_core_transtab.h" // VG_(discard_translations)
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-linux.h" /* for decls of linux wrappers */
#include "priv_syswrap-main.h"
#include "pub_core_debuginfo.h" // VG_(di_notify_*)
#include "pub_core_xarray.h"
#include "pub_core_clientstate.h" // VG_(brk_base), VG_(brk_limit)
#include "pub_core_errormgr.h"
#include "pub_core_libcfile.h"
#include "pub_core_machine.h" // VG_(get_SP)
#include "pub_core_mallocfree.h"
#include "pub_core_stacktrace.h" // For VG_(get_and_pp_StackTrace)()
#include "pub_core_ume.h"
#include "config.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.*/
__attribute__ ((noreturn))
void ML_(call_on_new_stack_0_1) (Addr stack, Addr retaddr,
void (*f) (Word), Word arg1);
// r0 = stack
// r1 = retaddr
// r2 = f
// r3 = arg1
asm (
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" {\n"
" move sp, r0\n\t"
" move r51, r2\n\t"
" }\n"
" {\n"
" move r0, r3\n\t"
" move r1, zero\n\t"
" }\n"
" {\n"
" move r2, zero\n\t"
" move r3, zero\n\t"
" }\n"
" {\n"
" move r4, zero\n\t"
" move r5, zero\n\t"
" }\n"
" {\n"
" move r6, zero\n\t"
" move r7, zero\n\t"
" }\n"
" {\n"
" move r8, zero\n\t"
" move r9, zero\n\t"
" }\n"
" {\n"
" move r10, zero\n\t"
" move r11, zero\n\t"
" }\n"
" {\n"
" move r12, zero\n\t"
" move r13, zero\n\t"
" }\n"
" {\n"
" move r14, zero\n\t"
" move r15, zero\n\t"
" }\n"
" {\n"
" move r16, zero\n\t"
" move r17, zero\n\t"
" }\n"
" {\n"
" move r18, zero\n\t"
" move r19, zero\n\t"
" }\n"
" {\n"
" move r20, zero\n\t"
" move r21, zero\n\t"
" }\n"
" {\n"
" move r22, zero\n\t"
" move r23, zero\n\t"
" }\n"
" {\n"
" move r24, zero\n\t"
" move r25, zero\n\t"
" }\n"
" {\n"
" move r26, zero\n\t"
" move r27, zero\n\t"
" }\n"
" {\n"
" move r28, zero\n\t"
" move r29, zero\n\t"
" }\n"
" {\n"
" move r30, zero\n\t"
" move r31, zero\n\t"
" }\n"
" {\n"
" move r32, zero\n\t"
" move r33, zero\n\t"
" }\n"
" {\n"
" move r34, zero\n\t"
" move r35, zero\n\t"
" }\n"
" {\n"
" move r36, zero\n\t"
" move r37, zero\n\t"
" }\n"
" {\n"
" move r38, zero\n\t"
" move r39, zero\n\t"
" }\n"
" {\n"
" move r40, zero\n\t"
" move r41, zero\n\t"
" }\n"
" {\n"
" move r42, zero\n\t"
" move r43, zero\n\t"
" }\n"
" {\n"
" move r44, zero\n\t"
" move r45, zero\n\t"
" }\n"
" {\n"
" move r46, zero\n\t"
" move r47, zero\n\t"
" }\n"
" {\n"
" move r48, zero\n\t"
" move r49, zero\n\t"
" }\n"
" {\n"
" move r50, zero\n\t"
" jr r51\n\t"
" }\n"
" ill \n" // should never get here
);
/*
Perform a clone system call. clone is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
int (fn)(void*) in r0
void* child_stack in r1
int flags in r2
void* arg in r3
pid_t* child_tid in r4
pid_t* parent_tid in r5
void* tls_ptr in r6
System call requires:
int $__NR_clone in r10
int flags in r0
void* child_stack in r1
pid_t* parent_tid in r2
void* tls_ptr in $r3
pid_t* child_tid in sr4
int clone(int (*fn)(void *arg), void *child_stack, int flags, void *arg,
void *parent_tidptr, void *tls, void *child_tidptr)
Returns an Int encoded in the linux-tilegx way, not a SysRes.
