// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A Disassembler object is used to disassemble a block of code instruction by
// instruction. The default implementation of the NameConverter object can be
// overriden to modify register names or to do symbol lookup on addresses.
//
// The example below will disassemble a block of code and print it to stdout.
//
// NameConverter converter;
// Disassembler d(converter);
// for (byte* pc = begin; pc < end;) {
// v8::internal::EmbeddedVector<char, 256> buffer;
// byte* prev_pc = pc;
// pc += d.InstructionDecode(buffer, pc);
// printf("%p %08x %s\n",
// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
// }
//
// The Disassembler class also has a convenience method to disassemble a block
// of code into a FILE*, meaning that the above functionality could also be
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#if V8_TARGET_ARCH_PPC
#include "src/base/platform/platform.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
#include "src/ppc/constants-ppc.h"
namespace v8 {
namespace internal {
const auto GetRegConfig = RegisterConfiguration::Crankshaft;
//------------------------------------------------------------------------------
// Decoder decodes and disassembles instructions into an output buffer.
// It uses the converter to convert register names and call destinations into
// more informative description.
class Decoder {
public:
Decoder(const disasm::NameConverter& converter, Vector<char> out_buffer)
: converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) {
out_buffer_[out_buffer_pos_] = '\0';
}
~Decoder() {}
// Writes one disassembled instruction into 'buffer' (0-terminated).
// Returns the length of the disassembled machine instruction in bytes.
int InstructionDecode(byte* instruction);
private:
// Bottleneck functions to print into the out_buffer.
void PrintChar(const char ch);
void Print(const char* str);
// Printing of common values.
void PrintRegister(int reg);
void PrintDRegister(int reg);
int FormatFPRegister(Instruction* instr, const char* format);
void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
// Handle formatting of instructions and their options.
int FormatRegister(Instruction* instr, const char* option);
int FormatOption(Instruction* instr, const char* option);
void Format(Instruction* instr, const char* format);
void Unknown(Instruction* instr);
void UnknownFormat(Instruction* instr, const char* opcname);
void DecodeExt1(Instruction* instr);
void DecodeExt2(Instruction* instr);
void DecodeExt3(Instruction* instr);
void DecodeExt4(Instruction* instr);
void DecodeExt5(Instruction* instr);
const disasm::NameConverter& converter_;
Vector<char> out_buffer_;
int out_buffer_pos_;
DISALLOW_COPY_AND_ASSIGN(Decoder);
};
// Support for assertions in the Decoder formatting functions.
#define STRING_STARTS_WITH(string, compare_string) \
(strncmp(string, compare_string, strlen(compare_string)) == 0)
// Append the ch to the output buffer.
void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; }
// Append the str to the output buffer.
void Decoder::Print(const char* str) {
char cur = *str++;
while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
PrintChar(cur);
cur = *str++;
}
out_buffer_[out_buffer_pos_] = 0;
}
// Print the register name according to the active name converter.
void Decoder::PrintRegister(int reg) {
Print(converter_.NameOfCPURegister(reg));
}
// Print the double FP register name according to the active name converter.
void Decoder::PrintDRegister(int reg) {
Print(GetRegConfig()->GetDoubleRegisterName(reg));
}
// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
// the FormatOption method.
void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
switch (svc) {
case kCallRtRedirected:
Print("call rt redirected");
return;
case kBreakpoint:
Print("breakpoint");
return;
default:
if (svc >= kStopCode) {
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x",
svc & kStopCodeMask, svc & kStopCodeMask);
} else {
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc);
}
return;
}
}
// Handle all register based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatRegister(Instruction* instr, const char* format) {
DCHECK(format[0] == 'r');
if ((format[1] == 't') || (format[1] == 's')) { // 'rt & 'rs register
int reg = instr->RTValue();
PrintRegister(reg);
return 2;
} else if (format[1] == 'a') { // 'ra: RA register
int reg = instr->RAValue();
PrintRegister(reg);
return 2;
} else if (format[1] == 'b') { // 'rb: RB register
int reg = instr->RBValue();
PrintRegister(reg);
return 2;
}
UNREACHABLE();
return -1;
}
// Handle all FP register based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatFPRegister(Instruction* instr, const char* format) {
DCHECK(format[0] == 'D');
int retval = 2;
int reg = -1;
if (format[1] == 't') {
reg = instr->RTValue();
} else if (format[1] == 'a') {
reg = instr->RAValue();
} else if (format[1] == 'b') {
reg = instr->RBValue();
} else if (format[1] == 'c') {
reg = instr->RCValue();
} else {
UNREACHABLE();
}
PrintDRegister(reg);
return retval;
}
// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.) FormatOption returns the number of
// characters that were consumed from the formatting string.
