// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CRANKSHAFT_X87_LITHIUM_X87_H_
#define V8_CRANKSHAFT_X87_LITHIUM_X87_H_
#include "src/crankshaft/hydrogen.h"
#include "src/crankshaft/lithium.h"
#include "src/crankshaft/lithium-allocator.h"
#include "src/safepoint-table.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class RCodeVisualizer;
}
// Forward declarations.
class LCodeGen;
#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
V(AccessArgumentsAt) \
V(AddI) \
V(Allocate) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArithmeticD) \
V(ArithmeticT) \
V(BitI) \
V(BoundsCheck) \
V(Branch) \
V(CallWithDescriptor) \
V(CallNewArray) \
V(CallRuntime) \
V(CheckArrayBufferNotNeutered) \
V(CheckInstanceType) \
V(CheckMaps) \
V(CheckMapValue) \
V(CheckNonSmi) \
V(CheckSmi) \
V(CheckValue) \
V(ClampDToUint8) \
V(ClampIToUint8) \
V(ClampTToUint8NoSSE2) \
V(ClassOfTestAndBranch) \
V(ClobberDoubles) \
V(CompareNumericAndBranch) \
V(CmpObjectEqAndBranch) \
V(CmpHoleAndBranch) \
V(CmpMapAndBranch) \
V(CmpT) \
V(ConstantD) \
V(ConstantE) \
V(ConstantI) \
V(ConstantS) \
V(ConstantT) \
V(Context) \
V(DebugBreak) \
V(DeclareGlobals) \
V(Deoptimize) \
V(DivByConstI) \
V(DivByPowerOf2I) \
V(DivI) \
V(DoubleToI) \
V(DoubleToSmi) \
V(Drop) \
V(Dummy) \
V(DummyUse) \
V(FastAllocate) \
V(FlooringDivByConstI) \
V(FlooringDivByPowerOf2I) \
V(FlooringDivI) \
V(ForInCacheArray) \
V(ForInPrepareMap) \
V(Goto) \
V(HasInPrototypeChainAndBranch) \
V(HasInstanceTypeAndBranch) \
V(InnerAllocatedObject) \
V(InstructionGap) \
V(Integer32ToDouble) \
V(InvokeFunction) \
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
V(Label) \
V(LazyBailout) \
V(LoadContextSlot) \
V(LoadFieldByIndex) \
V(LoadFunctionPrototype) \
V(LoadKeyed) \
V(LoadNamedField) \
V(LoadRoot) \
V(MathAbs) \
V(MathClz32) \
V(MathCos) \
V(MathExp) \
V(MathFloor) \
V(MathFround) \
V(MathLog) \
V(MathMinMax) \
V(MathPowHalf) \
V(MathRound) \
V(MathSqrt) \
V(MaybeGrowElements) \
V(MathSin) \
V(ModByConstI) \
V(ModByPowerOf2I) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
V(NumberTagI) \
V(NumberTagU) \
V(NumberUntagD) \
V(OsrEntry) \
V(Parameter) \
V(Power) \
V(Prologue) \
V(PushArgument) \
V(Return) \
V(SeqStringGetChar) \
V(SeqStringSetChar) \
V(ShiftI) \
V(SmiTag) \
V(SmiUntag) \
V(StackCheck) \
V(StoreCodeEntry) \
V(StoreContextSlot) \
V(StoreKeyed) \
V(StoreNamedField) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
V(StringCompareAndBranch) \
V(SubI) \
V(TaggedToI) \
V(ThisFunction) \
V(TransitionElementsKind) \
V(TrapAllocationMemento) \
V(Typeof) \
V(TypeofIsAndBranch) \
V(Uint32ToDouble) \
V(UnknownOSRValue) \
V(WrapReceiver)
#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \
Opcode opcode() const final { return LInstruction::k##type; } \
void CompileToNative(LCodeGen* generator) final; \
const char* Mnemonic() const final { return mnemonic; } \
static L##type* cast(LInstruction* instr) { \
DCHECK(instr->Is##type()); \
return reinterpret_cast<L##type*>(instr); \
}
#define DECLARE_HYDROGEN_ACCESSOR(type) \
H##type* hydrogen() const { \
return H##type::cast(hydrogen_value()); \
}
class LInstruction : public ZoneObject {
public:
LInstruction()
: environment_(NULL),
hydrogen_value_(NULL),
bit_field_(IsCallBits::encode(false)) {
}
virtual ~LInstruction() {}
virtual void CompileToNative(LCodeGen* generator) = 0;
virtual const char* Mnemonic() const = 0;
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream);
virtual void PrintOutputOperandTo(StringStream* stream);
enum Opcode {
// Declare a unique enum value for each instruction.
#define DECLARE_OPCODE(type) k##type,
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE) kAdapter,
kNumberOfInstructions
#undef DECLARE_OPCODE
};
virtual Opcode opcode() const = 0;
// Declare non-virtual type testers for all leaf IR classes.
#define DECLARE_PREDICATE(type) \
bool Is##type() const { return opcode() == k##type; }
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
// Declare virtual predicates for instructions that don't have
// an opcode.
virtual bool IsGap() const { return false; }
virtual bool IsControl() const { return false; }
// Try deleting this instruction if possible.
virtual bool TryDelete() { return false; }
void set_environment(LEnvironment* env) { environment_ = env; }
LEnvironment* environment() const { return environment_; }
bool HasEnvironment() const { return environment_ != NULL; }
void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
LPointerMap* pointer_map() const { return pointer_map_.get(); }
bool HasPointerMap() const { return pointer_map_.is_set(); }
void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
HValue* hydrogen_value() const { return hydrogen_value_; }
void MarkAsCall() { bit_field_ = IsCallBits::update(bit_field_, true); }
bool IsCall() const { return IsCallBits::decode(bit_field_); }
void MarkAsSyntacticTailCall() {
bit_field_ = IsSyntacticTailCallBits::update(bit_field_, true);
}
bool IsSyntacticTailCall() const {
return IsSyntacticTailCallBits::decode(bit_field_);
}
// Interface to the register allocator and iterators.
bool ClobbersTemps() const { return IsCall(); }
bool ClobbersRegisters() const { return IsCall(); }
virtual bool ClobbersDoubleRegisters(Isolate* isolate) const {
return IsCall() ||
// We only have rudimentary X87Stack tracking, thus in general
// cannot handle phi-nodes.