*/
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
Long do_syscall_clone_tilegx_linux ( Word (*fn) (void *), //r0
void *stack, //r1
Long flags, //r2
void *arg, //r3
Long * child_tid, //r4
Long * parent_tid, //r5
Long tls ); //r6
/*
stack
high -> 4 r29
3
2
1 r10
low -> 0 lr <- sp
*/
asm (
".text\n"
" .globl do_syscall_clone_tilegx_linux\n"
" do_syscall_clone_tilegx_linux:\n"
" beqz r0, .Linvalid\n"
" beqz r1, .Linvalid\n"
" {\n"
" st sp, r29; " // save r29 at top
" addli sp, sp, -32\n" // open new stack space
" }\n"
" move r29, sp; " // r29 <- sp
" st r29, lr\n" // save lr at 0(sp)
" addi r29, r29, 8\n"
" {\n"
" st r29, r10\n" // save r10 at 8(sp)
/* setup child stack */
" addi r1, r1, -32\n" // new stack frame for child
" }\n"
/* save fn */
" { st r1, r0; addi r1, r1, 8 }\n"
/* save args */
" { st r1, r3; addi r1, r1, 8 }\n"
/* save flags */
" { st r1, r2; addi r1, r1, -16 }\n"
/* Child stack layout
flags
args
r1-> fn
*/
" {\n"
/* prepare args for clone. */
" move r0, r2\n" // arg0 = flags
/* arg1=r1 child stack */
" move r2, r5\n" // arg2 = parent tid
" }\n"
" {\n"
" move r3, r4\n" // arg3 = child tid
" move r4, r6\n" // arg4 = tls
" }\n"
" moveli r10, " __NR_CLONE "\n"
" swint1\n"
" beqz r0, .Lchild\n"
" move r29, sp\n"
" ld lr, r29\n" // Restore lr
" addi r29, r29, 8\n"
" {\n"
" ld r10, r29\n" // resotre r10
" addi sp, sp, 32\n"
" }\n"
" ld r29, sp\n"
" jrp lr\n"
".Lchild:"
" move r2, sp\n"
" {\n"
" ld r3, r2\n"
" addi r2, r2, 8\n"
" }\n"
" ld r0, r2\n"
" jalr r3\n"
" moveli r10, " __NR_EXIT "\n"
" swint1\n"
".Linvalid:"
" { movei r1, 22; jrp lr }\n"
);
#undef __NR_CLONE
#undef __NR_EXIT
// forward declarations
static void setup_child ( ThreadArchState *, ThreadArchState * );
static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for IP, and a separate stack
for SP.
*/
static SysRes do_clone ( ThreadId ptid,
Long flags, Addr sp,
Long * parent_tidptr,
Long * child_tidptr,
Addr child_tls )
{
const Bool debug = False;
ThreadId ctid = VG_ (alloc_ThreadState) ();
ThreadState * ptst = VG_ (get_ThreadState) (ptid);
ThreadState * ctst = VG_ (get_ThreadState) (ctid);
Long ret = 0;
Long * stack;
SysRes res;
vki_sigset_t blockall, savedmask;
VG_ (sigfillset) (&blockall);
vg_assert (VG_ (is_running_thread) (ptid));
vg_assert (VG_ (is_valid_tid) (ctid));
stack = (Long *) ML_ (allocstack) (ctid);
if (stack == NULL) {
res = VG_ (mk_SysRes_Error) (VKI_ENOMEM);
goto out;
}
setup_child (&ctst->arch, &ptst->arch);
/* On TILEGX we need to set r0 and r3 to zero */
ctst->arch.vex.guest_r0 = 0;
ctst->arch.vex.guest_r3 = 0;
if (sp != 0)
ctst->arch.vex.guest_r54 = sp;
ctst->os_state.parent = ptid;
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* Start the child with its threadgroup being the same as the
parent's. This is so that any exit_group calls that happen
after the child is created but before it sets its
os_state.threadgroup field for real (in thread_wrapper in
syswrap-linux.c), really kill the new thread. a.k.a this avoids
a race condition in which the thread is unkillable (via
exit_group) because its threadgroup is not set. The race window
is probably only a few hundred or a few thousand cycles long.
See #226116. */
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
ML_(guess_and_register_stack) (sp, ctst);
VG_TRACK (pre_thread_ll_create, ptid, ctid);
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls at %#lx\n", child_tls);
ctst->arch.vex.guest_r53 = child_tls;
res = sys_set_tls(ctid, child_tls);
if (sr_isError(res))
goto out;
}
flags &= ~VKI_CLONE_SETTLS;
VG_ (sigprocmask) (VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
ret = do_syscall_clone_tilegx_linux (ML_ (start_thread_NORETURN),
stack, flags, &VG_ (threads)[ctid],
child_tidptr, parent_tidptr,
(Long)NULL /*child_tls*/);
/* High half word64 is syscall return value. */
if (debug)
VG_(printf)("ret: 0x%llx\n", (ULong)ret);
res = VG_(mk_SysRes_tilegx_linux) (/*val */ ret);
VG_ (sigprocmask) (VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (sr_isError (res)) {
VG_(cleanup_thread) (&ctst->arch);
ctst->status = VgTs_Empty;
VG_TRACK (pre_thread_ll_exit, ctid);
}
ptst->arch.vex.guest_r0 = 0;
return res;
}
extern Addr do_brk ( Addr newbrk );
extern
SysRes do_mremap( Addr old_addr, SizeT old_len,
Addr new_addr, SizeT new_len,
UWord flags, ThreadId tid );
extern Bool linux_kernel_2_6_22(void);
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
// TILEGX doesn't have any architecture specific thread stuff that
// needs to be cleaned up.