int Decoder::FormatOption(Instruction* instr, const char* format) {
switch (format[0]) {
case 'o': {
if (instr->Bit(10) == 1) {
Print("o");
}
return 1;
}
case '.': {
if (instr->Bit(0) == 1) {
Print(".");
} else {
Print(" "); // ensure consistent spacing
}
return 1;
}
case 'r': {
return FormatRegister(instr, format);
}
case 'D': {
return FormatFPRegister(instr, format);
}
case 'i': { // int16
int32_t value = (instr->Bits(15, 0) << 16) >> 16;
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value);
return 5;
}
case 'u': { // uint16
int32_t value = instr->Bits(15, 0);
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value);
return 6;
}
case 'l': {
// Link (LK) Bit 0
if (instr->Bit(0) == 1) {
Print("l");
}
return 1;
}
case 'a': {
// Absolute Address Bit 1
if (instr->Bit(1) == 1) {
Print("a");
}
return 1;
}
case 'c': { // 'cr: condition register of branch instruction
int code = instr->Bits(20, 18);
if (code != 7) {
out_buffer_pos_ +=
SNPrintF(out_buffer_ + out_buffer_pos_, " cr%d", code);
}
return 2;
}
case 't': { // 'target: target of branch instructions
// target26 or target16
DCHECK(STRING_STARTS_WITH(format, "target"));
if ((format[6] == '2') && (format[7] == '6')) {
int off = ((instr->Bits(25, 2)) << 8) >> 6;
out_buffer_pos_ += SNPrintF(
out_buffer_ + out_buffer_pos_, "%+d -> %s", off,
converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
return 8;
} else if ((format[6] == '1') && (format[7] == '6')) {
int off = ((instr->Bits(15, 2)) << 18) >> 16;
out_buffer_pos_ += SNPrintF(
out_buffer_ + out_buffer_pos_, "%+d -> %s", off,
converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
return 8;
}
case 's': {
DCHECK(format[1] == 'h');
int32_t value = 0;
int32_t opcode = instr->OpcodeValue() << 26;
int32_t sh = instr->Bits(15, 11);
if (opcode == EXT5 ||
(opcode == EXT2 && instr->Bits(10, 2) << 2 == SRADIX)) {
// SH Bits 1 and 15-11 (split field)
value = (sh | (instr->Bit(1) << 5));
} else {
// SH Bits 15-11
value = (sh << 26) >> 26;
}
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value);
return 2;
}
case 'm': {
int32_t value = 0;
if (format[1] == 'e') {
if (instr->OpcodeValue() << 26 != EXT5) {
// ME Bits 10-6
value = (instr->Bits(10, 6) << 26) >> 26;
} else {
// ME Bits 5 and 10-6 (split field)
value = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
}
} else if (format[1] == 'b') {
if (instr->OpcodeValue() << 26 != EXT5) {
// MB Bits 5-1
value = (instr->Bits(5, 1) << 26) >> 26;
} else {
// MB Bits 5 and 10-6 (split field)
value = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
}
} else {
UNREACHABLE(); // bad format
}
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value);
return 2;
}
}
#if V8_TARGET_ARCH_PPC64
case 'd': { // ds value for offset
int32_t value = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value);
return 1;
}
#endif
default: {
UNREACHABLE();
break;
}
}
UNREACHABLE();
return -1;
}
// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void Decoder::Format(Instruction* instr, const char* format) {
char cur = *format++;
while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
if (cur == '\'') { // Single quote is used as the formatting escape.
format += FormatOption(instr, format);
} else {
out_buffer_[out_buffer_pos_++] = cur;
}
cur = *format++;
}
out_buffer_[out_buffer_pos_] = '\0';
}
// The disassembler may end up decoding data inlined in the code. We do not want
// it to crash if the data does not ressemble any known instruction.
