// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CRANKSHAFT_X87_LITHIUM_X87_H_ #define V8_CRANKSHAFT_X87_LITHIUM_X87_H_ #include "src/crankshaft/hydrogen.h" #include "src/crankshaft/lithium.h" #include "src/crankshaft/lithium-allocator.h" #include "src/safepoint-table.h" #include "src/utils.h" namespace v8 { namespace internal { namespace compiler { class RCodeVisualizer; } // Forward declarations. class LCodeGen; #define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \ V(AccessArgumentsAt) \ V(AddI) \ V(Allocate) \ V(ApplyArguments) \ V(ArgumentsElements) \ V(ArgumentsLength) \ V(ArithmeticD) \ V(ArithmeticT) \ V(BitI) \ V(BoundsCheck) \ V(Branch) \ V(CallWithDescriptor) \ V(CallNewArray) \ V(CallRuntime) \ V(CheckArrayBufferNotNeutered) \ V(CheckInstanceType) \ V(CheckMaps) \ V(CheckMapValue) \ V(CheckNonSmi) \ V(CheckSmi) \ V(CheckValue) \ V(ClampDToUint8) \ V(ClampIToUint8) \ V(ClampTToUint8NoSSE2) \ V(ClassOfTestAndBranch) \ V(ClobberDoubles) \ V(CompareNumericAndBranch) \ V(CmpObjectEqAndBranch) \ V(CmpHoleAndBranch) \ V(CmpMapAndBranch) \ V(CmpT) \ V(ConstantD) \ V(ConstantE) \ V(ConstantI) \ V(ConstantS) \ V(ConstantT) \ V(Context) \ V(DebugBreak) \ V(DeclareGlobals) \ V(Deoptimize) \ V(DivByConstI) \ V(DivByPowerOf2I) \ V(DivI) \ V(DoubleToI) \ V(DoubleToSmi) \ V(Drop) \ V(Dummy) \ V(DummyUse) \ V(FastAllocate) \ V(FlooringDivByConstI) \ V(FlooringDivByPowerOf2I) \ V(FlooringDivI) \ V(ForInCacheArray) \ V(ForInPrepareMap) \ V(Goto) \ V(HasInPrototypeChainAndBranch) \ V(HasInstanceTypeAndBranch) \ V(InnerAllocatedObject) \ V(InstructionGap) \ V(Integer32ToDouble) \ V(InvokeFunction) \ V(IsStringAndBranch) \ V(IsSmiAndBranch) \ V(IsUndetectableAndBranch) \ V(Label) \ V(LazyBailout) \ V(LoadContextSlot) \ V(LoadFieldByIndex) \ V(LoadFunctionPrototype) \ V(LoadKeyed) \ V(LoadNamedField) \ V(LoadRoot) \ V(MathAbs) \ V(MathClz32) \ V(MathCos) \ V(MathExp) \ V(MathFloor) \ V(MathFround) \ V(MathLog) \ V(MathMinMax) \ V(MathPowHalf) \ V(MathRound) \ V(MathSqrt) \ V(MaybeGrowElements) \ V(MathSin) \ V(ModByConstI) \ V(ModByPowerOf2I) \ V(ModI) \ V(MulI) \ V(NumberTagD) \ V(NumberTagI) \ V(NumberTagU) \ V(NumberUntagD) \ V(OsrEntry) \ V(Parameter) \ V(Power) \ V(Prologue) \ V(PushArgument) \ V(Return) \ V(SeqStringGetChar) \ V(SeqStringSetChar) \ V(ShiftI) \ V(SmiTag) \ V(SmiUntag) \ V(StackCheck) \ V(StoreCodeEntry) \ V(StoreContextSlot) \ V(StoreKeyed) \ V(StoreNamedField) \ V(StringAdd) \ V(StringCharCodeAt) \ V(StringCharFromCode) \ V(StringCompareAndBranch) \ V(SubI) \ V(TaggedToI) \ V(ThisFunction) \ V(TransitionElementsKind) \ V(TrapAllocationMemento) \ V(Typeof) \ V(TypeofIsAndBranch) \ V(Uint32ToDouble) \ V(UnknownOSRValue) \ V(WrapReceiver) #define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \ Opcode opcode() const final { return LInstruction::k##type; } \ void CompileToNative(LCodeGen* generator) final; \ const char* Mnemonic() const final { return mnemonic; } \ static L##type* cast(LInstruction* instr) { \ DCHECK(instr->Is##type()); \ return reinterpret_cast<L##type*>(instr); \ } #define DECLARE_HYDROGEN_ACCESSOR(type) \ H##type* hydrogen() const { \ return H##type::cast(hydrogen_value()); \ } class LInstruction : public ZoneObject { public: LInstruction() : environment_(NULL), hydrogen_value_(NULL), bit_field_(IsCallBits::encode(false)) { } virtual ~LInstruction() {} virtual void CompileToNative(LCodeGen* generator) = 0; virtual const char* Mnemonic() const = 0; virtual void PrintTo(StringStream* stream); virtual void PrintDataTo(StringStream* stream); virtual void PrintOutputOperandTo(StringStream* stream); enum Opcode { // Declare a unique enum value for each instruction. #define DECLARE_OPCODE(type) k##type, LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE) kAdapter, kNumberOfInstructions #undef DECLARE_OPCODE }; virtual Opcode opcode() const = 0; // Declare non-virtual type testers for all