void
VG_ (cleanup_thread) ( ThreadArchState * arch ) { }
void
setup_child ( /*OUT*/ ThreadArchState * child,
/*IN*/ ThreadArchState * parent )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow1 = parent->vex_shadow1;
child->vex_shadow2 = parent->vex_shadow2;
}
SysRes sys_set_tls ( ThreadId tid, Addr tlsptr )
{
VG_(threads)[tid].arch.vex.guest_r53 = tlsptr;
return VG_(mk_SysRes_Success)( 0 );
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for tilegx/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(tilegx_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(tilegx_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE (tilegx_linux, sys_clone);
DECL_TEMPLATE (tilegx_linux, sys_rt_sigreturn);
DECL_TEMPLATE (tilegx_linux, sys_socket);
DECL_TEMPLATE (tilegx_linux, sys_setsockopt);
DECL_TEMPLATE (tilegx_linux, sys_getsockopt);
DECL_TEMPLATE (tilegx_linux, sys_connect);
DECL_TEMPLATE (tilegx_linux, sys_accept);
DECL_TEMPLATE (tilegx_linux, sys_accept4);
DECL_TEMPLATE (tilegx_linux, sys_sendto);
DECL_TEMPLATE (tilegx_linux, sys_recvfrom);
DECL_TEMPLATE (tilegx_linux, sys_sendmsg);
DECL_TEMPLATE (tilegx_linux, sys_recvmsg);
DECL_TEMPLATE (tilegx_linux, sys_shutdown);
DECL_TEMPLATE (tilegx_linux, sys_bind);
DECL_TEMPLATE (tilegx_linux, sys_listen);
DECL_TEMPLATE (tilegx_linux, sys_getsockname);
DECL_TEMPLATE (tilegx_linux, sys_getpeername);
DECL_TEMPLATE (tilegx_linux, sys_socketpair);
DECL_TEMPLATE (tilegx_linux, sys_semget);
DECL_TEMPLATE (tilegx_linux, sys_semop);
DECL_TEMPLATE (tilegx_linux, sys_semtimedop);
DECL_TEMPLATE (tilegx_linux, sys_semctl);
DECL_TEMPLATE (tilegx_linux, sys_msgget);
DECL_TEMPLATE (tilegx_linux, sys_msgrcv);
DECL_TEMPLATE (tilegx_linux, sys_msgsnd);
DECL_TEMPLATE (tilegx_linux, sys_msgctl);
DECL_TEMPLATE (tilegx_linux, sys_shmget);
DECL_TEMPLATE (tilegx_linux, wrap_sys_shmat);
DECL_TEMPLATE (tilegx_linux, sys_shmdt);
DECL_TEMPLATE (tilegx_linux, sys_shmdt);
DECL_TEMPLATE (tilegx_linux, sys_shmctl);
DECL_TEMPLATE (tilegx_linux, sys_arch_prctl);
DECL_TEMPLATE (tilegx_linux, sys_ptrace);
DECL_TEMPLATE (tilegx_linux, sys_fadvise64);
DECL_TEMPLATE (tilegx_linux, sys_mmap);
DECL_TEMPLATE (tilegx_linux, sys_syscall184);
DECL_TEMPLATE (tilegx_linux, sys_cacheflush);
DECL_TEMPLATE (tilegx_linux, sys_set_dataplane);
PRE(sys_clone)
{
ULong cloneflags;
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(int, "clone",
unsigned long, flags,
void *, child_stack,
int *, parent_tidptr,
int *, child_tidptr,
void *, tlsaddr);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
cloneflags = ARG1;
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Long *)ARG3, /* parent_tidptr */
(Long *)ARG4, /* child_tidptr */
(Addr)ARG5)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
ML_(do_fork_clone)(tid,
cloneflags, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg,
"Unsupported clone() flags: 0x%lx\n", ARG1);
VG_(message)(Vg_UserMsg,
"\n");
VG_(message)(Vg_UserMsg,
"The only supported clone() uses are:\n");
VG_(message)(Vg_UserMsg,
" - via a threads library (LinuxThreads or NPTL)\n");
VG_(message)(Vg_UserMsg,
" - via the implementation of fork or vfork\n");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG4, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_rt_sigreturn)
{
/* This isn't really a syscall at all - it's a misuse of the
syscall mechanism by m_sigframe. VG_(sigframe_create) sets the
return address of the signal frames it creates to be a short
piece of code which does this "syscall". The only purpose of
the syscall is to call VG_(sigframe_destroy), which restores the
thread's registers from the frame and then removes it.