#define VERIFY(condition) \
if (!(condition)) { \
Unknown(instr); \
return; \
}
// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); }
// For currently unimplemented decodings the disassembler calls
// UnknownFormat(instr) which will just print opcode name of the
// instruction bits.
void Decoder::UnknownFormat(Instruction* instr, const char* name) {
char buffer[100];
snprintf(buffer, sizeof(buffer), "%s (unknown-format)", name);
Format(instr, buffer);
}
void Decoder::DecodeExt1(Instruction* instr) {
switch (instr->Bits(10, 1) << 1) {
case MCRF: {
UnknownFormat(instr, "mcrf"); // not used by V8
break;
}
case BCLRX: {
int bo = instr->Bits(25, 21) << 21;
int bi = instr->Bits(20, 16);
CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1));
switch (bo) {
case DCBNZF: {
UnknownFormat(instr, "bclrx-dcbnzf");
break;
}
case DCBEZF: {
UnknownFormat(instr, "bclrx-dcbezf");
break;
}
case BF: {
switch (cond) {
case CR_EQ:
Format(instr, "bnelr'l'cr");
break;
case CR_GT:
Format(instr, "blelr'l'cr");
break;
case CR_LT:
Format(instr, "bgelr'l'cr");
break;
case CR_SO:
Format(instr, "bnsolr'l'cr");
break;
}
break;
}
case DCBNZT: {
UnknownFormat(instr, "bclrx-dcbbzt");
break;
}
case DCBEZT: {
UnknownFormat(instr, "bclrx-dcbnezt");
break;
}
case BT: {
switch (cond) {
case CR_EQ:
Format(instr, "beqlr'l'cr");
break;
case CR_GT:
Format(instr, "bgtlr'l'cr");
break;
case CR_LT:
Format(instr, "bltlr'l'cr");
break;
case CR_SO:
Format(instr, "bsolr'l'cr");
break;
}
break;
}
case DCBNZ: {
UnknownFormat(instr, "bclrx-dcbnz");
break;
}
case DCBEZ: {
UnknownFormat(instr, "bclrx-dcbez"); // not used by V8
break;
}
case BA: {
Format(instr, "blr'l");
break;
}
}
break;
}
case BCCTRX: {
switch (instr->Bits(25, 21) << 21) {
case DCBNZF: {
UnknownFormat(instr, "bcctrx-dcbnzf");
break;
}
case DCBEZF: {
UnknownFormat(instr, "bcctrx-dcbezf");
break;
}
case BF: {
UnknownFormat(instr, "bcctrx-bf");
break;
}
case DCBNZT: {
UnknownFormat(instr, "bcctrx-dcbnzt");
break;
}
case DCBEZT: {
UnknownFormat(instr, "bcctrx-dcbezf");
break;
}
case BT: {
UnknownFormat(instr, "bcctrx-bt");
break;
}
case DCBNZ: {
UnknownFormat(instr, "bcctrx-dcbnz");
break;
}
case DCBEZ: {
UnknownFormat(instr, "bcctrx-dcbez");
break;
}
case BA: {
if (instr->Bit(0) == 1) {
Format(instr, "bctrl");
} else {
Format(instr, "bctr");
}
break;
}
default: { UNREACHABLE(); }
}
break;
}
case CRNOR: {
Format(instr, "crnor (stuff)");
break;
}
case RFI: {
Format(instr, "rfi (stuff)");
break;
}
case CRANDC: {
Format(instr, "crandc (stuff)");
break;
}
case ISYNC: {
Format(instr, "isync (stuff)");
break;
}
case CRXOR: {
Format(instr, "crxor (stuff)");
break;
}
case CRNAND: {
UnknownFormat(instr, "crnand");
break;
}
case CRAND: {
UnknownFormat(instr, "crand");
break;
}
case CREQV: {
UnknownFormat(instr, "creqv");
break;
}
case CRORC: {
UnknownFormat(instr, "crorc");
break;
}
case CROR: {
UnknownFormat(instr, "cror");
break;
}
default: {
Unknown(instr); // not used by V8