(IsControl());
}
virtual bool HasResult() const = 0;
virtual LOperand* result() const = 0;
bool HasDoubleRegisterResult();
bool HasDoubleRegisterInput();
bool IsDoubleInput(X87Register reg, LCodeGen* cgen);
LOperand* FirstInput() { return InputAt(0); }
LOperand* Output() { return HasResult() ? result() : NULL; }
virtual bool HasInterestingComment(LCodeGen* gen) const { return true; }
#ifdef DEBUG
void VerifyCall();
#endif
virtual int InputCount() = 0;
virtual LOperand* InputAt(int i) = 0;
private:
// Iterator support.
friend class InputIterator;
friend class TempIterator;
virtual int TempCount() = 0;
virtual LOperand* TempAt(int i) = 0;
class IsCallBits: public BitField<bool, 0, 1> {};
class IsSyntacticTailCallBits : public BitField<bool, IsCallBits::kNext, 1> {
};
LEnvironment* environment_;
SetOncePointer<LPointerMap> pointer_map_;
HValue* hydrogen_value_;
int bit_field_;
};
// R = number of result operands (0 or 1).
template<int R>
class LTemplateResultInstruction : public LInstruction {
public:
// Allow 0 or 1 output operands.
STATIC_ASSERT(R == 0 || R == 1);
bool HasResult() const final { return R != 0 && result() != NULL; }
void set_result(LOperand* operand) { results_[0] = operand; }
LOperand* result() const override { return results_[0]; }
protected:
EmbeddedContainer<LOperand*, R> results_;
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction : public LTemplateResultInstruction<R> {
protected:
EmbeddedContainer<LOperand*, I> inputs_;
EmbeddedContainer<LOperand*, T> temps_;
private:
// Iterator support.
int InputCount() final { return I; }
LOperand* InputAt(int i) final { return inputs_[i]; }
int TempCount() final { return T; }
LOperand* TempAt(int i) final { return temps_[i]; }
};
class LGap : public LTemplateInstruction<0, 0, 0> {
public:
explicit LGap(HBasicBlock* block) : block_(block) {
parallel_moves_[BEFORE] = NULL;
parallel_moves_[START] = NULL;
parallel_moves_[END] = NULL;
parallel_moves_[AFTER] = NULL;
}
// Can't use the DECLARE-macro here because of sub-classes.
bool IsGap() const final { return true; }
void PrintDataTo(StringStream* stream) override;
static LGap* cast(LInstruction* instr) {
DCHECK(instr->IsGap());
return reinterpret_cast<LGap*>(instr);
}
bool IsRedundant() const;
HBasicBlock* block() const { return block_; }
enum InnerPosition {
BEFORE,
START,
END,
AFTER,
FIRST_INNER_POSITION = BEFORE,
LAST_INNER_POSITION = AFTER
};
LParallelMove* GetOrCreateParallelMove(InnerPosition pos, Zone* zone) {
if (parallel_moves_[pos] == NULL) {
parallel_moves_[pos] = new(zone) LParallelMove(zone);
}
return parallel_moves_[pos];
}
LParallelMove* GetParallelMove(InnerPosition pos) {
return parallel_moves_[pos];
}
private:
LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
HBasicBlock* block_;
};
class LInstructionGap final : public LGap {
public:
explicit LInstructionGap(HBasicBlock* block) : LGap(block) { }
bool HasInterestingComment(LCodeGen* gen) const override {
return !IsRedundant();
}
DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap")
};
class LClobberDoubles final : public LTemplateInstruction<0, 0, 0> {
public:
explicit LClobberDoubles(Isolate* isolate) { }
bool ClobbersDoubleRegisters(Isolate* isolate) const override { return true; }
DECLARE_CONCRETE_INSTRUCTION(ClobberDoubles, "clobber-d")
};
class LGoto final : public LTemplateInstruction<0, 0, 0> {
public:
explicit LGoto(HBasicBlock* block) : block_(block) { }
bool HasInterestingComment(LCodeGen* gen) const override;
DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
void PrintDataTo(StringStream* stream) override;
bool IsControl() const override { return true; }
int block_id() const { return block_->block_id(); }
bool ClobbersDoubleRegisters(Isolate* isolate) const override {
return false;
}
bool jumps_to_join() const { return block_->predecessors()->length() > 1; }
HBasicBlock* block() const { return block_; }
private:
HBasicBlock* block_;
};
class LPrologue final : public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Prologue, "prologue")
};
class LLazyBailout final : public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
};
class LDummy final : public LTemplateInstruction<1, 0, 0> {
public:
LDummy() {}
DECLARE_CONCRETE_INSTRUCTION(Dummy, "dummy")
};
class LDummyUse final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDummyUse(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(DummyUse, "dummy-use")
};
class LDeoptimize final : public LTemplateInstruction<0, 0, 0> {
public:
bool IsControl() const override { return true; }
DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
DECLARE_HYDROGEN_ACCESSOR(Deoptimize)
};
class LLabel final : public LGap {
public:
explicit LLabel(HBasicBlock* block)
: LGap(block), replacement_(NULL) { }
bool HasInterestingComment(LCodeGen* gen) const override { return false; }
DECLARE_CONCRETE_INSTRUCTION(Label, "label")
void PrintDataTo(StringStream* stream) override;
int block_id() const { return block()->block_id(); }
bool is_loop_header() const { return block()->IsLoopHeader(); }
bool is_osr_entry() const { return block()->is_osr_entry(); }
Label* label() { return &label_; }
LLabel* replacement() const { return replacement_; }
void set_replacement(LLabel* label) { replacement_ = label; }
bool HasReplacement() const { return replacement_ != NULL; }
private:
Label label_;
LLabel* replacement_;
};
class LParameter final : public LTemplateInstruction<1, 0, 0> {
public:
bool HasInterestingComment(LCodeGen* gen) const override { return false; }
DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
};
class LUnknownOSRValue final : public LTemplateInstruction<1, 0, 0> {
public:
bool HasInterestingComment(LCodeGen* gen) const override { return false; }
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
};
template<int I, int T>
class LControlInstruction: public LTemplateInstruction<0, I, T> {
public:
LControlInstruction() : false_label_(NULL), true_label_(NULL) { }
bool IsControl() const final { return true; }
int SuccessorCount() { return hydrogen()->SuccessorCount(); }
HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); }
int TrueDestination(LChunk* chunk) {
return chunk->LookupDestination(true_block_id());
}
int FalseDestination(LChunk* chunk) {
return chunk->LookupDestination(false_block_id());
}
Label* TrueLabel(LChunk* chunk) {
if (true_label_ == NULL) {
true_label_ = chunk->GetAssemblyLabel(TrueDestination(chunk));
}
return true_label_;
}
Label* FalseLabel(LChunk* chunk) {
if (false_label_ == NULL) {
false_label_ = chunk->GetAssemblyLabel(FalseDestination(chunk));
}
return false_label_;
}
protected:
int true_block_id() { return SuccessorAt(0)->block_id(); }
int false_block_id() { return SuccessorAt(1)->block_id(); }
private:
HControlInstruction* hydrogen() {
return HControlInstruction::cast(this->hydrogen_value());