Consequently we must ask the syswrap driver logic not to write
back the syscall "result" as that would overwrite the
just-restored register state. */
ThreadState* tst;
PRINT("sys_rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust RSP to point to start of frame; skip back up over handler
ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_r54 -= sizeof(Addr);
/* This is only so that the RIP is (might be) useful to report if
something goes wrong in the sigreturn. JRS 20070318: no idea
what this is for */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it, as
described above */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_arch_prctl)
{
PRINT( "arch_prctl ( %ld, %lx )", SARG1, ARG2 );
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
I_die_here;
}
// Parts of this are tilegx-specific, but the *PEEK* cases are generic.
//
// ARG3 is only used for pointers into the traced process's address
// space and for offsets into the traced process's struct
// user_regs_struct. It is never a pointer into this process's memory
// space, and we should therefore not check anything it points to.
PRE(sys_ptrace)
{
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", SARG1, SARG2, ARG3, ARG4);
PRE_REG_READ4(int, "ptrace",
long, request, long, pid, unsigned long, addr, unsigned long, data);
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
sizeof (long));
break;
case VKI_PTRACE_GETREGS:
PRE_MEM_WRITE( "ptrace(getregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
#if 0 // FIXME
case VKI_PTRACE_GETFPREGS:
PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
#endif
case VKI_PTRACE_SETREGS:
PRE_MEM_READ( "ptrace(setregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
#if 0 // FIXME
case VKI_PTRACE_SETFPREGS:
PRE_MEM_READ( "ptrace(setfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
#endif
case VKI_PTRACE_GETEVENTMSG:
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_SETSIGINFO:
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
POST(sys_ptrace)
{
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
POST_MEM_WRITE( ARG4, sizeof (long));
break;
case VKI_PTRACE_GETREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct));
break;
#if 0 // FIXME
case VKI_PTRACE_GETFPREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct));
break;
#endif
case VKI_PTRACE_GETEVENTMSG:
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
/* XXX: This is a simplification. Different parts of the
* siginfo_t are valid depending on the type of signal.
*/
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
PRE(sys_socket)
{
PRINT("sys_socket ( %ld, %ld, %ld )", SARG1, SARG2, SARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(sys_socket)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES));
SET_STATUS_from_SysRes(r);
}
PRE(sys_setsockopt)
{
PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )", SARG1, SARG2, SARG3,
ARG4, SARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, int, optlen);
ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_getsockopt)
{
PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )", SARG1, SARG2, SARG3,
ARG4, ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, int, *optlen);
ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
POST(sys_getsockopt)
{
vg_assert(SUCCESS);
ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_connect)
{
*flags |= SfMayBlock;
PRINT("sys_connect ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_accept)
{
*flags |= SfMayBlock;
PRINT("sys_accept ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int *, addrlen);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_accept4)
{
*flags |= SfMayBlock;
PRINT("sys_accept4 ( %ld, %#lx, %#lx, %ld )", SARG1, ARG2, ARG3, SARG4);
PRE_REG_READ4(long, "accept4",
int, s, struct sockaddr *, addr, int *, addrlen, int, flags);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept4)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_sendto)
{
*flags |= SfMayBlock;
PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )", SARG1, ARG2, SARG3,
ARG4, ARG5, SARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_recvfrom)
{
*flags |= SfMayBlock;
PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )", SARG1, ARG2, SARG3,
ARG4, ARG5, ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(sys_recvfrom)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_sendmsg)
{
*flags |= SfMayBlock;
PRINT("sys_sendmsg ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_sendmsg)(tid, "msg", ARG2);
}
PRE(sys_recvmsg)
{
*flags |= SfMayBlock;
PRINT("sys_recvmsg ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *) ARG2);
}
POST(sys_recvmsg)
{
ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES);
}
PRE(sys_shutdown)
{
*flags |= SfMayBlock;
PRINT("sys_shutdown ( %ld, %ld )", SARG1, SARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(sys_bind)
{
PRINT("sys_bind ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_listen)
{
PRINT("sys_listen ( %ld, %ld )", SARG1, SARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(sys_getsockname)
{
PRINT("sys_getsockname ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getsockname)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_getpeername)