}
}
}
void Decoder::DecodeExt2(Instruction* instr) {
// Some encodings are 10-1 bits, handle those first
switch (instr->Bits(10, 1) << 1) {
case SRWX: {
Format(instr, "srw'. 'ra, 'rs, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case SRDX: {
Format(instr, "srd'. 'ra, 'rs, 'rb");
return;
}
#endif
case SRAW: {
Format(instr, "sraw'. 'ra, 'rs, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case SRAD: {
Format(instr, "srad'. 'ra, 'rs, 'rb");
return;
}
#endif
case SRAWIX: {
Format(instr, "srawi'. 'ra,'rs,'sh");
return;
}
case EXTSH: {
Format(instr, "extsh'. 'ra, 'rs");
return;
}
#if V8_TARGET_ARCH_PPC64
case EXTSW: {
Format(instr, "extsw'. 'ra, 'rs");
return;
}
#endif
case EXTSB: {
Format(instr, "extsb'. 'ra, 'rs");
return;
}
case LFSX: {
Format(instr, "lfsx 'rt, 'ra, 'rb");
return;
}
case LFSUX: {
Format(instr, "lfsux 'rt, 'ra, 'rb");
return;
}
case LFDX: {
Format(instr, "lfdx 'rt, 'ra, 'rb");
return;
}
case LFDUX: {
Format(instr, "lfdux 'rt, 'ra, 'rb");
return;
}
case STFSX: {
Format(instr, "stfsx 'rs, 'ra, 'rb");
return;
}
case STFSUX: {
Format(instr, "stfsux 'rs, 'ra, 'rb");
return;
}
case STFDX: {
Format(instr, "stfdx 'rs, 'ra, 'rb");
return;
}
case STFDUX: {
Format(instr, "stfdux 'rs, 'ra, 'rb");
return;
}
case POPCNTW: {
Format(instr, "popcntw 'ra, 'rs");
return;
}
#if V8_TARGET_ARCH_PPC64
case POPCNTD: {
Format(instr, "popcntd 'ra, 'rs");
return;
}
#endif
}
switch (instr->Bits(10, 2) << 2) {
case SRADIX: {
Format(instr, "sradi'. 'ra,'rs,'sh");
return;
}
}
// ?? are all of these xo_form?
switch (instr->Bits(9, 1) << 1) {
case CMP: {
#if V8_TARGET_ARCH_PPC64
if (instr->Bit(21)) {
#endif
Format(instr, "cmp 'ra, 'rb");
#if V8_TARGET_ARCH_PPC64
} else {
Format(instr, "cmpw 'ra, 'rb");
}
#endif
return;
}
case SLWX: {
Format(instr, "slw'. 'ra, 'rs, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case SLDX: {
Format(instr, "sld'. 'ra, 'rs, 'rb");
return;
}
#endif
case SUBFCX: {
Format(instr, "subfc'. 'rt, 'ra, 'rb");
return;
}
case SUBFEX: {
Format(instr, "subfe'. 'rt, 'ra, 'rb");
return;
}
case ADDCX: {
Format(instr, "addc'. 'rt, 'ra, 'rb");
return;
}
case ADDEX: {
Format(instr, "adde'. 'rt, 'ra, 'rb");
return;
}
case CNTLZWX: {
Format(instr, "cntlzw'. 'ra, 'rs");
return;
}
#if V8_TARGET_ARCH_PPC64
case CNTLZDX: {
Format(instr, "cntlzd'. 'ra, 'rs");
return;
}
#endif
case ANDX: {
Format(instr, "and'. 'ra, 'rs, 'rb");
return;
}
case ANDCX: {
Format(instr, "andc'. 'ra, 'rs, 'rb");
return;
}
case CMPL: {
#if V8_TARGET_ARCH_PPC64
if (instr->Bit(21)) {
#endif
Format(instr, "cmpl 'ra, 'rb");
#if V8_TARGET_ARCH_PPC64
} else {
Format(instr, "cmplw 'ra, 'rb");
}
#endif
return;
}
case NEGX: {
Format(instr, "neg'. 'rt, 'ra");
return;
}
case NORX: {
Format(instr, "nor'. 'rt, 'ra, 'rb");
return;
}
case SUBFX: {
Format(instr, "subf'. 'rt, 'ra, 'rb");
return;
}
case MULHWX: {
Format(instr, "mulhw'o'. 'rt, 'ra, 'rb");
return;
}
case ADDZEX: {
Format(instr, "addze'. 'rt, 'ra");
