// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // A Disassembler object is used to disassemble a block of code instruction by // instruction. The default implementation of the NameConverter object can be // overriden to modify register names or to do symbol lookup on addresses. // // The example below will disassemble a block of code and print it to stdout. // // NameConverter converter; // Disassembler d(converter); // for (byte* pc = begin; pc < end;) { // v8::internal::EmbeddedVector<char, 256> buffer; // byte* prev_pc = pc; // pc += d.InstructionDecode(buffer, pc); // printf("%p %08x %s\n", // prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); // } // // The Disassembler class also has a convenience method to disassemble a block // of code into a FILE*, meaning that the above functionality could also be // achieved by just calling Disassembler::Disassemble(stdout, begin, end); #include <assert.h> #include <stdarg.h> #include <stdio.h> #include <string.h> #if V8_TARGET_ARCH_PPC #include "src/base/platform/platform.h" #include "src/disasm.h" #include "src/macro-assembler.h" #include "src/ppc/constants-ppc.h" namespace v8 { namespace internal { const auto GetRegConfig = RegisterConfiguration::Crankshaft; //------------------------------------------------------------------------------ // Decoder decodes and disassembles instructions into an output buffer. // It uses the converter to convert register names and call destinations into // more informative description. class Decoder { public: Decoder(const disasm::NameConverter& converter, Vector<char> out_buffer) : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { out_buffer_[out_buffer_pos_] = '\0'; } ~Decoder() {} // Writes one disassembled instruction into 'buffer' (0-terminated). // Returns the length of the disassembled machine instruction in bytes. int InstructionDecode(byte* instruction); private: // Bottleneck functions to print into the out_buffer. void PrintChar(const char ch); void Print(const char* str); // Printing of common values. void PrintRegister(int reg); void PrintDRegister(int reg); int FormatFPRegister(Instruction* instr, const char* format); void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); // Handle formatting of instructions and their options. int FormatRegister(Instruction* instr, const char* option); int FormatOption(Instruction* instr, const char* option); void Format(Instruction* instr, const char* format); void Unknown(Instruction* instr); void UnknownFormat(Instruction* instr, const char* opcname); void DecodeExt1(Instruction* instr); void DecodeExt2(Instruction* instr); void DecodeExt3(Instruction* instr); void DecodeExt4(Instruction* instr); void DecodeExt5(Instruction* instr); const disasm::NameConverter& converter_; Vector<char> out_buffer_; int out_buffer_pos_; DISALLOW_COPY_AND_ASSIGN(Decoder); }; // Support for assertions in the Decoder formatting functions. #define STRING_STARTS_WITH(string, compare_string) \ (strncmp(string, compare_string, strlen(compare_string)) == 0) // Append the ch to the output buffer. void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } // Append the str to the output buffer. void Decoder::Print(const char* str) { char cur = *str++; while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { PrintChar(cur); cur = *str++; } out_buffer_[out_buffer_pos_] = 0; } // Print the register name according to the active name converter. void Decoder::PrintRegister(int