{
PRINT("sys_getpeername ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getpeername)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_socketpair)
{
PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int*, sv);
ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_socketpair)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semget)
{
PRINT("sys_semget ( %ld, %ld, %ld )", SARG1, SARG2, SARG3);
PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg);
}
PRE(sys_semop)
{
*flags |= SfMayBlock;
PRINT("sys_semop ( %ld, %#lx, %lu )", SARG1, ARG2, ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, unsigned, nsoops);
ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_semtimedop)
{
*flags |= SfMayBlock;
PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )", SARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(long, "semtimedop",
int, semid, struct sembuf *, sops, unsigned, nsoops,
struct timespec *, timeout);
ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semctl)
{
switch (ARG3 & ~VKI_IPC_64) {
case VKI_IPC_INFO:
case VKI_SEM_INFO:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct seminfo *, arg);
break;
case VKI_IPC_STAT:
case VKI_SEM_STAT:
case VKI_IPC_SET:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
default:
PRINT("sys_semctl ( %ld, %ld, %ld )", SARG1, SARG2, SARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3|VKI_IPC_64,ARG4);
}
POST(sys_semctl)
{
ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3|VKI_IPC_64,ARG4);
}
PRE(sys_msgget)
{
PRINT("sys_msgget ( %ld, %ld )", SARG1, SARG2);
PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg);
}
PRE(sys_msgsnd)
{
PRINT("sys_msgsnd ( %ld, %#lx, %lu, %ld )", SARG1, ARG2, ARG3, SARG4);
PRE_REG_READ4(long, "msgsnd",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz,
int, msgflg);
ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
PRE(sys_msgrcv)
{
PRINT("sys_msgrcv ( %ld, %#lx, %lu, %ld, %ld )", SARG1, ARG2, ARG3,
SARG4, SARG5);
PRE_REG_READ5(long, "msgrcv",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz,
long, msgytp, int, msgflg);
ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
POST(sys_msgrcv)
{
ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_msgctl)
{
PRINT("sys_msgctl ( %ld, %ld, %#lx )", SARG1, SARG2, ARG3);
PRE_REG_READ3(long, "msgctl",
int, msqid, int, cmd, struct msqid_ds *, buf);
ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_msgctl)
{
ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmget)
{
PRINT("sys_shmget ( %ld, %lu, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg);
}
PRE(wrap_sys_shmat)
{
UWord arg2tmp;
PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (arg2tmp == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG2 = arg2tmp; // used in POST
}
POST(wrap_sys_shmat)
{
ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmdt)
{
PRINT("sys_shmdt ( %#lx )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_STATUS_Failure( VKI_EINVAL );
}
POST(sys_shmdt)
{
ML_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(sys_shmctl)
{
PRINT("sys_shmctl ( %ld, %ld, %#lx )", SARG1, SARG2, ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct shmid_ds *, buf);
ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2|VKI_IPC_64,ARG3);
}
POST(sys_shmctl)
{
ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2|VKI_IPC_64,ARG3);
}
PRE(sys_fadvise64)
{
PRINT("sys_fadvise64 ( %ld, %ld, %lu, %ld )", SARG1, SARG2, ARG3, SARG4);
PRE_REG_READ4(long, "fadvise64",
int, fd, vki_loff_t, offset, vki_size_t, len, int, advice);
}
PRE(sys_mmap)
{
SysRes r;
PRINT("sys_mmap ( %#lx, %lu, %lu, %lu, %lu, %lu )",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(long, "mmap",
unsigned long, start, unsigned long, length,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, offset);
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
SET_STATUS_from_SysRes(r);
}
/* ---------------------------------------------------------------
PRE/POST wrappers for TILEGX/Linux-variant specific syscalls
------------------------------------------------------------ */
PRE(sys_cacheflush)
{
PRINT("cacheflush (%lx, %ld, %ld)", ARG1, SARG2, SARG3);
PRE_REG_READ3(long, "cacheflush", unsigned long, addr,
int, nbytes, int, cache);
VG_ (discard_translations) ((Addr)ARG1, (ULong) ARG2,
"PRE(sys_cacheflush)");
SET_STATUS_Success(0);
}
PRE(sys_set_dataplane)
{
*flags |= SfMayBlock;
PRINT("sys_set_dataplane ( %lu )", ARG1);
PRE_REG_READ1(long, "set_dataplane", unsigned long, flag);
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The TILEGX/Linux syscall table
------------------------------------------------------------------ */
/* Add an tilegx-linux specific wrapper to a syscall table. */
#define PLAX_(const, name) WRAPPER_ENTRY_X_(tilegx_linux, const, name)
#define PLAXY(const, name) WRAPPER_ENTRY_XY(tilegx_linux, const, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm/unistd.h) to the appropriate PRE/POST sys_foo()
//
// When implementing these wrappers, you need to work out if the wrapper is
// generic, Linux-only (but arch-independent), or TILEGX/Linux only.