return;
}
case MULLW: {
Format(instr, "mullw'o'. 'rt, 'ra, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case MULLD: {
Format(instr, "mulld'o'. 'rt, 'ra, 'rb");
return;
}
#endif
case DIVW: {
Format(instr, "divw'o'. 'rt, 'ra, 'rb");
return;
}
case DIVWU: {
Format(instr, "divwu'o'. 'rt, 'ra, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case DIVD: {
Format(instr, "divd'o'. 'rt, 'ra, 'rb");
return;
}
#endif
case ADDX: {
Format(instr, "add'o 'rt, 'ra, 'rb");
return;
}
case XORX: {
Format(instr, "xor'. 'ra, 'rs, 'rb");
return;
}
case ORX: {
if (instr->RTValue() == instr->RBValue()) {
Format(instr, "mr 'ra, 'rb");
} else {
Format(instr, "or 'ra, 'rs, 'rb");
}
return;
}
case MFSPR: {
int spr = instr->Bits(20, 11);
if (256 == spr) {
Format(instr, "mflr 'rt");
} else {
Format(instr, "mfspr 'rt ??");
}
return;
}
case MTSPR: {
int spr = instr->Bits(20, 11);
if (256 == spr) {
Format(instr, "mtlr 'rt");
} else if (288 == spr) {
Format(instr, "mtctr 'rt");
} else {
Format(instr, "mtspr 'rt ??");
}
return;
}
case MFCR: {
Format(instr, "mfcr 'rt");
return;
}
case STWX: {
Format(instr, "stwx 'rs, 'ra, 'rb");
return;
}
case STWUX: {
Format(instr, "stwux 'rs, 'ra, 'rb");
return;
}
case STBX: {
Format(instr, "stbx 'rs, 'ra, 'rb");
return;
}
case STBUX: {
Format(instr, "stbux 'rs, 'ra, 'rb");
return;
}
case STHX: {
Format(instr, "sthx 'rs, 'ra, 'rb");
return;
}
case STHUX: {
Format(instr, "sthux 'rs, 'ra, 'rb");
return;
}
case LWZX: {
Format(instr, "lwzx 'rt, 'ra, 'rb");
return;
}
case LWZUX: {
Format(instr, "lwzux 'rt, 'ra, 'rb");
return;
}
case LWAX: {
Format(instr, "lwax 'rt, 'ra, 'rb");
return;
}
case LBZX: {
Format(instr, "lbzx 'rt, 'ra, 'rb");
return;
}
case LBZUX: {
Format(instr, "lbzux 'rt, 'ra, 'rb");
return;
}
case LHZX: {
Format(instr, "lhzx 'rt, 'ra, 'rb");
return;
}
case LHZUX: {
Format(instr, "lhzux 'rt, 'ra, 'rb");
return;
}
case LHAX: {
Format(instr, "lhax 'rt, 'ra, 'rb");
return;
}
#if V8_TARGET_ARCH_PPC64
case LDX: {
Format(instr, "ldx 'rt, 'ra, 'rb");
return;
}
case LDUX: {
Format(instr, "ldux 'rt, 'ra, 'rb");
return;
}
case STDX: {
Format(instr, "stdx 'rt, 'ra, 'rb");
return;
}
case STDUX: {
Format(instr, "stdux 'rt, 'ra, 'rb");
return;
}
case MFVSRD: {
Format(instr, "mffprd 'ra, 'Dt");
return;
}
case MFVSRWZ: {
Format(instr, "mffprwz 'ra, 'Dt");
return;
}
case MTVSRD: {
Format(instr, "mtfprd 'Dt, 'ra");
return;
}
case MTVSRWA: {
Format(instr, "mtfprwa 'Dt, 'ra");
return;
}
case MTVSRWZ: {
Format(instr, "mtfprwz 'Dt, 'ra");
return;
}
#endif
}
switch (instr->Bits(5, 1) << 1) {
case ISEL: {
Format(instr, "isel 'rt, 'ra, 'rb");
return;
}
default: {
Unknown(instr); // not used by V8
}
}
}
void Decoder::DecodeExt3(Instruction* instr) {
switch (instr->Bits(10, 1) << 1) {
case FCFID: {
Format(instr, "fcfids'. 'Dt, 'Db");
break;
}
case FCFIDU: {
Format(instr, "fcfidus'.'Dt, 'Db");
break;
}
default: {
Unknown(instr); // not used by V8
}
}
}
void Decoder::DecodeExt4(Instruction* instr) {