reg) { Print(converter_.NameOfCPURegister(reg)); } // Print the double FP register name according to the active name converter. void Decoder::PrintDRegister(int reg) { Print(GetRegConfig()->GetDoubleRegisterName(reg)); } // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of // the FormatOption method. void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { switch (svc) { case kCallRtRedirected: Print("call rt redirected"); return; case kBreakpoint: Print("breakpoint"); return; default: if (svc >= kStopCode) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x", svc & kStopCodeMask, svc & kStopCodeMask); } else { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc); } return; } } // Handle all register based formatting in this function to reduce the // complexity of FormatOption. int Decoder::FormatRegister(Instruction* instr, const char* format) { DCHECK(format[0] == 'r'); if ((format[1] == 't') || (format[1] == 's')) { // 'rt & 'rs register int reg = instr->RTValue(); PrintRegister(reg); return 2; } else if (format[1] == 'a') { // 'ra: RA register int reg = instr->RAValue(); PrintRegister(reg); return 2; } else if (format[1] == 'b') { // 'rb: RB register int reg = instr->RBValue(); PrintRegister(reg); return 2; } UNREACHABLE(); return -1; } // Handle all FP register based formatting in this function to reduce the // complexity of FormatOption. int Decoder::FormatFPRegister(Instruction* instr, const char* format) { DCHECK(format[0] == 'D'); int retval = 2; int reg = -1; if (format[1] == 't') { reg = instr->RTValue(); } else if (format[1] == 'a') { reg = instr->RAValue(); } else if (format[1] == 'b') { reg = instr->RBValue(); } else if (format[1] == 'c') { reg = instr->RCValue(); } else { UNREACHABLE(); } PrintDRegister(reg); return retval; } // FormatOption takes a formatting string and interprets it based on // the current instructions. The format string points to the first // character of the option string (the option escape has already been // consumed by the caller.) FormatOption returns the number of // characters that were consumed from the formatting string. int Decoder::FormatOption(Instruction* instr, const char* format) { switch (format[0]) { case 'o': { if (instr->Bit(10) == 1) { Print("o"); } return 1; } case '.': { if (instr->Bit(0) == 1) { Print("."); } else { Print(" "); // ensure consistent spacing } return 1; } case 'r': { return FormatRegister(instr, format); } case 'D': { return FormatFPRegister(instr, format); } case 'i': { // int16 int32_t value = (instr->Bits(15, 0) << 16) >> 16; out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); return 5; } case 'u': { // uint16 int32_t value = instr->Bits(15, 0); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); return 6; } case 'l': { // Link (LK) Bit 0 if (instr->Bit(0) == 1) { Print("l"); } return 1; } case 'a': { // Absolute Address Bit 1 if (instr->Bit(1) == 1) { Print("a"); } return 1; } case 'c': { // 'cr: condition register of branch instruction int code = instr->Bits(20, 18); if (code != 7) { out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, " cr%d", code); } return 2; } case 't': { // 'target: target of branch instructions // target26 or target16 DCHECK(STRING_STARTS_WITH(format, "target")); if ((format[6] == '2') && (format[7] == '6')) { int off = ((instr->Bits(25, 2)) << 8) >> 6; out_buffer_pos_ += SNPrintF( out_buffer_ + out_buffer_pos_, "%+d -> %s", off, converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); return 