leaf IR classes. #define DECLARE_PREDICATE(type) \ bool Is##type() const { return opcode() == k##type; } LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE) #undef DECLARE_PREDICATE // Declare virtual predicates for instructions that don't have // an opcode. virtual bool IsGap() const { return false; } virtual bool IsControl() const { return false; } // Try deleting this instruction if possible. virtual bool TryDelete() { return false; } void set_environment(LEnvironment* env) { environment_ = env; } LEnvironment* environment() const { return environment_; } bool HasEnvironment() const { return environment_ != NULL; } void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); } LPointerMap* pointer_map() const { return pointer_map_.get(); } bool HasPointerMap() const { return pointer_map_.is_set(); } void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; } HValue* hydrogen_value() const { return hydrogen_value_; } void MarkAsCall() { bit_field_ = IsCallBits::update(bit_field_, true); } bool IsCall() const { return IsCallBits::decode(bit_field_); } void MarkAsSyntacticTailCall() { bit_field_ = IsSyntacticTailCallBits::update(bit_field_, true); } bool IsSyntacticTailCall() const { return IsSyntacticTailCallBits::decode(bit_field_); } // Interface to the register allocator and iterators. bool ClobbersTemps() const { return IsCall(); } bool ClobbersRegisters() const { return IsCall(); } virtual bool ClobbersDoubleRegisters(Isolate* isolate) const { return IsCall() || // We only have rudimentary X87Stack tracking, thus in general // cannot handle phi-nodes. (IsControl()); } virtual bool HasResult() const = 0; virtual LOperand* result() const = 0; bool HasDoubleRegisterResult(); bool HasDoubleRegisterInput(); bool IsDoubleInput(X87Register reg, LCodeGen* cgen); LOperand* FirstInput() { return InputAt(0); } LOperand* Output() { return HasResult() ? result() : NULL; } virtual bool HasInterestingComment(LCodeGen* gen) const { return true; } #ifdef DEBUG void VerifyCall(); #endif virtual int InputCount() = 0; virtual LOperand* InputAt(int i) = 0; private: // Iterator support. friend class InputIterator; friend class TempIterator; virtual int TempCount() = 0; virtual LOperand* TempAt(int i) = 0; class IsCallBits: public BitField<bool, 0, 1> {}; class IsSyntacticTailCallBits : public BitField<bool, IsCallBits::kNext, 1> { }; LEnvironment* environment_; SetOncePointer<LPointerMap> pointer_map_; HValue* hydrogen_value_; int bit_field_; }; // R = number of result operands (0 or 1). template<int R> class LTemplateResultInstruction : public LInstruction { public: // Allow 0 or 1 output operands. STATIC_ASSERT(R == 0 || R == 1); bool HasResult() const final { return R != 0 && result() != NULL; } void set_result(LOperand* operand) { results_[0] = operand; } LOperand* result() const override { return results_[0]; } protected: EmbeddedContainer<LOperand*, R> results_; }; // R = number of result operands (0 or 1). // I = number of input operands. // T = number of temporary operands. template<int R, int I, int T> class LTemplateInstruction : public LTemplateResultInstruction<R> { protected: EmbeddedContainer<LOperand*, I> inputs_; EmbeddedContainer<LOperand*, T> temps_; private: // Iterator support. int InputCount() final { return I; } LOperand* InputAt(int i) final { return inputs_[i]; } int TempCount() final { return T; } LOperand* TempAt(int i) final { return temps_[i]; } }; class LGap : public LTemplateInstruction<0, 0, 0> { public: explicit LGap(HBasicBlock* block) : block_(block) { parallel_moves_[BEFORE] = NULL; parallel_moves_[START] = NULL; parallel_moves_[END] = NULL; parallel_moves_[AFTER] = NULL; } // Can't use the DECLARE-macro here because of sub-classes. bool IsGap() const final { return true; } void PrintDataTo(StringStream* stream) override; static LGap* cast(LInstruction* instr) { DCHECK(instr->IsGap()); return