switch (instr->Bits(5, 1) << 1) {
case FDIV: {
Format(instr, "fdiv'. 'Dt, 'Da, 'Db");
return;
}
case FSUB: {
Format(instr, "fsub'. 'Dt, 'Da, 'Db");
return;
}
case FADD: {
Format(instr, "fadd'. 'Dt, 'Da, 'Db");
return;
}
case FSQRT: {
Format(instr, "fsqrt'. 'Dt, 'Db");
return;
}
case FSEL: {
Format(instr, "fsel'. 'Dt, 'Da, 'Dc, 'Db");
return;
}
case FMUL: {
Format(instr, "fmul'. 'Dt, 'Da, 'Dc");
return;
}
case FMSUB: {
Format(instr, "fmsub'. 'Dt, 'Da, 'Dc, 'Db");
return;
}
case FMADD: {
Format(instr, "fmadd'. 'Dt, 'Da, 'Dc, 'Db");
return;
}
}
switch (instr->Bits(10, 1) << 1) {
case FCMPU: {
Format(instr, "fcmpu 'Da, 'Db");
break;
}
case FRSP: {
Format(instr, "frsp'. 'Dt, 'Db");
break;
}
case FCFID: {
Format(instr, "fcfid'. 'Dt, 'Db");
break;
}
case FCFIDU: {
Format(instr, "fcfidu'. 'Dt, 'Db");
break;
}
case FCTID: {
Format(instr, "fctid 'Dt, 'Db");
break;
}
case FCTIDZ: {
Format(instr, "fctidz 'Dt, 'Db");
break;
}
case FCTIDU: {
Format(instr, "fctidu 'Dt, 'Db");
break;
}
case FCTIDUZ: {
Format(instr, "fctiduz 'Dt, 'Db");
break;
}
case FCTIW: {
Format(instr, "fctiw'. 'Dt, 'Db");
break;
}
case FCTIWZ: {
Format(instr, "fctiwz'. 'Dt, 'Db");
break;
}
case FMR: {
Format(instr, "fmr'. 'Dt, 'Db");
break;
}
case MTFSFI: {
Format(instr, "mtfsfi'. ?,?");
break;
}
case MFFS: {
Format(instr, "mffs'. 'Dt");
break;
}
case MTFSF: {
Format(instr, "mtfsf'. 'Db ?,?,?");
break;
}
case FABS: {
Format(instr, "fabs'. 'Dt, 'Db");
break;
}
case FRIN: {
Format(instr, "frin. 'Dt, 'Db");
break;
}
case FRIZ: {
Format(instr, "friz. 'Dt, 'Db");
break;
}
case FRIP: {
Format(instr, "frip. 'Dt, 'Db");
break;
}
case FRIM: {
Format(instr, "frim. 'Dt, 'Db");
break;
}
case FNEG: {
Format(instr, "fneg'. 'Dt, 'Db");
break;
}
case MCRFS: {
Format(instr, "mcrfs ?,?");
break;
}
case MTFSB0: {
Format(instr, "mtfsb0'. ?");
break;
}
case MTFSB1: {
Format(instr, "mtfsb1'. ?");
break;
}
default: {
Unknown(instr); // not used by V8
}
}
}
void Decoder::DecodeExt5(Instruction* instr) {
switch (instr->Bits(4, 2) << 2) {
case RLDICL: {
Format(instr, "rldicl'. 'ra, 'rs, 'sh, 'mb");
return;
}
case RLDICR: {
Format(instr, "rldicr'. 'ra, 'rs, 'sh, 'me");
return;
}
case RLDIC: {
Format(instr, "rldic'. 'ra, 'rs, 'sh, 'mb");
return;
}
case RLDIMI: {
Format(instr, "rldimi'. 'ra, 'rs, 'sh, 'mb");
return;
}
}
switch (instr->Bits(4, 1) << 1) {
case RLDCL: {
Format(instr, "rldcl'. 'ra, 'rs, 'sb, 'mb");
return;
}
}
Unknown(instr); // not used by V8
}
#undef VERIFIY
// Disassemble the instruction at *instr_ptr into the output buffer.
int Decoder::InstructionDecode(byte* instr_ptr) {
Instruction* instr = Instruction::At(instr_ptr);
// Print raw instruction bytes.
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ",
instr->InstructionBits());
if (ABI_USES_FUNCTION_DESCRIPTORS && instr->InstructionBits() == 0) {
// The first field will be identified as a jump table entry. We
// emit the rest of the structure as zero, so just skip past them.