8; } else if ((format[6] == '1') && (format[7] == '6')) { int off = ((instr->Bits(15, 2)) << 18) >> 16; out_buffer_pos_ += SNPrintF( out_buffer_ + out_buffer_pos_, "%+d -> %s", off, converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); return 8; } case 's': { DCHECK(format[1] == 'h'); int32_t value = 0; int32_t opcode = instr->OpcodeValue() << 26; int32_t sh = instr->Bits(15, 11); if (opcode == EXT5 || (opcode == EXT2 && instr->Bits(10, 2) << 2 == SRADIX)) { // SH Bits 1 and 15-11 (split field) value = (sh | (instr->Bit(1) << 5)); } else { // SH Bits 15-11 value = (sh << 26) >> 26; } out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); return 2; } case 'm': { int32_t value = 0; if (format[1] == 'e') { if (instr->OpcodeValue() << 26 != EXT5) { // ME Bits 10-6 value = (instr->Bits(10, 6) << 26) >> 26; } else { // ME Bits 5 and 10-6 (split field) value = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); } } else if (format[1] == 'b') { if (instr->OpcodeValue() << 26 != EXT5) { // MB Bits 5-1 value = (instr->Bits(5, 1) << 26) >> 26; } else { // MB Bits 5 and 10-6 (split field) value = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); } } else { UNREACHABLE(); // bad format } out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); return 2; } } #if V8_TARGET_ARCH_PPC64 case 'd': { // ds value for offset int32_t value = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); return 1; } #endif default: { UNREACHABLE(); break; } } UNREACHABLE(); return -1; } // Format takes a formatting string for a whole instruction and prints it into // the output buffer. All escaped options are handed to FormatOption to be // parsed further. void Decoder::Format(Instruction* instr, const char* format) { char cur = *format++; while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { if (cur == '\'') { // Single quote is used as the formatting escape. format += FormatOption(instr, format); } else { out_buffer_[out_buffer_pos_++] = cur; } cur = *format++; } out_buffer_[out_buffer_pos_] = '\0'; } // The disassembler may end up decoding data inlined in the code. We do not want // it to crash if the data does not ressemble any known instruction. #define VERIFY(condition) \ if (!(condition)) { \ Unknown(instr); \ return; \ } // For currently unimplemented decodings the disassembler calls Unknown(instr) // which will just print "unknown" of the instruction bits. void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } // For currently unimplemented decodings the disassembler calls // UnknownFormat(instr) which will just print opcode name of the // instruction bits. void Decoder::UnknownFormat(Instruction* instr, const char* name) { char buffer[100]; snprintf(buffer, sizeof(buffer), "%s (unknown-format)", name); Format(instr, buffer); } void Decoder::DecodeExt1(Instruction* instr) { switch (instr->Bits(10, 1) << 1) { case MCRF: { UnknownFormat(instr, "mcrf"); // not used by V8 break; } case BCLRX: { int bo = instr->Bits(25, 21) << 21; int bi = instr->Bits(20, 16); CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1)); switch (bo) { case DCBNZF: { UnknownFormat(instr, "bclrx-dcbnzf"); break; } case DCBEZF: { UnknownFormat(instr, "bclrx-dcbezf"); break; } case BF: { switch (cond) { case CR_EQ: Format(instr, "bnelr'l'cr"); break; case CR_GT: Format(instr, "blelr'l'cr"); break; case CR_LT: Format(instr, "bgelr'l'cr"); break; case CR_SO: Format(instr, "bnsolr'l'cr"); break; } break; } case