/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-tilegx-linux.c ----*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2010-2015 Tilera Corp. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* Contributed by Zhi-Gang Liu */ #if defined(VGP_tilegx_linux) #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_vkiscnums.h" #include "pub_core_threadstate.h" #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_options.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" // For VG_(sigframe_destroy)() #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "pub_core_stacks.h" // VG_(register_stack) #include "pub_core_transtab.h" // VG_(discard_translations) #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux wrappers */ #include "priv_syswrap-main.h" #include "pub_core_debuginfo.h" // VG_(di_notify_*) #include "pub_core_xarray.h" #include "pub_core_clientstate.h" // VG_(brk_base), VG_(brk_limit) #include "pub_core_errormgr.h" #include "pub_core_libcfile.h" #include "pub_core_machine.h" // VG_(get_SP) #include "pub_core_mallocfree.h" #include "pub_core_stacktrace.h" // For VG_(get_and_pp_StackTrace)() #include "pub_core_ume.h" #include "config.h" /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f.*/ __attribute__ ((noreturn)) void ML_(call_on_new_stack_0_1) (Addr stack, Addr retaddr, void (*f) (Word), Word arg1); // r0 = stack // r1 = retaddr // r2 = f // r3 = arg1 asm ( ".text\n" ".globl vgModuleLocal_call_on_new_stack_0_1\n" "vgModuleLocal_call_on_new_stack_0_1:\n" " {\n" " move sp, r0\n\t" " move r51, r2\n\t" " }\n" " {\n" " move r0, r3\n\t" " move r1, zero\n\t" " }\n" " {\n" " move r2, zero\n\t" " move r3, zero\n\t" " }\n" " {\n" " move r4, zero\n\t" " move r5, zero\n\t" " }\n" " {\n" " move r6, zero\n\t" " move r7, zero\n\t" " }\n" " {\n" " move r8, zero\n\t" " move r9, zero\n\t" " }\n" " {\n" " move r10, zero\n\t" " move r11, zero\n\t" " }\n" " {\n" " move r12, zero\n\t" " move r13, zero\n\t" " }\n" " {\n" " move r14, zero\n\t" " move r15, zero\n\t" " }\n" " {\n" " move r16, zero\n\t" " move r17, zero\n\t" " }\n" " {\n" " move r18, zero\n\t" " move r19, zero\n\t" " }\n" " {\n" " move r20, zero\n\t" " move r21, zero\n\t" " }\n" " {\n" " move r22, zero\n\t" " move r23, zero\n\t" " }\n" " {\n" " move r24, zero\n\t" " move r25, zero\n\t" " }\n" " {\n" " move r26, zero\n\t" " move r27, zero\n\t" " }\n" " {\n" " move r28, zero\n\t" " move r29, zero\n\t" " }\n" " {\n" " move r30, zero\n\t" " move r31, zero\n\t" " }\n" " {\n" " move r32, zero\n\t" " move r33, zero\n\t" " }\n" " {\n" " move r34, zero\n\t" " move r35, zero\n\t" " }\n" " {\n" " move r36, zero\n\t" " move r37, zero\n\t" " }\n" " {\n" " move r38, zero\n\t" " move r39, zero\n\t" " }\n" " {\n" " move r40, zero\n\t" " move r41, zero\n\t" " }\n" " {\n" " move r42, zero\n\t" " move r43, zero\n\t" " }\n" " {\n" " move r44, zero\n\t" " move r45, zero\n\t" " }\n" " {\n" " move r46, zero\n\t" " move r47, zero\n\t" " }\n" " {\n" " move r48, zero\n\t" " move r49, zero\n\t" " }\n" " {\n" " move r50, zero\n\t" " jr r51\n\t" " }\n" " ill \n" // should never get here ); /* Perform a clone system call. clone is strange because it has fork()-like return-twice semantics, so it needs special handling here. Upon entry, we have: int (fn)(void*) in r0 void* child_stack in r1 int flags in r2 void* arg in r3 pid_t* child_tid in r4 pid_t* parent_tid in r5 void* tls_ptr in r6 System call requires: int $__NR_clone in r10 int flags in r0 void* child_stack in r1 pid_t* parent_tid in r2 void* tls_ptr in $r3 pid_t* child_tid in sr4 int clone(int (*fn)(void *arg), void *child_stack, int flags, void *arg, void *parent_tidptr, void *tls, void *child_tidptr) Returns an Int encoded in the linux-tilegx way, not a SysRes. */ #define __NR_CLONE VG_STRINGIFY(__NR_clone) #define __NR_EXIT VG_STRINGIFY(__NR_exit) Long do_syscall_clone_tilegx_linux ( Word (*fn) (void *), //r0 void *stack, //r1 Long flags, //r2 void *arg, //r3 Long * child_tid, //r4 Long * parent_tid, //r5 Long tls ); //r6 /* stack high -> 4 r29 3 2 1 r10 low -> 0 lr <- sp */ asm ( ".text\n" " .globl do_syscall_clone_tilegx_linux\n" " do_syscall_clone_tilegx_linux:\n" " beqz r0, .Linvalid\n" " beqz r1, .Linvalid\n" " {\n" " st sp, r29; " // save r29 at top " addli sp, sp, -32\n" // open new stack space " }\n" " move r29, sp; " // r29 <- sp " st r29, lr\n" // save lr at 0(sp) " addi r29, r29, 8\n" " {\n" " st r29, r10\n" // save r10 at 8(sp) /* setup child stack */ " addi r1, r1, -32\n" // new stack frame for child " }\n" /* save fn */ " { st r1, r0; addi r1, r1, 8 }\n" /* save args */ " { st r1, r3; addi r1, r1, 8 }\n" /* save flags */ " { st r1, r2; addi r1, r1, -16 }\n" /* Child stack layout flags args r1-> fn */ " {\n" /* prepare args for clone. */ " move r0, r2\n" // arg0 = flags /* arg1=r1 child stack */ " move r2, r5\n" // arg2 = parent tid " }\n" " {\n" " move r3, r4\n" // arg3 = child tid " move r4, r6\n" // arg4 = tls " }\n" " moveli r10, " __NR_CLONE "\n" " swint1\n" " beqz r0, .Lchild\n" " move r29, sp\n" " ld lr, r29\n" // Restore lr " addi r29, r29, 8\n" " {\n" " ld r10, r29\n" // resotre r10 " addi sp, sp, 32\n" " }\n" " ld r29, sp\n" " jrp lr\n" ".Lchild:" " move r2, sp\n" " {\n" " ld r3, r2\n" " addi r2, r2, 8\n" " }\n" " ld r0, r2\n" " jalr r3\n" " moveli r10, " __NR_EXIT "\n" " swint1\n" ".Linvalid:" " { movei r1, 22; jrp lr }\n" ); #undef __NR_CLONE #undef __NR_EXIT // forward declarations static void setup_child ( ThreadArchState *, ThreadArchState * ); static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr ); /* When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for IP, and a separate stack for SP. */ static SysRes do_clone ( ThreadId ptid, Long flags, Addr sp, Long * parent_tidptr, Long * child_tidptr, Addr child_tls ) { const Bool debug = False; ThreadId ctid = VG_ (alloc_ThreadState) (); ThreadState * ptst = VG_ (get_ThreadState) (ptid); ThreadState * ctst = VG_ (get_ThreadState) (ctid); Long ret = 0; Long * stack; SysRes res; vki_sigset_t blockall, savedmask; VG_ (sigfillset) (&blockall); vg_assert (VG_ (is_running_thread) (ptid)); vg_assert (VG_ (is_valid_tid) (ctid)); stack = (Long *) ML_ (allocstack) (ctid); if (stack == NULL) { res = VG_ (mk_SysRes_Error) (VKI_ENOMEM); goto out; } setup_child (&ctst->arch, &ptst->arch); /* On TILEGX we need to set r0 and r3 to zero */ ctst->arch.vex.guest_r0 = 0; ctst->arch.vex.guest_r3 = 0; if (sp != 0) ctst->arch.vex.guest_r54 = sp; ctst->os_state.parent = ptid; ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* Start the child with its threadgroup being the same as the parent's. This is so that any exit_group calls that happen after the child is created but before it sets its os_state.threadgroup field for real (in thread_wrapper in syswrap-linux.c), really kill the new thread. a.k.a this avoids a race condition in which the thread is unkillable (via exit_group) because its threadgroup is not set. The race window is probably only a few hundred or a few thousand cycles long. See #226116. */ ctst->os_state.threadgroup = ptst->os_state.threadgroup; ML_(guess_and_register_stack) (sp, ctst); VG_TRACK (pre_thread_ll_create, ptid, ctid); if (flags & VKI_CLONE_SETTLS) { if (debug) VG_(printf)("clone child has SETTLS: tls at %#lx\n", child_tls); ctst->arch.vex.guest_r53 = child_tls; res = sys_set_tls(ctid, child_tls); if (sr_isError(res)) goto out; } flags &= ~VKI_CLONE_SETTLS; VG_ (sigprocmask) (VKI_SIG_SETMASK, &blockall, &savedmask); /* Create the new thread */ ret = do_syscall_clone_tilegx_linux (ML_ (start_thread_NORETURN), stack, flags, &VG_ (threads)[ctid], child_tidptr, parent_tidptr, (Long)NULL /*child_tls*/); /* High half word64 is syscall return value. */ if (debug) VG_(printf)("ret: 0x%llx\n", (ULong)ret); res = VG_(mk_SysRes_tilegx_linux) (/*val */ ret); VG_ (sigprocmask) (VKI_SIG_SETMASK, &savedmask, NULL); out: if (sr_isError (res)) { VG_(cleanup_thread) (&ctst->arch); ctst->status = VgTs_Empty; VG_TRACK (pre_thread_ll_exit, ctid); } ptst->arch.vex.guest_r0 = 0; return res; } extern Addr do_brk ( Addr newbrk ); extern SysRes do_mremap( Addr old_addr, SizeT old_len, Addr new_addr, SizeT new_len, UWord flags, ThreadId tid ); extern Bool linux_kernel_2_6_22(void); /* --------------------------------------------------------------------- More thread stuff ------------------------------------------------------------------ */ // TILEGX doesn't have any architecture specific thread stuff that // needs to be cleaned up. void VG_ (cleanup_thread) ( ThreadArchState * arch ) { } void setup_child ( /*OUT*/ ThreadArchState * child, /*IN*/ ThreadArchState * parent ) { /* We inherit our parent's guest state. */ child->vex = parent->vex; child->vex_shadow1 = parent->vex_shadow1; child->vex_shadow2 = parent->vex_shadow2; } SysRes sys_set_tls ( ThreadId tid, Addr tlsptr ) { VG_(threads)[tid].arch.vex.guest_r53 = tlsptr; return VG_(mk_SysRes_Success)( 0 ); } /* --------------------------------------------------------------------- PRE/POST wrappers for