}
Label* false_label_;
Label* true_label_;
};
class LWrapReceiver final : public LTemplateInstruction<1, 2, 1> {
public:
LWrapReceiver(LOperand* receiver,
LOperand* function,
LOperand* temp) {
inputs_[0] = receiver;
inputs_[1] = function;
temps_[0] = temp;
}
LOperand* receiver() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver")
DECLARE_HYDROGEN_ACCESSOR(WrapReceiver)
};
class LApplyArguments final : public LTemplateInstruction<1, 4, 0> {
public:
LApplyArguments(LOperand* function,
LOperand* receiver,
LOperand* length,
LOperand* elements) {
inputs_[0] = function;
inputs_[1] = receiver;
inputs_[2] = length;
inputs_[3] = elements;
}
LOperand* function() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* length() { return inputs_[2]; }
LOperand* elements() { return inputs_[3]; }
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
DECLARE_HYDROGEN_ACCESSOR(ApplyArguments)
};
class LAccessArgumentsAt final : public LTemplateInstruction<1, 3, 0> {
public:
LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
inputs_[0] = arguments;
inputs_[1] = length;
inputs_[2] = index;
}
LOperand* arguments() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
void PrintDataTo(StringStream* stream) override;
};
class LArgumentsLength final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LArgumentsLength(LOperand* elements) {
inputs_[0] = elements;
}
LOperand* elements() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
};
class LArgumentsElements final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
DECLARE_HYDROGEN_ACCESSOR(ArgumentsElements)
};
class LDebugBreak final : public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(DebugBreak, "break")
};
class LModByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
public:
LModByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
private:
int32_t divisor_;
};
class LModByConstI final : public LTemplateInstruction<1, 1, 2> {
public:
LModByConstI(LOperand* dividend,
int32_t divisor,
LOperand* temp1,
LOperand* temp2) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ModByConstI, "mod-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
private:
int32_t divisor_;
};
class LModI final : public LTemplateInstruction<1, 2, 1> {
public:
LModI(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
};
class LDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
public:
LDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
private:
int32_t divisor_;
};
class LDivByConstI final : public LTemplateInstruction<1, 1, 2> {
public:
LDivByConstI(LOperand* dividend,
int32_t divisor,
LOperand* temp1,
LOperand* temp2) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(DivByConstI, "div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
private:
int32_t divisor_;
};
class LDivI final : public LTemplateInstruction<1, 2, 1> {
public:
LDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
inputs_[0] = dividend;
inputs_[1] = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
};
class LFlooringDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> {
public:
LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) {
inputs_[0] = dividend;
divisor_ = divisor;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I,
"flooring-div-by-power-of-2-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
private:
int32_t divisor_;
};
class LFlooringDivByConstI final : public LTemplateInstruction<1, 1, 3> {
public:
LFlooringDivByConstI(LOperand* dividend,
int32_t divisor,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3) {
inputs_[0] = dividend;
divisor_ = divisor;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
LOperand* dividend() { return inputs_[0]; }
int32_t divisor() const { return divisor_; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
LOperand* temp3() { return temps_[2]; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
private:
int32_t divisor_;
};
class LFlooringDivI final : public LTemplateInstruction<1, 2, 1> {
public:
LFlooringDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) {
inputs_[0] = dividend;
inputs_[1] = divisor;
temps_[0] = temp;
}
LOperand* dividend() { return inputs_[0]; }
LOperand* divisor() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i")
DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv)
};
class LMulI final : public LTemplateInstruction<1, 2, 1> {
public:
LMulI(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LCompareNumericAndBranch final : public LControlInstruction<2, 0> {
public:
LCompareNumericAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch,
"compare-numeric-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareNumericAndBranch)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->representation().IsDouble();
}
void PrintDataTo(StringStream* stream) override;
};
class LMathFloor final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathFloor(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathFloor, "math-floor")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
};
class LMathRound final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathRound(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathRound, "math-round")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
};
class LMathFround final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathFround(LOperand* value) { inputs_[0] = value; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathFround, "math-fround")
};
class LMathAbs final : public LTemplateInstruction<1, 2, 0> {
public:
LMathAbs(LOperand* context, LOperand* value) {
inputs_[1] = context;
inputs_[0] = value;
}
LOperand* context() { return inputs_[1]; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathAbs, "math-abs")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
};
class LMathLog final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathLog(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathLog, "math-log")
};
class LMathClz32 final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathClz32(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathClz32, "math-clz32")
};
class LMathCos final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathCos(LOperand* value) { inputs_[0] = value; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathCos, "math-cos")
};
class LMathSin final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathSin(LOperand* value) { inputs_[0] = value; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathSin, "math-sin")
};
class LMathExp final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathExp(LOperand* value) { inputs_[0] = value; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathExp, "math-exp")
};
class LMathSqrt final : public LTemplateInstruction<1, 1, 2> {
public:
explicit LMathSqrt(LOperand* value,
LOperand* temp1,
LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp1() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(MathSqrt, "math-sqrt")
};
class LMathPowHalf final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LMathPowHalf(LOperand* value) { inputs_[0] = value; }
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathPowHalf, "math-pow-half")
};
class LCmpObjectEqAndBranch final : public LControlInstruction<2, 0> {
public:
LCmpObjectEqAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch")
};
class LCmpHoleAndBranch final : public LControlInstruction<1, 0> {
public:
explicit LCmpHoleAndBranch(LOperand* object) {
inputs_[0] = object;
}
LOperand* object() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranch, "cmp-hole-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch)
};
class LIsStringAndBranch final : public LControlInstruction<1, 1> {
public:
LIsStringAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch)
void PrintDataTo(StringStream* stream) override;
};
class LIsSmiAndBranch final : public LControlInstruction<1, 0> {
public:
explicit LIsSmiAndBranch(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch)
void PrintDataTo(StringStream* stream) override;
};
class LIsUndetectableAndBranch final : public LControlInstruction<1, 1> {
public:
LIsUndetectableAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch,
"is-undetectable-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch)
void PrintDataTo(StringStream* stream) override;
};
class LStringCompareAndBranch final : public LControlInstruction<3, 0> {
public:
LStringCompareAndBranch(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch,
"string-compare-and-branch")
DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch)
void PrintDataTo(StringStream* stream) override;
Token::Value op() const { return hydrogen()->token(); }
};
class LHasInstanceTypeAndBranch final : public LControlInstruction<1, 1> {
public:
LHasInstanceTypeAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
"has-instance-type-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch)
void PrintDataTo(StringStream* stream) override;
};
class LClassOfTestAndBranch final : public LControlInstruction<1, 2> {
public:
LClassOfTestAndBranch(LOperand* value, LOperand* temp, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp;
temps_[1] = temp2;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
"class-of-test-and-branch")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch)
void PrintDataTo(StringStream* stream) override;
};
class LCmpT final : public LTemplateInstruction<1, 3, 0> {
public:
LCmpT(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
DECLARE_HYDROGEN_ACCESSOR(CompareGeneric)
LOperand* context() { return inputs_[0]; }
Token::Value op() const { return hydrogen()->token(); }
};
class LHasInPrototypeChainAndBranch final : public LControlInstruction<2, 1> {
public:
LHasInPrototypeChainAndBranch(LOperand* object, LOperand* prototype,
LOperand* scratch) {
inputs_[0] = object;
inputs_[1] = prototype;
temps_[0] = scratch;
}
LOperand* object() const { return inputs_[0]; }
LOperand* prototype() const { return inputs_[1]; }
LOperand* scratch() const { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(HasInPrototypeChainAndBranch,
"has-in-prototype-chain-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasInPrototypeChainAndBranch)
};
class LBoundsCheck final : public LTemplateInstruction<0, 2, 0> {
public:
LBoundsCheck(LOperand* index, LOperand* length) {
inputs_[0] = index;
inputs_[1] = length;
}
LOperand* index() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
DECLARE_HYDROGEN_ACCESSOR(BoundsCheck)
};
class LBitI final : public LTemplateInstruction<1, 2, 0> {
public:
LBitI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
DECLARE_HYDROGEN_ACCESSOR(Bitwise)
Token::Value op() const { return hydrogen()->op(); }
};
class LShiftI final : public LTemplateInstruction<1, 2, 0> {
public:
LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
Token::Value op() const { return op_; }
bool can_deopt() const { return can_deopt_; }
private:
Token::Value op_;
bool can_deopt_;
};
class LSubI final : public LTemplateInstruction<1, 2, 0> {
public:
LSubI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
DECLARE_HYDROGEN_ACCESSOR(Sub)
};
class LConstantI final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
DECLARE_HYDROGEN_ACCESSOR(Constant)
int32_t value() const { return hydrogen()->Integer32Value(); }
};
class LConstantS final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantS, "constant-s")
DECLARE_HYDROGEN_ACCESSOR(Constant)
Smi* value() const { return Smi::FromInt(hydrogen()->Integer32Value()); }
};
class LConstantD final : public LTemplateInstruction<1, 0, 1> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
DECLARE_HYDROGEN_ACCESSOR(Constant)
uint64_t bits() const { return hydrogen()->DoubleValueAsBits(); }
};
class LConstantE final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantE, "constant-e")
DECLARE_HYDROGEN_ACCESSOR(Constant)
ExternalReference value() const {
return hydrogen()->ExternalReferenceValue();
}
};
class LConstantT final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
DECLARE_HYDROGEN_ACCESSOR(Constant)
Handle<Object> value(Isolate* isolate) const {
return hydrogen()->handle(isolate);
}
};
class LBranch final : public LControlInstruction<1, 1> {
public:
LBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
DECLARE_HYDROGEN_ACCESSOR(Branch)
void PrintDataTo(StringStream* stream) override;
};
class LCmpMapAndBranch final : public LControlInstruction<1, 0> {
public:
explicit LCmpMapAndBranch(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMap)
Handle<Map> map() const { return hydrogen()->map().handle(); }
};
class LSeqStringGetChar final : public LTemplateInstruction<1, 2, 0> {
public:
LSeqStringGetChar(LOperand* string, LOperand* index) {
inputs_[0] = string;
inputs_[1] = index;
}
LOperand* string() const { return inputs_[0]; }
LOperand* index() const { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(SeqStringGetChar, "seq-string-get-char")
DECLARE_HYDROGEN_ACCESSOR(SeqStringGetChar)
};
class LSeqStringSetChar final : public LTemplateInstruction<1, 4, 0> {
public:
LSeqStringSetChar(LOperand* context,
LOperand* string,
LOperand* index,
LOperand* value) {
inputs_[0] = context;
inputs_[1] = string;
inputs_[2] = index;
inputs_[3] = value;
}
LOperand* string() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
LOperand* value() { return inputs_[3]; }
DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar, "seq-string-set-char")
DECLARE_HYDROGEN_ACCESSOR(SeqStringSetChar)
};
class LAddI final : public LTemplateInstruction<1, 2, 0> {
public:
LAddI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
static bool UseLea(HAdd* add) {
return !add->CheckFlag(HValue::kCanOverflow) &&