static SyscallTableEntry syscall_table[] = {
LINXY(__NR_io_setup, sys_io_setup), // 0
LINX_(__NR_io_destroy, sys_io_destroy), // 1
LINX_(__NR_io_submit, sys_io_submit), // 2
LINXY(__NR_io_cancel, sys_io_cancel), // 3
LINXY(__NR_io_getevents, sys_io_getevents), // 4
LINX_(__NR_setxattr, sys_setxattr), // 5
LINX_(__NR_lsetxattr, sys_lsetxattr), // 6
LINX_(__NR_fsetxattr, sys_fsetxattr), // 7
LINXY(__NR_getxattr, sys_getxattr), // 8
LINXY(__NR_lgetxattr, sys_lgetxattr), // 9
LINXY(__NR_fgetxattr, sys_fgetxattr), // 10
LINXY(__NR_listxattr, sys_listxattr), // 11
LINXY(__NR_llistxattr, sys_llistxattr), // 12
LINXY(__NR_flistxattr, sys_flistxattr), // 13
LINX_(__NR_removexattr, sys_removexattr), // 14
LINX_(__NR_lremovexattr, sys_lremovexattr), // 15
LINX_(__NR_fremovexattr, sys_fremovexattr), // 16
GENXY(__NR_getcwd, sys_getcwd), // 17
LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 18
LINX_(__NR_eventfd2, sys_eventfd2), // 19
LINXY(__NR_epoll_create1, sys_epoll_create1), // 20
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 21
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 22
GENXY(__NR_dup, sys_dup), // 23
GENXY(__NR_dup2, sys_dup2), // 23
LINXY(__NR_dup3, sys_dup3), // 24
LINXY(__NR_fcntl, sys_fcntl), // 25
LINXY(__NR_inotify_init1, sys_inotify_init1), // 26
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 27
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 28
LINXY(__NR_ioctl, sys_ioctl), // 29
LINX_(__NR_ioprio_set, sys_ioprio_set), // 30
LINX_(__NR_ioprio_get, sys_ioprio_get), // 31
GENX_(__NR_flock, sys_flock), // 32
LINX_(__NR_mknodat, sys_mknodat), // 33
LINX_(__NR_mkdirat, sys_mkdirat), // 34
LINX_(__NR_unlinkat, sys_unlinkat), // 35
LINX_(__NR_symlinkat, sys_symlinkat), // 36
LINX_(__NR_linkat, sys_linkat), // 37
LINX_(__NR_renameat, sys_renameat), // 38
LINX_(__NR_umount2, sys_umount), // 39
LINX_(__NR_mount, sys_mount), // 40
GENXY(__NR_statfs, sys_statfs), // 43
GENXY(__NR_fstatfs, sys_fstatfs), // 44
GENX_(__NR_truncate, sys_truncate), // 45
GENX_(__NR_ftruncate, sys_ftruncate), // 46
LINX_(__NR_fallocate, sys_fallocate), // 47
LINX_(__NR_faccessat, sys_faccessat), // 48
GENX_(__NR_chdir, sys_chdir), // 49
GENX_(__NR_fchdir, sys_fchdir), // 50
GENX_(__NR_chroot, sys_chroot), // 51
GENX_(__NR_fchmod, sys_fchmod), // 52
LINX_(__NR_fchmodat, sys_fchmodat), // 53
LINX_(__NR_fchownat, sys_fchownat), // 54
GENX_(__NR_fchown, sys_fchown), // 55
LINXY(__NR_openat, sys_openat), // 56
GENXY(__NR_close, sys_close), // 57
LINX_(__NR_vhangup, sys_vhangup), // 58
LINXY(__NR_pipe2, sys_pipe2), // 59
LINX_(__NR_quotactl, sys_quotactl), // 60
GENXY(__NR_getdents64, sys_getdents64), // 61
LINX_(__NR_lseek, sys_lseek), // 62
GENXY(__NR_read, sys_read), // 63
GENX_(__NR_write, sys_write), // 64
GENXY(__NR_readv, sys_readv), // 65
GENX_(__NR_writev, sys_writev), // 66
GENXY(__NR_pread64, sys_pread64), // 67
GENX_(__NR_pwrite64, sys_pwrite64), // 68
LINXY(__NR_preadv, sys_preadv), // 69
LINX_(__NR_pwritev, sys_pwritev), // 70
LINXY(__NR_sendfile, sys_sendfile), // 71
LINX_(__NR_pselect6, sys_pselect6), // 72
LINXY(__NR_ppoll, sys_ppoll), // 73
LINXY(__NR_signalfd4, sys_signalfd4), // 74
LINX_(__NR_splice, sys_splice), // 75
LINX_(__NR_readlinkat, sys_readlinkat), // 78
LINXY(__NR3264_fstatat, sys_newfstatat), // 79
GENXY(__NR_fstat, sys_newfstat), // 80
GENX_(__NR_sync, sys_sync), // 81
GENX_(__NR_fsync, sys_fsync), // 82
GENX_(__NR_fdatasync, sys_fdatasync), // 83
LINX_(__NR_sync_file_range, sys_sync_file_range), // 84
LINXY(__NR_timerfd_create, sys_timerfd_create), // 85
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 86