tilegx/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(tilegx_linux, name) #define POST(name) DEFN_POST_TEMPLATE(tilegx_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE (tilegx_linux, sys_clone); DECL_TEMPLATE (tilegx_linux, sys_rt_sigreturn); DECL_TEMPLATE (tilegx_linux, sys_socket); DECL_TEMPLATE (tilegx_linux, sys_setsockopt); DECL_TEMPLATE (tilegx_linux, sys_getsockopt); DECL_TEMPLATE (tilegx_linux, sys_connect); DECL_TEMPLATE (tilegx_linux, sys_accept); DECL_TEMPLATE (tilegx_linux, sys_accept4); DECL_TEMPLATE (tilegx_linux, sys_sendto); DECL_TEMPLATE (tilegx_linux, sys_recvfrom); DECL_TEMPLATE (tilegx_linux, sys_sendmsg); DECL_TEMPLATE (tilegx_linux, sys_recvmsg); DECL_TEMPLATE (tilegx_linux, sys_shutdown); DECL_TEMPLATE (tilegx_linux, sys_bind); DECL_TEMPLATE (tilegx_linux, sys_listen); DECL_TEMPLATE (tilegx_linux, sys_getsockname); DECL_TEMPLATE (tilegx_linux, sys_getpeername); DECL_TEMPLATE (tilegx_linux, sys_socketpair); DECL_TEMPLATE (tilegx_linux, sys_semget); DECL_TEMPLATE (tilegx_linux, sys_semop); DECL_TEMPLATE (tilegx_linux, sys_semtimedop); DECL_TEMPLATE (tilegx_linux, sys_semctl); DECL_TEMPLATE (tilegx_linux, sys_msgget); DECL_TEMPLATE (tilegx_linux, sys_msgrcv); DECL_TEMPLATE (tilegx_linux, sys_msgsnd); DECL_TEMPLATE (tilegx_linux, sys_msgctl); DECL_TEMPLATE (tilegx_linux, sys_shmget); DECL_TEMPLATE (tilegx_linux, wrap_sys_shmat); DECL_TEMPLATE (tilegx_linux, sys_shmdt); DECL_TEMPLATE (tilegx_linux, sys_shmdt); DECL_TEMPLATE (tilegx_linux, sys_shmctl); DECL_TEMPLATE (tilegx_linux, sys_arch_prctl); DECL_TEMPLATE (tilegx_linux, sys_ptrace); DECL_TEMPLATE (tilegx_linux, sys_fadvise64); DECL_TEMPLATE (tilegx_linux, sys_mmap); DECL_TEMPLATE (tilegx_linux, sys_syscall184); DECL_TEMPLATE (tilegx_linux, sys_cacheflush); DECL_TEMPLATE (tilegx_linux, sys_set_dataplane); PRE(sys_clone) { ULong cloneflags; PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(int, "clone", unsigned long, flags, void *, child_stack, int *, parent_tidptr, int *, child_tidptr, void *, tlsaddr); if (ARG1 & VKI_CLONE_PARENT_SETTID) { PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } cloneflags = ARG1; if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) { SET_STATUS_Failure( VKI_EINVAL ); return; } /* Only look at the flags we really care about */ switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_STATUS_from_SysRes( do_clone(tid, ARG1, /* flags */ (Addr)ARG2, /* child ESP */ (Long *)ARG3, /* parent_tidptr */ (Long *)ARG4, /* child_tidptr */ (Addr)ARG5)); /* set_tls */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_STATUS_from_SysRes( ML_(do_fork_clone)(tid, cloneflags, /* flags */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4)); /* child_tidptr */ break; default: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx\n", ARG1); VG_(message)(Vg_UserMsg, "\n"); VG_(message)(Vg_UserMsg, "The only supported clone() uses are:\n"); VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)\n"); VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork\n"); VG_(unimplemented) ("Valgrind does not support general clone()."); } if (SUCCESS) { if (ARG1 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG4, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ *flags |= SfYieldAfter; } } PRE(sys_rt_sigreturn) { /* This isn't really a syscall at all - it's a misuse of the syscall mechanism by m_sigframe. VG_(sigframe_create) sets the return address of the signal frames it creates to be a short piece of code which does this "syscall". The only purpose of the syscall is to call VG_(sigframe_destroy), which restores the thread's registers from the frame and then removes it. Consequently we must ask the syswrap driver logic not to write back the syscall "result" as that would overwrite the just-restored register state. */ ThreadState* tst; PRINT("sys_rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Adjust RSP to point to start of frame; skip back up over handler ret addr */ tst = VG_(get_ThreadState)(tid); tst->arch.vex.guest_r54 -= sizeof(Addr); /* This is only so that the RIP is (might be) useful to report if something goes wrong in the sigreturn. JRS 20070318: no idea what this is for */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); /* Restore register state from frame and remove it, as described above */ VG_(sigframe_destroy)(tid, True); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_arch_prctl) { PRINT( "arch_prctl ( %ld, %lx )", SARG1, ARG2 ); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); I_die_here; } // Parts