DCBNZT: { UnknownFormat(instr, "bclrx-dcbbzt"); break; } case DCBEZT: { UnknownFormat(instr, "bclrx-dcbnezt"); break; } case BT: { switch (cond) { case CR_EQ: Format(instr, "beqlr'l'cr"); break; case CR_GT: Format(instr, "bgtlr'l'cr"); break; case CR_LT: Format(instr, "bltlr'l'cr"); break; case CR_SO: Format(instr, "bsolr'l'cr"); break; } break; } case DCBNZ: { UnknownFormat(instr, "bclrx-dcbnz"); break; } case DCBEZ: { UnknownFormat(instr, "bclrx-dcbez"); // not used by V8 break; } case BA: { Format(instr, "blr'l"); break; } } break; } case BCCTRX: { switch (instr->Bits(25, 21) << 21) { case DCBNZF: { UnknownFormat(instr, "bcctrx-dcbnzf"); break; } case DCBEZF: { UnknownFormat(instr, "bcctrx-dcbezf"); break; } case BF: { UnknownFormat(instr, "bcctrx-bf"); break; } case DCBNZT: { UnknownFormat(instr, "bcctrx-dcbnzt"); break; } case DCBEZT: { UnknownFormat(instr, "bcctrx-dcbezf"); break; } case BT: { UnknownFormat(instr, "bcctrx-bt"); break; } case DCBNZ: { UnknownFormat(instr, "bcctrx-dcbnz"); break; } case DCBEZ: { UnknownFormat(instr, "bcctrx-dcbez"); break; } case BA: { if (instr->Bit(0) == 1) { Format(instr, "bctrl"); } else { Format(instr, "bctr"); } break; } default: { UNREACHABLE(); } } break; } case CRNOR: { Format(instr, "crnor (stuff)"); break; } case RFI: { Format(instr, "rfi (stuff)"); break; } case CRANDC: { Format(instr, "crandc (stuff)"); break; } case ISYNC: { Format(instr, "isync (stuff)"); break; } case CRXOR: { Format(instr, "crxor (stuff)"); break; } case CRNAND: { UnknownFormat(instr, "crnand"); break; } case CRAND: { UnknownFormat(instr, "crand"); break; } case CREQV: { UnknownFormat(instr, "creqv"); break; } case CRORC: { UnknownFormat(instr, "crorc"); break; } case CROR: { UnknownFormat(instr, "cror"); break; } default: { Unknown(instr); // not used by V8 } } } void Decoder::DecodeExt2(Instruction* instr) { // Some encodings are 10-1 bits, handle those first switch (instr->Bits(10, 1) << 1) { case SRWX: { Format(instr, "srw'. 'ra, 'rs, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case SRDX: { Format(instr, "srd'. 'ra, 'rs, 'rb"); return; } #endif case SRAW: { Format(instr, "sraw'. 'ra, 'rs, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case SRAD: { Format(instr, "srad'. 'ra, 'rs, 'rb"); return; } #endif case SRAWIX: { Format(instr, "srawi'. 'ra,'rs,'sh"); return; } case EXTSH: { Format(instr, "extsh'. 'ra, 'rs"); return; } #if V8_TARGET_ARCH_PPC64 case EXTSW: { Format(instr, "extsw'. 'ra, 'rs"); return; } #endif case EXTSB: { Format(instr, "extsb'. 'ra, 'rs"); return; } case LFSX: { Format(instr, "lfsx 'rt, 'ra, 'rb"); return; } case LFSUX: { Format(instr, "lfsux 'rt, 'ra, 'rb"); return; } case LFDX: { Format(instr, "lfdx 'rt, 'ra, 'rb"); return; } case LFDUX: { Format(instr, "lfdux 'rt, 'ra, 'rb"); return; } case STFSX: { Format(instr, "stfsx 'rs, 'ra, 'rb"); return; } case STFSUX: { Format(instr, "stfsux 'rs, 'ra, 'rb"); return; } case STFDX: { Format(instr, "stfdx 'rs, 'ra, 'rb"); return; } case STFDUX: { Format(instr, "stfdux 'rs, 'ra, 'rb"); return; } case POPCNTW: { Format(instr, "popcntw 'ra, 'rs"); return; } #if V8_TARGET_ARCH_PPC64 case POPCNTD: { Format(instr, "popcntd 'ra, 'rs"); return; } #endif } switch (instr->Bits(10, 2) << 2) { case SRADIX: { Format(instr, "sradi'. 'ra,'rs,'sh"); return; } } // ?? are all of these xo_form? switch (instr->Bits(9, 1) << 1) { case CMP: { #if V8_TARGET_ARCH_PPC64 if (instr->Bit(21)) { #endif Format(instr, "cmp 'ra, 'rb"); #if V8_TARGET_ARCH_PPC64 } else { Format(instr, "cmpw 'ra, 'rb"); } #endif return; } case SLWX: { Format(instr, "slw'. 