add->BetterLeftOperand()->UseCount() > 1;
}
DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LMathMinMax final : public LTemplateInstruction<1, 2, 1> {
public:
LMathMinMax(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "math-min-max")
DECLARE_HYDROGEN_ACCESSOR(MathMinMax)
};
class LPower final : public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(Power, "power")
DECLARE_HYDROGEN_ACCESSOR(Power)
};
class LArithmeticD final : public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
Token::Value op() const { return op_; }
Opcode opcode() const override { return LInstruction::kArithmeticD; }
void CompileToNative(LCodeGen* generator) override;
const char* Mnemonic() const override;
private:
Token::Value op_;
};
class LArithmeticT final : public LTemplateInstruction<1, 3, 0> {
public:
LArithmeticT(Token::Value op,
LOperand* context,
LOperand* left,
LOperand* right)
: op_(op) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
Token::Value op() const { return op_; }
Opcode opcode() const override { return LInstruction::kArithmeticT; }
void CompileToNative(LCodeGen* generator) override;
const char* Mnemonic() const override;
DECLARE_HYDROGEN_ACCESSOR(BinaryOperation)
private:
Token::Value op_;
};
class LReturn final : public LTemplateInstruction<0, 3, 0> {
public:
explicit LReturn(LOperand* value,
LOperand* context,
LOperand* parameter_count) {
inputs_[0] = value;
inputs_[1] = context;
inputs_[2] = parameter_count;
}
bool has_constant_parameter_count() {
return parameter_count()->IsConstantOperand();
}
LConstantOperand* constant_parameter_count() {
DCHECK(has_constant_parameter_count());
return LConstantOperand::cast(parameter_count());
}
LOperand* parameter_count() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(Return, "return")
DECLARE_HYDROGEN_ACCESSOR(Return)
};
class LLoadNamedField final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedField(LOperand* object) {
inputs_[0] = object;
}
LOperand* object() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
};
class LLoadFunctionPrototype final : public LTemplateInstruction<1, 1, 1> {
public:
LLoadFunctionPrototype(LOperand* function, LOperand* temp) {
inputs_[0] = function;
temps_[0] = temp;
}
LOperand* function() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
};
class LLoadRoot final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadRoot, "load-root")
DECLARE_HYDROGEN_ACCESSOR(LoadRoot)
Heap::RootListIndex index() const { return hydrogen()->index(); }
};
class LLoadKeyed final : public LTemplateInstruction<1, 3, 0> {
public:
LLoadKeyed(LOperand* elements, LOperand* key, LOperand* backing_store_owner) {
inputs_[0] = elements;
inputs_[1] = key;
inputs_[2] = backing_store_owner;
}
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* backing_store_owner() { return inputs_[2]; }
ElementsKind elements_kind() const {
return hydrogen()->elements_kind();
}
bool is_fixed_typed_array() const {
return hydrogen()->is_fixed_typed_array();
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyed, "load-keyed")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyed)
void PrintDataTo(StringStream* stream) override;
uint32_t base_offset() const { return hydrogen()->base_offset(); }
bool key_is_smi() {
return hydrogen()->key()->representation().IsTagged();
}
};
inline static bool ExternalArrayOpRequiresTemp(
Representation key_representation,
ElementsKind elements_kind) {
// Operations that require the key to be divided by two to be converted into
// an index cannot fold the scale operation into a load and need an extra
// temp register to do the work.
return key_representation.IsSmi() &&
(elements_kind == UINT8_ELEMENTS || elements_kind == INT8_ELEMENTS ||
elements_kind == UINT8_CLAMPED_ELEMENTS);
}
class LLoadContextSlot final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadContextSlot(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
int slot_index() { return hydrogen()->slot_index(); }
void PrintDataTo(StringStream* stream) override;
};
class LStoreContextSlot final : public LTemplateInstruction<0, 2, 1> {
public:
LStoreContextSlot(LOperand* context, LOperand* value, LOperand* temp) {
inputs_[0] = context;
inputs_[1] = value;
temps_[0] = temp;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot")
DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot)
int slot_index() { return hydrogen()->slot_index(); }
void PrintDataTo(StringStream* stream) override;
};
class LPushArgument final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LPushArgument(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
};
class LDrop final : public LTemplateInstruction<0, 0, 0> {
public:
explicit LDrop(int count) : count_(count) { }
int count() const { return count_; }
DECLARE_CONCRETE_INSTRUCTION(Drop, "drop")
private:
int count_;
};
class LStoreCodeEntry final : public LTemplateInstruction<0, 2, 0> {
public:
LStoreCodeEntry(LOperand* function, LOperand* code_object) {
inputs_[0] = function;
inputs_[1] = code_object;
}
LOperand* function() { return inputs_[0]; }
LOperand* code_object() { return inputs_[1]; }
void PrintDataTo(StringStream* stream) override;
DECLARE_CONCRETE_INSTRUCTION(StoreCodeEntry, "store-code-entry")
DECLARE_HYDROGEN_ACCESSOR(StoreCodeEntry)
};
class LInnerAllocatedObject final : public LTemplateInstruction<1, 2, 0> {
public:
LInnerAllocatedObject(LOperand* base_object, LOperand* offset) {
inputs_[0] = base_object;
inputs_[1] = offset;
}
LOperand* base_object() const { return inputs_[0]; }
LOperand* offset() const { return inputs_[1]; }
void PrintDataTo(StringStream* stream) override;
DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject, "inner-allocated-object")
};
class LThisFunction final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function")
DECLARE_HYDROGEN_ACCESSOR(ThisFunction)
};
class LContext final : public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Context, "context")
DECLARE_HYDROGEN_ACCESSOR(Context)
};
class LDeclareGlobals final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LDeclareGlobals(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals")
DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals)
};
class LCallWithDescriptor final : public LTemplateResultInstruction<1> {
public:
LCallWithDescriptor(CallInterfaceDescriptor descriptor,
const ZoneList<LOperand*>& operands, Zone* zone)
: inputs_(descriptor.GetRegisterParameterCount() +
kImplicitRegisterParameterCount,
zone) {
DCHECK(descriptor.GetRegisterParameterCount() +
kImplicitRegisterParameterCount ==
operands.length());
inputs_.AddAll(operands, zone);
}
LOperand* target() const { return inputs_[0]; }
DECLARE_HYDROGEN_ACCESSOR(CallWithDescriptor)
// The target and context are passed as implicit parameters that are not
// explicitly listed in the descriptor.