of this are tilegx-specific, but the *PEEK* cases are generic. // // ARG3 is only used for pointers into the traced process's address // space and for offsets into the traced process's struct // user_regs_struct. It is never a pointer into this process's memory // space, and we should therefore not check anything it points to. PRE(sys_ptrace) { PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", SARG1, SARG2, ARG3, ARG4); PRE_REG_READ4(int, "ptrace", long, request, long, pid, unsigned long, addr, unsigned long, data); switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: PRE_MEM_WRITE( "ptrace(peek)", ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: PRE_MEM_WRITE( "ptrace(getregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; #if 0 // FIXME case VKI_PTRACE_GETFPREGS: PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; #endif case VKI_PTRACE_SETREGS: PRE_MEM_READ( "ptrace(setregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; #if 0 // FIXME case VKI_PTRACE_SETFPREGS: PRE_MEM_READ( "ptrace(setfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; #endif case VKI_PTRACE_GETEVENTMSG: PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; case VKI_PTRACE_SETSIGINFO: PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t)); break; default: break; } } POST(sys_ptrace) { switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: POST_MEM_WRITE( ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct)); break; #if 0 // FIXME case VKI_PTRACE_GETFPREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct)); break; #endif case VKI_PTRACE_GETEVENTMSG: POST_MEM_WRITE( ARG4, sizeof(unsigned long)); break; case VKI_PTRACE_GETSIGINFO: /* XXX: This is a simplification. Different parts of the * siginfo_t are valid depending on the type of signal. */ POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t)); break; default: break; } } PRE(sys_socket) { PRINT("sys_socket ( %ld, %ld, %ld )", SARG1, SARG2, SARG3); PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol); } POST(sys_socket) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES)); SET_STATUS_from_SysRes(r); } PRE(sys_setsockopt) { PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )", SARG1, SARG2, SARG3, ARG4, SARG5); PRE_REG_READ5(long, "setsockopt", int, s, int, level, int, optname, const void *, optval, int, optlen); ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_getsockopt) { PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )", SARG1, SARG2, SARG3, ARG4, ARG5); PRE_REG_READ5(long, "getsockopt", int, s, int, level, int, optname, void *, optval, int, *optlen); ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } POST(sys_getsockopt) { vg_assert(SUCCESS); ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_connect) { *flags |= SfMayBlock; PRINT("sys_connect ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "connect", int, sockfd, struct sockaddr *, serv_addr, int, addrlen); ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3); } PRE(sys_accept) { *flags |= SfMayBlock; PRINT("sys_accept ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3); PRE_REG_READ3(long, "accept", int, s, struct sockaddr *, addr, int *, addrlen); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_accept4) { *flags |= SfMayBlock; PRINT("sys_accept4 ( %ld, %#lx, %#lx, %ld )", SARG1, ARG2, ARG3, SARG4); PRE_REG_READ4(long, "accept4", int, s, struct sockaddr *, addr, int *, addrlen, int, flags); ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept4) { SysRes r; vg_assert(SUCCESS); r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); SET_STATUS_from_SysRes(r); } PRE(sys_sendto) { *flags |= SfMayBlock; PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )", SARG1, ARG2, SARG3, ARG4, ARG5, SARG6); PRE_REG_READ6(long, "sendto", int, s, const void *, msg, int, len, unsigned int, flags, const struct sockaddr *, to, int, tolen); ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_recvfrom) { *flags |= SfMayBlock; PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )", SARG1, ARG2, SARG3, ARG4, ARG5, ARG6); PRE_REG_READ6(long, "recvfrom", int, s, void *, buf, int, len, unsigned int, flags, struct sockaddr *, from, int *, fromlen); ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } POST(sys_recvfrom) { vg_assert(SUCCESS); ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_sendmsg) { *flags |= SfMayBlock; PRINT("sys_sendmsg ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "sendmsg", int, s, const struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_sendmsg)(tid, "msg", ARG2); } PRE(sys_recvmsg) { *flags |= SfMayBlock; PRINT("sys_recvmsg ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags); ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *) ARG2); } POST(sys_recvmsg) { ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES); } PRE(sys_shutdown) { *flags |= SfMayBlock; PRINT("sys_shutdown ( %ld, %ld )", SARG1, SARG2); PRE_REG_READ2(int, "shutdown", int, s, int, how); } PRE(sys_bind) { PRINT("sys_bind ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "bind", int, sockfd, struct sockaddr *, my_addr, int, addrlen); ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3); } PRE(sys_listen) { PRINT("sys_listen ( %ld, %ld )", SARG1, SARG2); PRE_REG_READ2(long, "listen", int, s, int, backlog); } PRE(sys_getsockname) { PRINT("sys_getsockname ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3); PRE_REG_READ3(long, "getsockname", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3); } POST(sys_getsockname) { vg_assert(SUCCESS); ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_getpeername) { PRINT("sys_getpeername ( %ld, %#lx, %#lx )", SARG1, ARG2, ARG3); PRE_REG_READ3(long, "getpeername", int, s, struct sockaddr *, name, int *, namelen); ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3); } POST(sys_getpeername) { vg_assert(SUCCESS); ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3); } PRE(sys_socketpair) { PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4); PRE_REG_READ4(long, "socketpair", int, d, int, type, int, protocol, int*, sv); ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_socketpair) { vg_assert(SUCCESS); ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES), ARG1,ARG2,ARG3,ARG4); } PRE(sys_semget) { PRINT("sys_semget ( %ld, %ld, %ld )", SARG1, SARG2, SARG3); PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg); } PRE(sys_semop) { *flags |= SfMayBlock; PRINT("sys_semop ( %ld, %#lx, %lu )", SARG1, ARG2, ARG3); PRE_REG_READ3(long, "semop", int, semid, struct sembuf *, sops, unsigned, nsoops); ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3); } PRE(sys_semtimedop) { *flags |= SfMayBlock; PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )", SARG1, ARG2, ARG3, ARG4); PRE_REG_READ4(long, "semtimedop", int, semid, struct sembuf *, sops, unsigned, nsoops, struct timespec *, timeout); ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4); } PRE(sys_semctl) { switch (ARG3 & ~VKI_IPC_64) { case VKI_IPC_INFO: case VKI_SEM_INFO: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct seminfo *, arg); break; case VKI_IPC_STAT: case VKI_SEM_STAT: case VKI_IPC_SET: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct semid_ds *, arg); break; case VKI_GETALL: case VKI_SETALL: PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )", SARG1, SARG2, SARG3, ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, unsigned short *, arg); break; default: PRINT("sys_semctl ( %ld, %ld, %ld )", SARG1, SARG2, SARG3); PRE_REG_READ3(long, "semctl", int, semid, int, semnum, int, cmd); break; } ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3|VKI_IPC_64,ARG4); } POST(sys_semctl) { ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3|VKI_IPC_64,ARG4); } PRE(sys_msgget) { PRINT("sys_msgget ( %ld, %ld )", SARG1, SARG2); PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg); } PRE(sys_msgsnd) { PRINT("sys_msgsnd ( %ld, %#lx, %lu, %ld )", SARG1, ARG2, ARG3, SARG4); PRE_REG_READ4(long, "msgsnd", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, int, msgflg); ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } PRE(sys_msgrcv) { PRINT("sys_msgrcv ( %ld, %#lx, %lu, %ld, %ld )", SARG1, ARG2, ARG3, SARG4, SARG5); PRE_REG_READ5(long, "msgrcv", int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, long, msgytp, int, msgflg); ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; } POST(sys_msgrcv) { ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_msgctl) { PRINT("sys_msgctl ( %ld, %ld, %#lx )", SARG1, SARG2, ARG3); PRE_REG_READ3(long, "msgctl", int, msqid, int, cmd, struct msqid_ds *, buf); ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3); } POST(sys_msgctl) { ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmget) { PRINT("sys_shmget ( %ld, %lu, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg); } PRE(wrap_sys_shmat) { UWord arg2tmp; PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )", SARG1, ARG2, SARG3); PRE_REG_READ3(long, "shmat", int, shmid, const