'ra, 'rs, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case SLDX: { Format(instr, "sld'. 'ra, 'rs, 'rb"); return; } #endif case SUBFCX: { Format(instr, "subfc'. 'rt, 'ra, 'rb"); return; } case SUBFEX: { Format(instr, "subfe'. 'rt, 'ra, 'rb"); return; } case ADDCX: { Format(instr, "addc'. 'rt, 'ra, 'rb"); return; } case ADDEX: { Format(instr, "adde'. 'rt, 'ra, 'rb"); return; } case CNTLZWX: { Format(instr, "cntlzw'. 'ra, 'rs"); return; } #if V8_TARGET_ARCH_PPC64 case CNTLZDX: { Format(instr, "cntlzd'. 'ra, 'rs"); return; } #endif case ANDX: { Format(instr, "and'. 'ra, 'rs, 'rb"); return; } case ANDCX: { Format(instr, "andc'. 'ra, 'rs, 'rb"); return; } case CMPL: { #if V8_TARGET_ARCH_PPC64 if (instr->Bit(21)) { #endif Format(instr, "cmpl 'ra, 'rb"); #if V8_TARGET_ARCH_PPC64 } else { Format(instr, "cmplw 'ra, 'rb"); } #endif return; } case NEGX: { Format(instr, "neg'. 'rt, 'ra"); return; } case NORX: { Format(instr, "nor'. 'rt, 'ra, 'rb"); return; } case SUBFX: { Format(instr, "subf'. 'rt, 'ra, 'rb"); return; } case MULHWX: { Format(instr, "mulhw'o'. 'rt, 'ra, 'rb"); return; } case ADDZEX: { Format(instr, "addze'. 'rt, 'ra"); return; } case MULLW: { Format(instr, "mullw'o'. 'rt, 'ra, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case MULLD: { Format(instr, "mulld'o'. 'rt, 'ra, 'rb"); return; } #endif case DIVW: { Format(instr, "divw'o'. 'rt, 'ra, 'rb"); return; } case DIVWU: { Format(instr, "divwu'o'. 'rt, 'ra, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case DIVD: { Format(instr, "divd'o'. 'rt, 'ra, 'rb"); return; } #endif case ADDX: { Format(instr, "add'o 'rt, 'ra, 'rb"); return; } case XORX: { Format(instr, "xor'. 'ra, 'rs, 'rb"); return; } case ORX: { if (instr->RTValue() == instr->RBValue()) { Format(instr, "mr 'ra, 'rb"); } else { Format(instr, "or 'ra, 'rs, 'rb"); } return; } case MFSPR: { int spr = instr->Bits(20, 11); if (256 == spr) { Format(instr, "mflr 'rt"); } else { Format(instr, "mfspr 'rt ??"); } return; } case MTSPR: { int spr = instr->Bits(20, 11); if (256 == spr) { Format(instr, "mtlr 'rt"); } else if (288 == spr) { Format(instr, "mtctr 'rt"); } else { Format(instr, "mtspr 'rt ??"); } return; } case MFCR: { Format(instr, "mfcr 'rt"); return; } case STWX: { Format(instr, "stwx 'rs, 'ra, 'rb"); return; } case STWUX: { Format(instr, "stwux 'rs, 'ra, 'rb"); return; } case STBX: { Format(instr, "stbx 'rs, 'ra, 'rb"); return; } case STBUX: { Format(instr, "stbux 'rs, 'ra, 'rb"); return; } case STHX: { Format(instr, "sthx 'rs, 'ra, 'rb"); return; } case STHUX: { Format(instr, "sthux 'rs, 'ra, 'rb"); return; } case LWZX: { Format(instr, "lwzx 'rt, 'ra, 'rb"); return; } case LWZUX: { Format(instr, "lwzux 'rt, 'ra, 'rb"); return; } case LWAX: { Format(instr, "lwax 'rt, 'ra, 'rb"); return; } case LBZX: { Format(instr, "lbzx 'rt, 'ra, 'rb"); return; } case LBZUX: { Format(instr, "lbzux 'rt, 'ra, 'rb"); return; } case LHZX: { Format(instr, "lhzx 'rt, 'ra, 'rb"); return; } case LHZUX: { Format(instr, "lhzux 'rt, 'ra, 'rb"); return; } case LHAX: { Format(instr, "lhax 'rt, 'ra, 'rb"); return; } #if V8_TARGET_ARCH_PPC64 case LDX: { Format(instr, "ldx 'rt, 'ra, 'rb"); return; } case LDUX: { Format(instr, "ldux 'rt, 'ra, 'rb"); return; } case STDX: { Format(instr, "stdx 'rt, 'ra, 'rb"); return; } case STDUX: { Format(instr, "stdux 'rt, 'ra, 'rb"); return; } case MFVSRD: { Format(instr, "mffprd 'ra, 'Dt"); return; } case MFVSRWZ: { Format(instr, "mffprwz 'ra, 'Dt"); return; } case MTVSRD: { Format(instr, "mtfprd 'Dt, 'ra"); return; } case MTVSRWA: { Format(instr, "mtfprwa 'Dt, 'ra"); return; } case MTVSRWZ: { Format(instr, "mtfprwz 'Dt, 'ra"); return; } #endif } switch (instr->Bits(5, 1) << 1) { case ISEL: { Format(instr, "isel 'rt, 'ra, 'rb"); return; } default: { Unknown(instr); // not used by V8 } } } void Decoder::DecodeExt3(Instruction* instr) { switch (instr->Bits(10, 1) << 1) { case FCFID: { Format(instr, "fcfids'. 'Dt, 'Db"); break; } case FCFIDU: { Format(instr, "fcfidus'.'Dt, 'Db"); break; } default: { Unknown(instr); // not used by V8 } } } void Decoder::DecodeExt4(Instruction* instr) { switch (instr->Bits(5, 1) << 1) { case FDIV: { Format(instr, "fdiv'. 'Dt, 'Da, 'Db"); return; } case FSUB: { Format(instr, "fsub'. 'Dt, 'Da, 'Db"); return; } case FADD: { Format(instr, "fadd'. 'Dt, 'Da, 'Db"); return; } case FSQRT: { Format(instr, "fsqrt'. 'Dt, 'Db"); return; } case FSEL: { Format(instr, "fsel'. 'Dt, 'Da, 'Dc, 'Db"); return; } case FMUL: { Format(instr, "fmul'. 'Dt, 'Da, 'Dc"); return; } case FMSUB: { Format(instr, "fmsub'. 'Dt, 'Da, 'Dc, 'Db"); return; } case FMADD: { Format(instr, "fmadd'. 'Dt, 'Da, 'Dc, 'Db"); return; } } switch (instr->Bits(10, 1) << 1) { case FCMPU: { Format(instr, "fcmpu 'Da, 'Db"); break; } case FRSP: { Format(instr, "frsp'. 'Dt, 'Db"); break; } case FCFID: { Format(instr, "fcfid'. 'Dt, 'Db"); break; } case FCFIDU: { Format(instr, "fcfidu'. 'Dt, 'Db"); break; } case FCTID: { Format(instr, "fctid 'Dt, 'Db"); break; } case FCTIDZ: { Format(instr, "fctidz 'Dt, 'Db"); break; } case FCTIDU: { Format(instr, "fctidu 'Dt, 'Db"); break; } case FCTIDUZ: { Format(instr, "fctiduz 'Dt, 'Db"); break; } case FCTIW: { Format(instr, "fctiw'. 'Dt, 'Db"); break; } case FCTIWZ: { Format(instr, "fctiwz'. 'Dt, 'Db"); break; } case FMR: { Format(instr, "fmr'. 'Dt, 'Db"); break; } case MTFSFI: { Format(instr, "mtfsfi'. ?,?"); break; } case MFFS: { Format(instr, "mffs'. 'Dt"); break; } case MTFSF: { Format(instr, "mtfsf'. 'Db ?,?,?"); break; } case FABS: { Format(instr, "fabs'. 'Dt, 'Db"); break; } case FRIN: { Format(instr, "frin. 'Dt, 'Db"); break; } case FRIZ: { Format(instr, "friz. 'Dt, 'Db"); break; } case FRIP: { Format(instr, "frip. 'Dt, 'Db"); break; } case FRIM: { Format(instr, "frim. 'Dt, 'Db"); break; } case FNEG: { Format(instr, "fneg'. 'Dt, 'Db"); break; } case MCRFS: { Format(instr, "mcrfs ?,?"); break; } case MTFSB0: { Format(instr, "mtfsb0'. ?"); break; } case MTFSB1: { Format(instr, "mtfsb1'. ?"); break; } default: { Unknown(instr); // not used by V8 } } } void Decoder::DecodeExt5(Instruction* instr) { switch (instr->Bits(4, 2) << 2) { case RLDICL: { Format(instr, "rldicl'. 'ra, 'rs, 'sh, 'mb"); return; } case RLDICR: { Format(instr, "rldicr'. 'ra, 'rs, 'sh, 'me"); return; } case RLDIC: { Format(instr, "rldic'. 'ra, 'rs, 'sh, 'mb"); return; } case RLDIMI: { Format(instr, "rldimi'. 'ra, 'rs, 'sh, 'mb"); return; } } switch (instr->Bits(4, 1) << 1) { case RLDCL: { Format(instr, "rldcl'. 