static const int kImplicitRegisterParameterCount = 2;
private:
DECLARE_CONCRETE_INSTRUCTION(CallWithDescriptor, "call-with-descriptor")
void PrintDataTo(StringStream* stream) override;
int arity() const { return hydrogen()->argument_count() - 1; }
ZoneList<LOperand*> inputs_;
// Iterator support.
int InputCount() final { return inputs_.length(); }
LOperand* InputAt(int i) final { return inputs_[i]; }
int TempCount() final { return 0; }
LOperand* TempAt(int i) final { return NULL; }
};
class LInvokeFunction final : public LTemplateInstruction<1, 2, 0> {
public:
LInvokeFunction(LOperand* context, LOperand* function) {
inputs_[0] = context;
inputs_[1] = function;
}
LOperand* context() { return inputs_[0]; }
LOperand* function() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function")
DECLARE_HYDROGEN_ACCESSOR(InvokeFunction)
void PrintDataTo(StringStream* stream) override;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNewArray final : public LTemplateInstruction<1, 2, 0> {
public:
LCallNewArray(LOperand* context, LOperand* constructor) {
inputs_[0] = context;
inputs_[1] = constructor;
}
LOperand* context() { return inputs_[0]; }
LOperand* constructor() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CallNewArray, "call-new-array")
DECLARE_HYDROGEN_ACCESSOR(CallNewArray)
void PrintDataTo(StringStream* stream) override;
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallRuntime final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallRuntime(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
bool ClobbersDoubleRegisters(Isolate* isolate) const override {
return save_doubles() == kDontSaveFPRegs;
}
const Runtime::Function* function() const { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count(); }
SaveFPRegsMode save_doubles() const { return hydrogen()->save_doubles(); }
};
class LInteger32ToDouble final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LInteger32ToDouble(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
};
class LUint32ToDouble final : public LTemplateInstruction<1, 1, 1> {
public:
explicit LUint32ToDouble(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Uint32ToDouble, "uint32-to-double")
};
class LNumberTagI final : public LTemplateInstruction<1, 1, 1> {
public:
LNumberTagI(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i")
};
class LNumberTagU final : public LTemplateInstruction<1, 1, 1> {
public:
LNumberTagU(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(NumberTagU, "number-tag-u")
};
class LNumberTagD final : public LTemplateInstruction<1, 1, 1> {
public:
LNumberTagD(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
// Sometimes truncating conversion from a tagged value to an int32.
class LDoubleToI final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleToI(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
class LDoubleToSmi final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleToSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(DoubleToSmi, "double-to-smi")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
};
// Truncating conversion from a tagged value to an int32.
class LTaggedToI final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LTaggedToI(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
class LSmiTag final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LSmiTag(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
class LNumberUntagD final : public LTemplateInstruction<1, 1, 1> {
public:
explicit LNumberUntagD(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
DECLARE_HYDROGEN_ACCESSOR(Change);
bool truncating() { return hydrogen()->CanTruncateToNumber(); }
};
class LSmiUntag final : public LTemplateInstruction<1, 1, 0> {
public:
LSmiUntag(LOperand* value, bool needs_check)
: needs_check_(needs_check) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
bool needs_check() const { return needs_check_; }
private:
bool needs_check_;
};
class LStoreNamedField final : public LTemplateInstruction<0, 2, 2> {
public:
LStoreNamedField(LOperand* obj,
LOperand* val,
LOperand* temp,
LOperand* temp_map) {
inputs_[0] = obj;
inputs_[1] = val;
temps_[0] = temp;
temps_[1] = temp_map;
}
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
LOperand* temp_map() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
void PrintDataTo(StringStream* stream) override;
};
class LStoreKeyed final : public LTemplateInstruction<0, 4, 0> {
public:
LStoreKeyed(LOperand* obj, LOperand* key, LOperand* val,
LOperand* backing_store_owner) {
inputs_[0] = obj;
inputs_[1] = key;
inputs_[2] = val;
inputs_[3] = backing_store_owner;
}
bool is_fixed_typed_array() const {
return hydrogen()->is_fixed_typed_array();
}
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
LOperand* backing_store_owner() { return inputs_[3]; }
ElementsKind elements_kind() const {
return hydrogen()->elements_kind();
}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyed, "store-keyed")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyed)
void PrintDataTo(StringStream* stream) override;
uint32_t base_offset() const { return hydrogen()->base_offset(); }
bool NeedsCanonicalization() { return hydrogen()->NeedsCanonicalization(); }
};
class LTransitionElementsKind final : public LTemplateInstruction<0, 2, 2> {
public:
LTransitionElementsKind(LOperand* object,
LOperand* context,
LOperand* new_map_temp,
LOperand* temp) {
inputs_[0] = object;
inputs_[1] = context;
temps_[0] = new_map_temp;
temps_[1] = temp;
}
LOperand* context() { return inputs_[1]; }
LOperand* object() { return inputs_[0]; }
LOperand* new_map_temp() { return temps_[0]; }
LOperand* temp() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind,
"transition-elements-kind")
DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind)
void PrintDataTo(StringStream* stream) override;
Handle<Map> original_map() { return hydrogen()->original_map().handle(); }
Handle<Map> transitioned_map() {
return hydrogen()->transitioned_map().handle();
}
ElementsKind from_kind() { return hydrogen()->from_kind(); }
ElementsKind to_kind() { return hydrogen()->to_kind(); }
};
class LTrapAllocationMemento final : public LTemplateInstruction<0, 1, 1> {
public:
LTrapAllocationMemento(LOperand* object,
LOperand* temp) {
inputs_[0] = object;
temps_[0] = temp;
}
LOperand* object() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento,
"trap-allocation-memento")
};
class LMaybeGrowElements final : public LTemplateInstruction<1, 5, 0> {
public:
LMaybeGrowElements(LOperand* context, LOperand* object, LOperand* elements,
LOperand* key, LOperand* current_capacity) {
inputs_[0] = context;
inputs_[1] = object;
inputs_[2] = elements;
inputs_[3] = key;
inputs_[4] = current_capacity;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
LOperand* elements() { return inputs_[2]; }
LOperand* key() { return inputs_[3]; }
LOperand* current_capacity() { return inputs_[4]; }
bool ClobbersDoubleRegisters(Isolate* isolate) const override { return true; }
DECLARE_HYDROGEN_ACCESSOR(MaybeGrowElements)
DECLARE_CONCRETE_INSTRUCTION(MaybeGrowElements, "maybe-grow-elements")
};