void *, shmaddr, int, shmflg); arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3); if (arg2tmp == 0) SET_STATUS_Failure( VKI_EINVAL ); else ARG2 = arg2tmp; // used in POST } POST(wrap_sys_shmat) { ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmdt) { PRINT("sys_shmdt ( %#lx )",ARG1); PRE_REG_READ1(long, "shmdt", const void *, shmaddr); if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1)) SET_STATUS_Failure( VKI_EINVAL ); } POST(sys_shmdt) { ML_(generic_POST_sys_shmdt)(tid, RES,ARG1); } PRE(sys_shmctl) { PRINT("sys_shmctl ( %ld, %ld, %#lx )", SARG1, SARG2, ARG3); PRE_REG_READ3(long, "shmctl", int, shmid, int, cmd, struct shmid_ds *, buf); ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2|VKI_IPC_64,ARG3); } POST(sys_shmctl) { ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2|VKI_IPC_64,ARG3); } PRE(sys_fadvise64) { PRINT("sys_fadvise64 ( %ld, %ld, %lu, %ld )", SARG1, SARG2, ARG3, SARG4); PRE_REG_READ4(long, "fadvise64", int, fd, vki_loff_t, offset, vki_size_t, len, int, advice); } PRE(sys_mmap) { SysRes r; PRINT("sys_mmap ( %#lx, %lu, %lu, %lu, %lu, %lu )", ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); PRE_REG_READ6(long, "mmap", unsigned long, start, unsigned long, length, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, offset); r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); SET_STATUS_from_SysRes(r); } /* --------------------------------------------------------------- PRE/POST wrappers for TILEGX/Linux-variant specific syscalls ------------------------------------------------------------ */ PRE(sys_cacheflush) { PRINT("cacheflush (%lx, %ld, %ld)", ARG1, SARG2, SARG3); PRE_REG_READ3(long, "cacheflush", unsigned long, addr, int, nbytes, int, cache); VG_ (discard_translations) ((Addr)ARG1, (ULong) ARG2, "PRE(sys_cacheflush)"); SET_STATUS_Success(0); } PRE(sys_set_dataplane) { *flags |= SfMayBlock; PRINT("sys_set_dataplane ( %lu )", ARG1); PRE_REG_READ1(long, "set_dataplane", unsigned long, flag); } #undef PRE #undef POST /* --------------------------------------------------------------------- The TILEGX/Linux syscall table ------------------------------------------------------------------ */ /* Add an tilegx-linux specific wrapper to a syscall table. */ #define PLAX_(const, name) WRAPPER_ENTRY_X_(tilegx_linux, const, name) #define PLAXY(const, name) WRAPPER_ENTRY_XY(tilegx_linux, const, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm/unistd.h) to the appropriate PRE/POST sys_foo() // // When implementing these wrappers, you need to work out if the wrapper is // generic, Linux-only (but arch-independent), or TILEGX/Linux only. static SyscallTableEntry syscall_table[] = { LINXY(__NR_io_setup, sys_io_setup), // 0 LINX_(__NR_io_destroy, sys_io_destroy), // 1 LINX_(__NR_io_submit, sys_io_submit), // 2 LINXY(__NR_io_cancel, sys_io_cancel), // 3 LINXY(__NR_io_getevents, sys_io_getevents), // 4 LINX_(__NR_setxattr, sys_setxattr), // 5 LINX_(__NR_lsetxattr, sys_lsetxattr), // 6 LINX_(__NR_fsetxattr, sys_fsetxattr), // 7 LINXY(__NR_getxattr, sys_getxattr), // 8 LINXY(__NR_lgetxattr, sys_lgetxattr), // 9 LINXY(__NR_fgetxattr, sys_fgetxattr), // 10 LINXY(__NR_listxattr, sys_listxattr), // 11 LINXY(__NR_llistxattr, sys_llistxattr), // 12 LINXY(__NR_flistxattr, sys_flistxattr), // 13 LINX_(__NR_removexattr, sys_removexattr), // 14 LINX_(__NR_lremovexattr, sys_lremovexattr), // 15 LINX_(__NR_fremovexattr, sys_fremovexattr), // 16 GENXY(__NR_getcwd, sys_getcwd), // 17 LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 18 LINX_(__NR_eventfd2, sys_eventfd2), // 19 LINXY(__NR_epoll_create1, sys_epoll_create1), // 20 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 21 LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 22 GENXY(__NR_dup, sys_dup), // 23 GENXY(__NR_dup2, sys_dup2), // 23 LINXY(__NR_dup3, sys_dup3), // 24 LINXY(__NR_fcntl, sys_fcntl), // 25 LINXY(__NR_inotify_init1, sys_inotify_init1), // 26 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 27 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 28 LINXY(__NR_ioctl, sys_ioctl), // 29 LINX_(__NR_ioprio_set, sys_ioprio_set), // 30 LINX_(__NR_ioprio_get, sys_ioprio_get), // 31 GENX_(__NR_flock, sys_flock), // 32 LINX_(__NR_mknodat, sys_mknodat), // 33 LINX_(__NR_mkdirat, sys_mkdirat), // 34 LINX_(__NR_unlinkat, sys_unlinkat), // 35 LINX_(__NR_symlinkat, sys_symlinkat), // 36 LINX_(__NR_linkat, sys_linkat), // 37 LINX_(__NR_renameat, sys_renameat), // 38 LINX_(__NR_umount2, sys_umount), // 