Format(instr, "constant");
return Instruction::kInstrSize;
}
switch (instr->OpcodeValue() << 26) {
case TWI: {
PrintSoftwareInterrupt(instr->SvcValue());
break;
}
case MULLI: {
UnknownFormat(instr, "mulli");
break;
}
case SUBFIC: {
Format(instr, "subfic 'rt, 'ra, 'int16");
break;
}
case CMPLI: {
#if V8_TARGET_ARCH_PPC64
if (instr->Bit(21)) {
#endif
Format(instr, "cmpli 'ra, 'uint16");
#if V8_TARGET_ARCH_PPC64
} else {
Format(instr, "cmplwi 'ra, 'uint16");
}
#endif
break;
}
case CMPI: {
#if V8_TARGET_ARCH_PPC64
if (instr->Bit(21)) {
#endif
Format(instr, "cmpi 'ra, 'int16");
#if V8_TARGET_ARCH_PPC64
} else {
Format(instr, "cmpwi 'ra, 'int16");
}
#endif
break;
}
case ADDIC: {
Format(instr, "addic 'rt, 'ra, 'int16");
break;
}
case ADDICx: {
UnknownFormat(instr, "addicx");
break;
}
case ADDI: {
if (instr->RAValue() == 0) {
// this is load immediate
Format(instr, "li 'rt, 'int16");
} else {
Format(instr, "addi 'rt, 'ra, 'int16");
}
break;
}
case ADDIS: {
if (instr->RAValue() == 0) {
Format(instr, "lis 'rt, 'int16");
} else {
Format(instr, "addis 'rt, 'ra, 'int16");
}
break;
}
case BCX: {
int bo = instr->Bits(25, 21) << 21;
int bi = instr->Bits(20, 16);
CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1));
switch (bo) {
case BT: { // Branch if condition true
switch (cond) {
case CR_EQ:
Format(instr, "beq'l'a'cr 'target16");
break;
case CR_GT:
Format(instr, "bgt'l'a'cr 'target16");
break;
case CR_LT:
Format(instr, "blt'l'a'cr 'target16");
break;
case CR_SO:
Format(instr, "bso'l'a'cr 'target16");
break;
}
break;
}
case BF: { // Branch if condition false
switch (cond) {
case CR_EQ:
Format(instr, "bne'l'a'cr 'target16");
break;
case CR_GT:
Format(instr, "ble'l'a'cr 'target16");
break;
case CR_LT:
Format(instr, "bge'l'a'cr 'target16");
break;
case CR_SO:
Format(instr, "bnso'l'a'cr 'target16");
break;
}
break;
}
case DCBNZ: { // Decrement CTR; branch if CTR != 0
Format(instr, "bdnz'l'a 'target16");
break;
}
default:
Format(instr, "bc'l'a'cr 'target16");
break;
}
break;
}
case SC: {
UnknownFormat(instr, "sc");
break;
}
case BX: {
Format(instr, "b'l'a 'target26");
break;
}
case EXT1: {
DecodeExt1(instr);
break;
}
case RLWIMIX: {
Format(instr, "rlwimi'. 'ra, 'rs, 'sh, 'me, 'mb");
break;
}
case RLWINMX: {
Format(instr, "rlwinm'. 'ra, 'rs, 'sh, 'me, 'mb");
break;
}
case RLWNMX: {
Format(instr, "rlwnm'. 'ra, 'rs, 'rb, 'me, 'mb");
break;
}
case ORI: {
Format(instr, "ori 'ra, 'rs, 'uint16");
break;
}
case ORIS: {
Format(instr, "oris 'ra, 'rs, 'uint16");
break;
}
case XORI: {
Format(instr, "xori 'ra, 'rs, 'uint16");
break;
}
case XORIS: {
Format(instr, "xoris 'ra, 'rs, 'uint16");
break;
}
case ANDIx: {
Format(instr, "andi. 'ra, 'rs, 'uint16");
break;
}
case ANDISx: {
Format(instr, "andis. 'ra, 'rs, 'uint16");
break;
}
case EXT2: {
DecodeExt2(instr);
break;
}
case LWZ: {
Format(instr, "lwz 'rt, 'int16('ra)");
break;
}
case LWZU: {
Format(instr, "lwzu 'rt, 'int16('ra)");
break;
}
case LBZ: {
Format(instr, "lbz 'rt, 'int16('ra)");
break;
}
case LBZU: {
Format(instr, "lbzu 'rt, 'int16('ra)");
break;
}
case STW: {
Format(instr, "stw 'rs, 'int16('ra)");
break;
}
case STWU: {
Format(instr, "stwu 'rs, 'int16('ra)");
break;
}
case STB: {
Format(instr, "stb 'rs, 'int16('ra)");
break;
}
case STBU: {
Format(instr, "stbu 'rs, 'int16('ra)");
break;
}
case LHZ: {
Format(instr, "lhz 'rt, 'int16('ra)");
break;
}
case LHZU: {