class LStringAdd final : public LTemplateInstruction<1, 3, 0> {
public:
LStringAdd(LOperand* context, LOperand* left, LOperand* right) {
inputs_[0] = context;
inputs_[1] = left;
inputs_[2] = right;
}
LOperand* context() { return inputs_[0]; }
LOperand* left() { return inputs_[1]; }
LOperand* right() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add")
DECLARE_HYDROGEN_ACCESSOR(StringAdd)
};
class LStringCharCodeAt final : public LTemplateInstruction<1, 3, 0> {
public:
LStringCharCodeAt(LOperand* context, LOperand* string, LOperand* index) {
inputs_[0] = context;
inputs_[1] = string;
inputs_[2] = index;
}
LOperand* context() { return inputs_[0]; }
LOperand* string() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
};
class LStringCharFromCode final : public LTemplateInstruction<1, 2, 0> {
public:
LStringCharFromCode(LOperand* context, LOperand* char_code) {
inputs_[0] = context;
inputs_[1] = char_code;
}
LOperand* context() { return inputs_[0]; }
LOperand* char_code() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code")
DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode)
};
class LCheckValue final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckValue(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckValue, "check-value")
DECLARE_HYDROGEN_ACCESSOR(CheckValue)
};
class LCheckArrayBufferNotNeutered final
: public LTemplateInstruction<0, 1, 1> {
public:
explicit LCheckArrayBufferNotNeutered(LOperand* view, LOperand* scratch) {
inputs_[0] = view;
temps_[0] = scratch;
}
LOperand* view() { return inputs_[0]; }
LOperand* scratch() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckArrayBufferNotNeutered,
"check-array-buffer-not-neutered")
DECLARE_HYDROGEN_ACCESSOR(CheckArrayBufferNotNeutered)
};
class LCheckInstanceType final : public LTemplateInstruction<0, 1, 1> {
public:
LCheckInstanceType(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* value() { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
};
class LCheckMaps final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckMaps(LOperand* value = NULL) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckMaps, "check-maps")
DECLARE_HYDROGEN_ACCESSOR(CheckMaps)
};
class LCheckSmi final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LCheckSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi")
};
class LClampDToUint8 final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LClampDToUint8(LOperand* value) {
inputs_[0] = value;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8")
};
class LClampIToUint8 final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LClampIToUint8(LOperand* value) {
inputs_[0] = value;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8")
};
// Truncating conversion from a tagged value to an int32.
class LClampTToUint8NoSSE2 final : public LTemplateInstruction<1, 1, 3> {
public:
LClampTToUint8NoSSE2(LOperand* unclamped,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3) {
inputs_[0] = unclamped;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
LOperand* unclamped() { return inputs_[0]; }
LOperand* scratch() { return temps_[0]; }
LOperand* scratch2() { return temps_[1]; }
LOperand* scratch3() { return temps_[2]; }
DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8NoSSE2,
"clamp-t-to-uint8-nosse2")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
};
class LCheckNonSmi final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckNonSmi(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi")
DECLARE_HYDROGEN_ACCESSOR(CheckHeapObject)
};
class LAllocate final : public LTemplateInstruction<1, 2, 1> {
public:
LAllocate(LOperand* context, LOperand* size, LOperand* temp) {
inputs_[0] = context;
inputs_[1] = size;
temps_[0] = temp;
}
LOperand* context() { return inputs_[0]; }
LOperand* size() { return inputs_[1]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(Allocate, "allocate")
DECLARE_HYDROGEN_ACCESSOR(Allocate)
};
class LFastAllocate final : public LTemplateInstruction<1, 1, 1> {
public:
LFastAllocate(LOperand* size, LOperand* temp) {
inputs_[0] = size;
temps_[0] = temp;
}
LOperand* size() const { return inputs_[0]; }
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(FastAllocate, "fast-allocate")
DECLARE_HYDROGEN_ACCESSOR(Allocate)
};
class LTypeof final : public LTemplateInstruction<1, 2, 0> {
public:
LTypeof(LOperand* context, LOperand* value) {
inputs_[0] = context;
inputs_[1] = value;
}
LOperand* context() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
};
class LTypeofIsAndBranch final : public LControlInstruction<1, 0> {
public:
explicit LTypeofIsAndBranch(LOperand* value) {
inputs_[0] = value;
}
LOperand* value() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch)
Handle<String> type_literal() { return hydrogen()->type_literal(); }
void PrintDataTo(StringStream* stream) override;
};
class LOsrEntry final : public LTemplateInstruction<0, 0, 0> {
public:
bool HasInterestingComment(LCodeGen* gen) const override { return false; }
DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
};
class LStackCheck final : public LTemplateInstruction<0, 1, 0> {
public:
explicit LStackCheck(LOperand* context) {
inputs_[0] = context;
}
LOperand* context() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
DECLARE_HYDROGEN_ACCESSOR(StackCheck)
Label* done_label() { return &done_label_; }
private:
Label done_label_;
};
class LForInPrepareMap final : public LTemplateInstruction<1, 2, 0> {
public:
LForInPrepareMap(LOperand* context, LOperand* object) {
inputs_[0] = context;
inputs_[1] = object;
}
LOperand* context() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map")
};
class LForInCacheArray final : public LTemplateInstruction<1, 1, 0> {
public:
explicit LForInCacheArray(LOperand* map) {
inputs_[0] = map;
}
LOperand* map() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array")
int idx() {
return HForInCacheArray::cast(this->hydrogen_value())->idx();
}
};
class LCheckMapValue final : public LTemplateInstruction<0, 2, 0> {
public:
LCheckMapValue(LOperand* value, LOperand* map) {
inputs_[0] = value;
inputs_[1] = map;
}
LOperand* value() { return inputs_[0]; }
LOperand* map() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value")
};
class LLoadFieldByIndex final : public LTemplateInstruction<1, 2, 0> {
public:
LLoadFieldByIndex(LOperand* object, LOperand* index) {
inputs_[0] = object;
inputs_[1] = index;
}
LOperand* object() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index")
};
class LChunkBuilder;
class LPlatformChunk final : public LChunk {
public:
LPlatformChunk(CompilationInfo* info, HGraph* graph)
: LChunk(info, graph),
num_double_slots_(0) { }
int GetNextSpillIndex(RegisterKind kind);
LOperand* GetNextSpillSlot(RegisterKind kind);
int num_double_slots() const { return num_double_slots_; }
private:
int num_double_slots_;
};
class LChunkBuilder final : public LChunkBuilderBase {
public:
LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator)
: LChunkBuilderBase(info, graph),
current_instruction_(NULL),
current_block_(NULL),
next_block_(NULL),
allocator_(allocator) {}
// Build the sequence for the graph.