'ra, 'rs, 'sb, 'mb"); return; } } Unknown(instr); // not used by V8 } #undef VERIFIY // Disassemble the instruction at *instr_ptr into the output buffer. int Decoder::InstructionDecode(byte* instr_ptr) { Instruction* instr = Instruction::At(instr_ptr); // Print raw instruction bytes. out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", instr->InstructionBits()); if (ABI_USES_FUNCTION_DESCRIPTORS && instr->InstructionBits() == 0) { // The first field will be identified as a jump table entry. We // emit the rest of the structure as zero, so just skip past them. Format(instr, "constant"); return Instruction::kInstrSize; } switch (instr->OpcodeValue() << 26) { case TWI: { PrintSoftwareInterrupt(instr->SvcValue()); break; } case MULLI: { UnknownFormat(instr, "mulli"); break; } case SUBFIC: { Format(instr, "subfic 'rt, 'ra, 'int16"); break; } case CMPLI: { #if V8_TARGET_ARCH_PPC64 if (instr->Bit(21)) { #endif Format(instr, "cmpli 'ra, 'uint16"); #if V8_TARGET_ARCH_PPC64 } else { Format(instr, "cmplwi 'ra, 'uint16"); } #endif break; } case CMPI: { #if V8_TARGET_ARCH_PPC64 if (instr->Bit(21)) { #endif Format(instr, "cmpi 'ra, 'int16"); #if V8_TARGET_ARCH_PPC64 } else { Format(instr, "cmpwi 'ra, 'int16"); } #endif break; } case ADDIC: { Format(instr, "addic 'rt, 'ra, 'int16"); break; } case ADDICx: { UnknownFormat(instr, "addicx"); break; } case ADDI: { if (instr->RAValue() == 0) { // this is load immediate Format(instr, "li 'rt, 'int16"); } else { Format(instr, "addi 'rt, 'ra, 'int16"); } break; } case ADDIS: { if (instr->RAValue() == 0) { Format(instr, "lis 'rt, 'int16"); } else { Format(instr, "addis 'rt, 'ra, 'int16"); } break; } case BCX: { int bo = instr->Bits(25, 21) << 21; int bi = instr->Bits(20, 16); CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1)); switch (bo) { case BT: { // Branch if condition true switch (cond) { case CR_EQ: Format(instr, "beq'l'a'cr 'target16"); break; case CR_GT: Format(instr, "bgt'l'a'cr 'target16"); break; case CR_LT: Format(instr, "blt'l'a'cr 'target16"); break; case CR_SO: Format(instr, "bso'l'a'cr 'target16"); break; } break; } case BF: { // Branch if condition false switch (cond) { case CR_EQ: Format(instr, "bne'l'a'cr 'target16"); break; case CR_GT: Format(instr, "ble'l'a'cr 'target16"); break; case CR_LT: Format(instr, "bge'l'a'cr 'target16"); break; case CR_SO: Format(instr, "bnso'l'a'cr 'target16"); break; } break; } case DCBNZ: { // Decrement CTR; branch if CTR != 0 Format(instr, "bdnz'l'a 'target16"); break; } default: Format(instr, "bc'l'a'cr 'target16"); break; } break; } case SC: { UnknownFormat(instr, "sc"); break; } case BX: { Format(instr, "b'l'a 'target26"); break; } case EXT1: { DecodeExt1(instr); break; } case RLWIMIX: { Format(instr, "rlwimi'. 'ra, 'rs, 'sh, 'me, 'mb"); break; } case RLWINMX: { Format(instr, "rlwinm'. 'ra, 'rs, 'sh, 'me, 'mb"); break; } case RLWNMX: { Format(instr, "rlwnm'. 'ra, 'rs, 'rb, 'me, 'mb"); break; } case ORI: { Format(instr, "ori 'ra, 'rs, 'uint16"); break; } case ORIS: { Format(instr, "oris 'ra, 'rs, 'uint16"); break; } case XORI: { Format(instr, "xori 'ra, 'rs, 'uint16"); break; } case XORIS: { Format(instr, "xoris 'ra, 'rs, 'uint16"); break; } case ANDIx: { Format(instr, "andi. 'ra, 'rs, 'uint16"); break; } case ANDISx: { Format(instr, "andis. 'ra, 'rs, 'uint16"); break; } case EXT2: { DecodeExt2(instr); break; } case LWZ: { Format(instr, "lwz 'rt, 'int16('ra)"); break; } case LWZU: { Format(instr, "lwzu 'rt, 'int16('ra)"); break; } case LBZ: { Format(instr, "lbz 'rt, 'int16('ra)"); break; } case LBZU: { Format(instr, "lbzu 'rt, 'int16('ra)"); break; } case STW: { Format(instr, "stw 'rs, 'int16('ra)"); break; } case STWU: { Format(instr, "stwu 'rs, 'int16('ra)"); break; } case STB: { Format(instr, "stb 'rs, 'int16('ra)"); break; } case STBU: { Format(instr, "stbu 'rs, 