39 LINX_(__NR_mount, sys_mount), // 40 GENXY(__NR_statfs, sys_statfs), // 43 GENXY(__NR_fstatfs, sys_fstatfs), // 44 GENX_(__NR_truncate, sys_truncate), // 45 GENX_(__NR_ftruncate, sys_ftruncate), // 46 LINX_(__NR_fallocate, sys_fallocate), // 47 LINX_(__NR_faccessat, sys_faccessat), // 48 GENX_(__NR_chdir, sys_chdir), // 49 GENX_(__NR_fchdir, sys_fchdir), // 50 GENX_(__NR_chroot, sys_chroot), // 51 GENX_(__NR_fchmod, sys_fchmod), // 52 LINX_(__NR_fchmodat, sys_fchmodat), // 53 LINX_(__NR_fchownat, sys_fchownat), // 54 GENX_(__NR_fchown, sys_fchown), // 55 LINXY(__NR_openat, sys_openat), // 56 GENXY(__NR_close, sys_close), // 57 LINX_(__NR_vhangup, sys_vhangup), // 58 LINXY(__NR_pipe2, sys_pipe2), // 59 LINX_(__NR_quotactl, sys_quotactl), // 60 GENXY(__NR_getdents64, sys_getdents64), // 61 LINX_(__NR_lseek, sys_lseek), // 62 GENXY(__NR_read, sys_read), // 63 GENX_(__NR_write, sys_write), // 64 GENXY(__NR_readv, sys_readv), // 65 GENX_(__NR_writev, sys_writev), // 66 GENXY(__NR_pread64, sys_pread64), // 67 GENX_(__NR_pwrite64, sys_pwrite64), // 68 LINXY(__NR_preadv, sys_preadv), // 69 LINX_(__NR_pwritev, sys_pwritev), // 70 LINXY(__NR_sendfile, sys_sendfile), // 71 LINX_(__NR_pselect6, sys_pselect6), // 72 LINXY(__NR_ppoll, sys_ppoll), // 73 LINXY(__NR_signalfd4, sys_signalfd4), // 74 LINX_(__NR_splice, sys_splice), // 75 LINX_(__NR_readlinkat, sys_readlinkat), // 78 LINXY(__NR3264_fstatat, sys_newfstatat), // 79 GENXY(__NR_fstat, sys_newfstat), // 80 GENX_(__NR_sync, sys_sync), // 81 GENX_(__NR_fsync, sys_fsync), // 82 GENX_(__NR_fdatasync, sys_fdatasync), // 83 LINX_(__NR_sync_file_range, sys_sync_file_range), // 84 LINXY(__NR_timerfd_create, sys_timerfd_create), // 85 LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 86 LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 87 LINX_(__NR_utimensat, sys_utimensat), // 88 LINXY(__NR_capget, sys_capget), // 90 LINX_(__NR_capset, sys_capset), // 91 LINX_(__NR_personality, sys_personality), // 92 GENX_(__NR_exit, sys_exit), // 93 LINX_(__NR_exit_group, sys_exit_group), // 94 LINXY(__NR_waitid, sys_waitid), // 95 LINX_(__NR_set_tid_address, sys_set_tid_address), // 96 LINXY(__NR_futex, sys_futex), // 98 LINX_(__NR_set_robust_list, sys_set_robust_list), // 99 LINXY(__NR_get_robust_list, sys_get_robust_list), // 100 GENXY(__NR_nanosleep, sys_nanosleep), // 101 GENXY(__NR_getitimer, sys_getitimer), // 102 GENXY(__NR_setitimer, sys_setitimer), // 103 LINX_(__NR_init_module, sys_init_module), // 105 LINX_(__NR_delete_module, sys_delete_module), // 106 LINXY(__NR_timer_create, sys_timer_create), // 107 LINXY(__NR_timer_gettime, sys_timer_gettime), // 108 LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 109 LINXY(__NR_timer_settime, sys_timer_settime), // 110 LINX_(__NR_timer_delete, sys_timer_delete), // 111 LINX_(__NR_clock_settime, sys_clock_settime), // 112 LINXY(__NR_clock_gettime, sys_clock_gettime), // 113 LINXY(__NR_clock_getres, sys_clock_getres), // 114 LINXY(__NR_clock_nanosleep, sys_clock_nanosleep), // 115 LINXY(__NR_syslog, sys_syslog), // 116 PLAXY(__NR_ptrace, sys_ptrace), // 117 LINXY(__NR_sched_setparam, sys_sched_setparam), // 118 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 119 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 120 LINXY(__NR_sched_getparam, sys_sched_getparam), // 121 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 122 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 123 LINX_(__NR_sched_yield, sys_sched_yield), // 124 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 125 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 126 LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 127 GENX_(__NR_kill, sys_kill), // 129 LINXY(__NR_tkill, sys_tkill), // 130 LINXY(__NR_tgkill, sys_tgkill), // 131 GENXY(__NR_sigaltstack, sys_sigaltstack), // 132 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 133 LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 134 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 135 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 136 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait), // 137 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo), // 138 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 139 GENX_(__NR_setpriority, sys_setpriority), // 140 GENX_(__NR_getpriority, sys_getpriority), // 141 GENX_(__NR_setregid, sys_setregid), // 143 GENX_(__NR_setgid, sys_setgid), // 144 GENX_(__NR_setreuid, sys_setreuid), // 145 