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 87
LINX_(__NR_utimensat, sys_utimensat), // 88
LINXY(__NR_capget, sys_capget), // 90
LINX_(__NR_capset, sys_capset), // 91
LINX_(__NR_personality, sys_personality), // 92
GENX_(__NR_exit, sys_exit), // 93
LINX_(__NR_exit_group, sys_exit_group), // 94
LINXY(__NR_waitid, sys_waitid), // 95
LINX_(__NR_set_tid_address, sys_set_tid_address), // 96
LINXY(__NR_futex, sys_futex), // 98
LINX_(__NR_set_robust_list, sys_set_robust_list), // 99
LINXY(__NR_get_robust_list, sys_get_robust_list), // 100
GENXY(__NR_nanosleep, sys_nanosleep), // 101
GENXY(__NR_getitimer, sys_getitimer), // 102
GENXY(__NR_setitimer, sys_setitimer), // 103
LINX_(__NR_init_module, sys_init_module), // 105
LINX_(__NR_delete_module, sys_delete_module), // 106
LINXY(__NR_timer_create, sys_timer_create), // 107
LINXY(__NR_timer_gettime, sys_timer_gettime), // 108
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 109
LINXY(__NR_timer_settime, sys_timer_settime), // 110
LINX_(__NR_timer_delete, sys_timer_delete), // 111
LINX_(__NR_clock_settime, sys_clock_settime), // 112
LINXY(__NR_clock_gettime, sys_clock_gettime), // 113
LINXY(__NR_clock_getres, sys_clock_getres), // 114
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep), // 115
LINXY(__NR_syslog, sys_syslog), // 116
PLAXY(__NR_ptrace, sys_ptrace), // 117
LINXY(__NR_sched_setparam, sys_sched_setparam), // 118
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 119
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 120
LINXY(__NR_sched_getparam, sys_sched_getparam), // 121
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 122
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 123
LINX_(__NR_sched_yield, sys_sched_yield), // 124
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 125
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 126
LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 127
GENX_(__NR_kill, sys_kill), // 129
LINXY(__NR_tkill, sys_tkill), // 130
LINXY(__NR_tgkill, sys_tgkill), // 131
GENXY(__NR_sigaltstack, sys_sigaltstack), // 132
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 133
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 134
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 135
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 136
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait), // 137
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo), // 138
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 139
GENX_(__NR_setpriority, sys_setpriority), // 140
GENX_(__NR_getpriority, sys_getpriority), // 141
GENX_(__NR_setregid, sys_setregid), // 143
GENX_(__NR_setgid, sys_setgid), // 144
GENX_(__NR_setreuid, sys_setreuid), // 145
GENX_(__NR_setuid, sys_setuid), // 146
LINX_(__NR_setresuid, sys_setresuid), // 147
LINXY(__NR_getresuid, sys_getresuid), // 148
LINX_(__NR_setresgid, sys_setresgid), // 149
LINXY(__NR_getresgid, sys_getresgid), // 150
LINX_(__NR_setfsuid, sys_setfsuid), // 151
LINX_(__NR_setfsgid, sys_setfsgid), // 152
GENXY(__NR_times, sys_times), // 153
GENX_(__NR_setpgid, sys_setpgid), // 154
GENX_(__NR_getpgid, sys_getpgid), // 155
GENX_(__NR_getsid, sys_getsid), // 156
GENX_(__NR_setsid, sys_setsid), // 157
GENXY(__NR_getgroups, sys_getgroups), // 158
GENX_(__NR_setgroups, sys_setgroups), // 159
GENXY(__NR_uname, sys_newuname), // 160
GENXY(__NR_getrlimit, sys_getrlimit), // 163
GENX_(__NR_setrlimit, sys_setrlimit), // 164
GENXY(__NR_getrusage, sys_getrusage), // 165
GENX_(__NR_umask, sys_umask), // 166
LINXY(__NR_prctl, sys_prctl), // 167
GENXY(__NR_gettimeofday, sys_gettimeofday), // 169