'int16('ra)"); break; } case LHZ: { Format(instr, "lhz 'rt, 'int16('ra)"); break; } case LHZU: { Format(instr, "lhzu 'rt, 'int16('ra)"); break; } case LHA: { Format(instr, "lha 'rt, 'int16('ra)"); break; } case LHAU: { Format(instr, "lhau 'rt, 'int16('ra)"); break; } case STH: { Format(instr, "sth 'rs, 'int16('ra)"); break; } case STHU: { Format(instr, "sthu 'rs, 'int16('ra)"); break; } case LMW: { UnknownFormat(instr, "lmw"); break; } case STMW: { UnknownFormat(instr, "stmw"); break; } case LFS: { Format(instr, "lfs 'Dt, 'int16('ra)"); break; } case LFSU: { Format(instr, "lfsu 'Dt, 'int16('ra)"); break; } case LFD: { Format(instr, "lfd 'Dt, 'int16('ra)"); break; } case LFDU: { Format(instr, "lfdu 'Dt, 'int16('ra)"); break; } case STFS: { Format(instr, "stfs 'Dt, 'int16('ra)"); break; } case STFSU: { Format(instr, "stfsu 'Dt, 'int16('ra)"); break; } case STFD: { Format(instr, "stfd 'Dt, 'int16('ra)"); break; } case STFDU: { Format(instr, "stfdu 'Dt, 'int16('ra)"); break; } case EXT3: { DecodeExt3(instr); break; } case EXT4: { DecodeExt4(instr); break; } case EXT5: { DecodeExt5(instr); break; } #if V8_TARGET_ARCH_PPC64 case LD: { switch (instr->Bits(1, 0)) { case 0: Format(instr, "ld 'rt, 'd('ra)"); break; case 1: Format(instr, "ldu 'rt, 'd('ra)"); break; case 2: Format(instr, "lwa 'rt, 'd('ra)"); break; } break; } case STD: { // could be STD or STDU if (instr->Bit(0) == 0) { Format(instr, "std 'rs, 'd('ra)"); } else { Format(instr, "stdu 'rs, 'd('ra)"); } break; } #endif default: { Unknown(instr); break; } } return Instruction::kInstrSize; } } // namespace internal } // namespace v8 //------------------------------------------------------------------------------ namespace disasm { const char* NameConverter::NameOfAddress(byte* addr) const { v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr)); return tmp_buffer_.start(); } const char* NameConverter::NameOfConstant(byte* addr) const { return NameOfAddress(addr); } const char* NameConverter::NameOfCPURegister(int reg) const { return v8::internal::GetRegConfig()->GetGeneralRegisterName(reg); } const char* NameConverter::NameOfByteCPURegister(int reg) const { UNREACHABLE(); // PPC does not have the concept of a byte register return "nobytereg"; } const char* NameConverter::NameOfXMMRegister(int reg) const { UNREACHABLE(); // PPC does not have any XMM registers return "noxmmreg"; } const char* NameConverter::NameInCode(byte* addr) const { // The default name converter is called for unknown code. So we will not try // to access any memory. return ""; } //------------------------------------------------------------------------------ Disassembler::Disassembler(const NameConverter& converter) : converter_(converter) {} Disassembler::~Disassembler() {} int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction) { v8::internal::Decoder d(converter_, buffer); return d.InstructionDecode(instruction); } // The PPC assembler does not currently use constant pools. int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; } void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { NameConverter converter; Disassembler d(converter); for (byte* pc = begin; pc < end;) { v8::internal::EmbeddedVector<char, 128> buffer; buffer[0] = '\0'; byte* prev_pc = pc; pc += d.InstructionDecode(buffer, pc); v8::internal::PrintF(f, "%p %08x %s\n", static_cast<void*>(prev_pc), *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); } } } // namespace disasm #endif // V8_TARGET_ARCH_PPC