LPlatformChunk* Build();
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
LInstruction* DoMathFloor(HUnaryMathOperation* instr);
LInstruction* DoMathRound(HUnaryMathOperation* instr);
LInstruction* DoMathFround(HUnaryMathOperation* instr);
LInstruction* DoMathAbs(HUnaryMathOperation* instr);
LInstruction* DoMathLog(HUnaryMathOperation* instr);
LInstruction* DoMathCos(HUnaryMathOperation* instr);
LInstruction* DoMathSin(HUnaryMathOperation* instr);
LInstruction* DoMathExp(HUnaryMathOperation* instr);
LInstruction* DoMathSqrt(HUnaryMathOperation* instr);
LInstruction* DoMathPowHalf(HUnaryMathOperation* instr);
LInstruction* DoMathClz32(HUnaryMathOperation* instr);
LInstruction* DoDivByPowerOf2I(HDiv* instr);
LInstruction* DoDivByConstI(HDiv* instr);
LInstruction* DoDivI(HDiv* instr);
LInstruction* DoModByPowerOf2I(HMod* instr);
LInstruction* DoModByConstI(HMod* instr);
LInstruction* DoModI(HMod* instr);
LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr);
LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr);
LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr);
private:
// Methods for getting operands for Use / Define / Temp.
LUnallocated* ToUnallocated(Register reg);
LUnallocated* ToUnallocated(X87Register reg);
// Methods for setting up define-use relationships.
MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
// A value that is guaranteed to be allocated to a register.
// Operand created by UseRegister is guaranteed to be live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
// Operand created by UseRegisterAtStart is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
MUST_USE_RESULT LOperand* UseRegister(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
// An input operand in a register that may be trashed.
MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
// An input operand in a register or stack slot.
MUST_USE_RESULT LOperand* Use(HValue* value);
MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
// An input operand in a register, stack slot or a constant operand.
MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
// An input operand in a fixed register or a constant operand.
MUST_USE_RESULT LOperand* UseFixedOrConstant(HValue* value,
Register fixed_register);
// An input operand in a register or a constant operand.
MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
// An input operand in a constant operand.
MUST_USE_RESULT LOperand* UseConstant(HValue* value);
// An input operand in register, stack slot or a constant operand.
// Will not be moved to a register even if one is freely available.
MUST_USE_RESULT LOperand* UseAny(HValue* value) override;
// Temporary operand that must be in a register.
MUST_USE_RESULT LUnallocated* TempRegister();
MUST_USE_RESULT LOperand* FixedTemp(Register reg);
// Methods for setting up define-use relationships.
// Return the same instruction that they are passed.
LInstruction* Define(LTemplateResultInstruction<1>* instr,
LUnallocated* result);
LInstruction* DefineAsRegister(LTemplateResultInstruction<1>* instr);
LInstruction* DefineAsSpilled(LTemplateResultInstruction<1>* instr,
int index);
LInstruction* DefineSameAsFirst(LTemplateResultInstruction<1>* instr);
LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr,
Register reg);
LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr,
X87Register reg);
LInstruction* DefineX87TOS(LTemplateResultInstruction<1>* instr);
// Assigns an environment to an instruction. An instruction which can
// deoptimize must have an environment.
LInstruction* AssignEnvironment(LInstruction* instr);
// Assigns a pointer map to an instruction. An instruction which can
// trigger a GC or a lazy deoptimization must have a pointer map.
LInstruction* AssignPointerMap(LInstruction* instr);
enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
LOperand* GetSeqStringSetCharOperand(HSeqStringSetChar* instr);
// Marks a call for the register allocator. Assigns a pointer map to
// support GC and lazy deoptimization. Assigns an environment to support
// eager deoptimization if CAN_DEOPTIMIZE_EAGERLY.
LInstruction* MarkAsCall(
LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
void VisitInstruction(HInstruction* current);
void AddInstruction(LInstruction* instr, HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HBinaryOperation* instr);
LOperand* GetStoreKeyedValueOperand(HStoreKeyed* instr);
HInstruction* current_instruction_;
HBasicBlock* current_block_;
HBasicBlock* next_block_;
LAllocator* allocator_;
DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
};
#undef DECLARE_HYDROGEN_ACCESSOR
#undef DECLARE_CONCRETE_INSTRUCTION
} // namespace internal
} // namespace v8
#endif // V8_CRANKSHAFT_X87_LITHIUM_X87_H_