GENX_(__NR_settimeofday, sys_settimeofday), // 170
LINXY(__NR_adjtimex, sys_adjtimex), // 171
GENX_(__NR_getpid, sys_getpid), // 172
GENX_(__NR_getppid, sys_getppid), // 173
GENX_(__NR_getuid, sys_getuid), // 174
GENX_(__NR_geteuid, sys_geteuid), // 175
GENX_(__NR_getgid, sys_getgid), // 176
GENX_(__NR_getegid, sys_getegid), // 177
LINX_(__NR_gettid, sys_gettid), // 178
LINXY(__NR_sysinfo, sys_sysinfo), // 179
LINXY(__NR_mq_open, sys_mq_open), // 180
LINX_(__NR_mq_unlink, sys_mq_unlink), // 181
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 182
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive), // 183
LINX_(__NR_mq_notify, sys_mq_notify), // 184
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 185
PLAX_(__NR_msgget, sys_msgget), // 186
PLAXY(__NR_msgctl, sys_msgctl), // 187
PLAXY(__NR_msgrcv, sys_msgrcv), // 188
PLAX_(__NR_msgsnd, sys_msgsnd), // 189
PLAX_(__NR_semget, sys_semget), // 190
PLAXY(__NR_semctl, sys_semctl), // 191
PLAX_(__NR_semtimedop, sys_semtimedop), // 192
PLAX_(__NR_semop, sys_semop), // 193
PLAX_(__NR_shmget, sys_shmget), // 194
PLAXY(__NR_shmat, wrap_sys_shmat), // 196
PLAXY(__NR_shmctl, sys_shmctl), // 195
PLAXY(__NR_shmdt, sys_shmdt), // 197
PLAXY(__NR_socket, sys_socket), // 198
PLAXY(__NR_socketpair, sys_socketpair), // 199
PLAX_(__NR_bind, sys_bind), // 200
PLAX_(__NR_listen, sys_listen), // 201
PLAXY(__NR_accept, sys_accept), // 202
PLAX_(__NR_connect, sys_connect), // 203
PLAXY(__NR_getsockname, sys_getsockname), // 204
PLAXY(__NR_getpeername, sys_getpeername), // 205
PLAX_(__NR_sendto, sys_sendto), // 206
PLAXY(__NR_recvfrom, sys_recvfrom), // 207
PLAX_(__NR_setsockopt, sys_setsockopt), // 208
PLAXY(__NR_getsockopt, sys_getsockopt), // 209
PLAX_(__NR_shutdown, sys_shutdown), // 210
PLAX_(__NR_sendmsg, sys_sendmsg), // 211
PLAXY(__NR_recvmsg, sys_recvmsg), // 212
LINX_(__NR_readahead, sys_readahead), // 213
GENX_(__NR_brk, sys_brk), // 214
GENXY(__NR_munmap, sys_munmap), // 215
GENX_(__NR_mremap, sys_mremap), // 216
LINX_(__NR_add_key, sys_add_key), // 217
LINX_(__NR_request_key, sys_request_key), // 218
LINXY(__NR_keyctl, sys_keyctl), // 219
PLAX_(__NR_clone, sys_clone), // 220
GENX_(__NR_execve, sys_execve), // 221
PLAX_(__NR_mmap, sys_mmap), // 222
GENXY(__NR_mprotect, sys_mprotect), // 226
GENX_(__NR_msync, sys_msync), // 227
GENX_(__NR_mlock, sys_mlock), // 228
GENX_(__NR_munlock, sys_munlock), // 229
GENX_(__NR_mlockall, sys_mlockall), // 230
LINX_(__NR_munlockall, sys_munlockall), // 231
GENX_(__NR_mincore, sys_mincore), // 232
GENX_(__NR_madvise, sys_madvise), // 233
LINX_(__NR_mbind, sys_mbind), // 235
LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 236
LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 237
LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo), // 240
PLAXY(__NR_accept4, sys_accept4), // 242
PLAX_(__NR_cacheflush, sys_cacheflush), // 245
PLAX_(__NR_set_dataplane, sys_set_dataplane), // 246
GENXY(__NR_wait4, sys_wait4), // 260
};
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
{
const UInt syscall_table_size
= sizeof(syscall_table) / sizeof(syscall_table[0]);
/* Is it in the contiguous initial section of the table? */
if (sysno < syscall_table_size) {
SyscallTableEntry* sys = &syscall_table[sysno];
if (sys->before == NULL)
return NULL; /* no entry */
else
return sys;
}
//vex_printf("sysno: %d\n", sysno);
/* Can't find a wrapper */
return NULL;
}
#endif // defined(VGP_tilegx_linux)
/*--------------------------------------------------------------------*/
/*--- end syswrap-tilegx-linux.c ---*/
/*--------------------------------------------------------------------*/