Format(instr, "lhzu 'rt, 'int16('ra)");
break;
}
case LHA: {
Format(instr, "lha 'rt, 'int16('ra)");
break;
}
case LHAU: {
Format(instr, "lhau 'rt, 'int16('ra)");
break;
}
case STH: {
Format(instr, "sth 'rs, 'int16('ra)");
break;
}
case STHU: {
Format(instr, "sthu 'rs, 'int16('ra)");
break;
}
case LMW: {
UnknownFormat(instr, "lmw");
break;
}
case STMW: {
UnknownFormat(instr, "stmw");
break;
}
case LFS: {
Format(instr, "lfs 'Dt, 'int16('ra)");
break;
}
case LFSU: {
Format(instr, "lfsu 'Dt, 'int16('ra)");
break;
}
case LFD: {
Format(instr, "lfd 'Dt, 'int16('ra)");
break;
}
case LFDU: {
Format(instr, "lfdu 'Dt, 'int16('ra)");
break;
}
case STFS: {
Format(instr, "stfs 'Dt, 'int16('ra)");
break;
}
case STFSU: {
Format(instr, "stfsu 'Dt, 'int16('ra)");
break;
}
case STFD: {
Format(instr, "stfd 'Dt, 'int16('ra)");
break;
}
case STFDU: {
Format(instr, "stfdu 'Dt, 'int16('ra)");
break;
}
case EXT3: {
DecodeExt3(instr);
break;
}
case EXT4: {
DecodeExt4(instr);
break;
}
case EXT5: {
DecodeExt5(instr);
break;
}
#if V8_TARGET_ARCH_PPC64
case LD: {
switch (instr->Bits(1, 0)) {
case 0:
Format(instr, "ld 'rt, 'd('ra)");
break;
case 1:
Format(instr, "ldu 'rt, 'd('ra)");
break;
case 2:
Format(instr, "lwa 'rt, 'd('ra)");
break;
}
break;
}
case STD: { // could be STD or STDU
if (instr->Bit(0) == 0) {
Format(instr, "std 'rs, 'd('ra)");
} else {
Format(instr, "stdu 'rs, 'd('ra)");
}
break;
}
#endif
default: {
Unknown(instr);
break;
}
}
return Instruction::kInstrSize;
}
} // namespace internal
} // namespace v8
//------------------------------------------------------------------------------
namespace disasm {
const char* NameConverter::NameOfAddress(byte* addr) const {
v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
return tmp_buffer_.start();
}
const char* NameConverter::NameOfConstant(byte* addr) const {
return NameOfAddress(addr);
}
const char* NameConverter::NameOfCPURegister(int reg) const {
return v8::internal::GetRegConfig()->GetGeneralRegisterName(reg);
}
const char* NameConverter::NameOfByteCPURegister(int reg) const {
UNREACHABLE(); // PPC does not have the concept of a byte register
return "nobytereg";
}
const char* NameConverter::NameOfXMMRegister(int reg) const {
UNREACHABLE(); // PPC does not have any XMM registers
return "noxmmreg";
}
const char* NameConverter::NameInCode(byte* addr) const {
// The default name converter is called for unknown code. So we will not try
// to access any memory.
return "";
}
//------------------------------------------------------------------------------
Disassembler::Disassembler(const NameConverter& converter)
: converter_(converter) {}
Disassembler::~Disassembler() {}
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
byte* instruction) {
v8::internal::Decoder d(converter_, buffer);
return d.InstructionDecode(instruction);
}
// The PPC assembler does not currently use constant pools.
int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; }
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
NameConverter converter;
Disassembler d(converter);
for (byte* pc = begin; pc < end;) {
v8::internal::EmbeddedVector<char, 128> buffer;
buffer[0] = '\0';
byte* prev_pc = pc;
pc += d.InstructionDecode(buffer, pc);
v8::internal::PrintF(f, "%p %08x %s\n", static_cast<void*>(prev_pc),
*reinterpret_cast<int32_t*>(prev_pc), buffer.start());
}
}
} // namespace disasm
#endif // V8_TARGET_ARCH_PPC