GENX_(__NR_setuid, sys_setuid), // 146 LINX_(__NR_setresuid, sys_setresuid), // 147 LINXY(__NR_getresuid, sys_getresuid), // 148 LINX_(__NR_setresgid, sys_setresgid), // 149 LINXY(__NR_getresgid, sys_getresgid), // 150 LINX_(__NR_setfsuid, sys_setfsuid), // 151 LINX_(__NR_setfsgid, sys_setfsgid), // 152 GENXY(__NR_times, sys_times), // 153 GENX_(__NR_setpgid, sys_setpgid), // 154 GENX_(__NR_getpgid, sys_getpgid), // 155 GENX_(__NR_getsid, sys_getsid), // 156 GENX_(__NR_setsid, sys_setsid), // 157 GENXY(__NR_getgroups, sys_getgroups), // 158 GENX_(__NR_setgroups, sys_setgroups), // 159 GENXY(__NR_uname, sys_newuname), // 160 GENXY(__NR_getrlimit, sys_getrlimit), // 163 GENX_(__NR_setrlimit, sys_setrlimit), // 164 GENXY(__NR_getrusage, sys_getrusage), // 165 GENX_(__NR_umask, sys_umask), // 166 LINXY(__NR_prctl, sys_prctl), // 167 GENXY(__NR_gettimeofday, sys_gettimeofday), // 169 GENX_(__NR_settimeofday, sys_settimeofday), // 170 LINXY(__NR_adjtimex, sys_adjtimex), // 171 GENX_(__NR_getpid, sys_getpid), // 172 GENX_(__NR_getppid, sys_getppid), // 173 GENX_(__NR_getuid, sys_getuid), // 174 GENX_(__NR_geteuid, sys_geteuid), // 175 GENX_(__NR_getgid, sys_getgid), // 176 GENX_(__NR_getegid, sys_getegid), // 177 LINX_(__NR_gettid, sys_gettid), // 178 LINXY(__NR_sysinfo, sys_sysinfo), // 179 LINXY(__NR_mq_open, sys_mq_open), // 180 LINX_(__NR_mq_unlink, sys_mq_unlink), // 181 LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 182 LINXY(__NR_mq_timedreceive, sys_mq_timedreceive), // 183 LINX_(__NR_mq_notify, sys_mq_notify), // 184 LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 185 PLAX_(__NR_msgget, sys_msgget), // 186 PLAXY(__NR_msgctl, sys_msgctl), // 187 PLAXY(__NR_msgrcv, sys_msgrcv), // 188 PLAX_(__NR_msgsnd, sys_msgsnd), // 189 PLAX_(__NR_semget, sys_semget), // 190 PLAXY(__NR_semctl, sys_semctl), // 191 PLAX_(__NR_semtimedop, sys_semtimedop), // 192 PLAX_(__NR_semop, sys_semop), // 193 PLAX_(__NR_shmget, sys_shmget), // 194 PLAXY(__NR_shmat, wrap_sys_shmat), // 196 PLAXY(__NR_shmctl, sys_shmctl), // 195 PLAXY(__NR_shmdt, sys_shmdt), // 197 PLAXY(__NR_socket, sys_socket), // 198 PLAXY(__NR_socketpair, sys_socketpair), // 199 PLAX_(__NR_bind, sys_bind), // 200 PLAX_(__NR_listen, sys_listen), // 201 PLAXY(__NR_accept, sys_accept), // 202 PLAX_(__NR_connect, sys_connect), // 203 PLAXY(__NR_getsockname, sys_getsockname), // 204 PLAXY(__NR_getpeername, sys_getpeername), // 205 PLAX_(__NR_sendto, sys_sendto), // 206 PLAXY(__NR_recvfrom, sys_recvfrom), // 207 PLAX_(__NR_setsockopt, sys_setsockopt), // 208 PLAXY(__NR_getsockopt, sys_getsockopt), // 209 PLAX_(__NR_shutdown, sys_shutdown), // 210 PLAX_(__NR_sendmsg, sys_sendmsg), // 211 PLAXY(__NR_recvmsg, sys_recvmsg), // 212 LINX_(__NR_readahead, sys_readahead), // 213 GENX_(__NR_brk, sys_brk), // 214 GENXY(__NR_munmap, sys_munmap), // 215 GENX_(__NR_mremap, sys_mremap), // 216 LINX_(__NR_add_key, sys_add_key), // 217 LINX_(__NR_request_key, sys_request_key), // 218 LINXY(__NR_keyctl, sys_keyctl), // 219 PLAX_(__NR_clone, sys_clone), // 220 GENX_(__NR_execve, sys_execve), // 221 PLAX_(__NR_mmap, sys_mmap), // 222 GENXY(__NR_mprotect, sys_mprotect), // 226 GENX_(__NR_msync, sys_msync), // 227 GENX_(__NR_mlock, sys_mlock), // 228 GENX_(__NR_munlock, sys_munlock), // 229 GENX_(__NR_mlockall, sys_mlockall), // 230 LINX_(__NR_munlockall, sys_munlockall), // 231 GENX_(__NR_mincore, sys_mincore), // 232 GENX_(__NR_madvise, sys_madvise), // 233 LINX_(__NR_mbind, sys_mbind), // 235 LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 236 LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 237 LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo), // 240 PLAXY(__NR_accept4, sys_accept4), // 242 PLAX_(__NR_cacheflush, sys_cacheflush), // 245 PLAX_(__NR_set_dataplane, sys_set_dataplane), // 246 GENXY(__NR_wait4, sys_wait4), // 260 }; SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno ) { const UInt syscall_table_size = sizeof(syscall_table) / sizeof(syscall_table[0]); /* Is it in the contiguous initial section of the table? */ if (sysno < syscall_table_size) { SyscallTableEntry* sys = &syscall_table[sysno]; if (sys->before == NULL) return NULL; /* no entry */ else return sys; } //vex_printf("sysno: %d\n", sysno); /* Can't find a wrapper */ return NULL; } #endif // defined(VGP_tilegx_linux) /*--------------------------------------------------------------------*/ /*--- end syswrap-tilegx-linux.c ---*/ /*--------------------------------------------------------------------*/