reinterpret_cast<LGap*>(instr); } bool IsRedundant() const; HBasicBlock* block() const { return block_; } enum InnerPosition { BEFORE, START, END, AFTER, FIRST_INNER_POSITION = BEFORE, LAST_INNER_POSITION = AFTER }; LParallelMove* GetOrCreateParallelMove(InnerPosition pos, Zone* zone) { if (parallel_moves_[pos] == NULL) { parallel_moves_[pos] = new(zone) LParallelMove(zone); } return parallel_moves_[pos]; } LParallelMove* GetParallelMove(InnerPosition pos) { return parallel_moves_[pos]; } private: LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1]; HBasicBlock* block_; }; class LInstructionGap final : public LGap { public: explicit LInstructionGap(HBasicBlock* block) : LGap(block) { } bool HasInterestingComment(LCodeGen* gen) const override { return !IsRedundant(); } DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap") }; class LClobberDoubles final : public LTemplateInstruction<0, 0, 0> { public: explicit LClobberDoubles(Isolate* isolate) { } bool ClobbersDoubleRegisters(Isolate* isolate) const override { return true; } DECLARE_CONCRETE_INSTRUCTION(ClobberDoubles, "clobber-d") }; class LGoto final : public LTemplateInstruction<0, 0, 0> { public: explicit LGoto(HBasicBlock* block) : block_(block) { } bool HasInterestingComment(LCodeGen* gen) const override; DECLARE_CONCRETE_INSTRUCTION(Goto, "goto") void PrintDataTo(StringStream* stream) override; bool IsControl() const override { return true; } int block_id() const { return block_->block_id(); } bool ClobbersDoubleRegisters(Isolate* isolate) const override { return false; } bool jumps_to_join() const { return block_->predecessors()->length() > 1; } HBasicBlock* block() const { return block_; } private: HBasicBlock* block_; }; class LPrologue final : public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(Prologue, "prologue") }; class LLazyBailout final : public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout") }; class LDummy final : public LTemplateInstruction<1, 0, 0> { public: LDummy() {} DECLARE_CONCRETE_INSTRUCTION(Dummy, "dummy") }; class LDummyUse final : public LTemplateInstruction<1, 1, 0> { public: explicit LDummyUse(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(DummyUse, "dummy-use") }; class LDeoptimize final : public LTemplateInstruction<0, 0, 0> { public: bool IsControl() const override { return true; } DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize") DECLARE_HYDROGEN_ACCESSOR(Deoptimize) }; class LLabel final : public LGap { public: explicit LLabel(HBasicBlock* block) : LGap(block), replacement_(NULL) { } bool HasInterestingComment(LCodeGen* gen) const override { return false; } DECLARE_CONCRETE_INSTRUCTION(Label, "label") void PrintDataTo(StringStream* stream) override; int block_id() const { return block()->block_id(); } bool is_loop_header() const { return block()->IsLoopHeader(); } bool is_osr_entry() const { return block()->is_osr_entry(); } Label* label() { return &label_; } LLabel* replacement() const { return replacement_; } void set_replacement(LLabel* label) { replacement_ = label; } bool HasReplacement() const { return replacement_ != NULL; } private: Label label_; LLabel* replacement_; }; class LParameter final : public LTemplateInstruction<1, 0, 0> { public: bool HasInterestingComment(LCodeGen* gen) const override { return false; } DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter") }; class LUnknownOSRValue final : public LTemplateInstruction<1, 0, 0> { public: bool HasInterestingComment(LCodeGen* gen) const override { return false; } DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value") }; template<int I, int T> class LControlInstruction: public LTemplateInstruction<0, I, T> { public: LControlInstruction() : false_label_(NULL), true_label_(NULL) { } bool IsControl() const final { return true; } int SuccessorCount() { return hydrogen()->SuccessorCount(); } HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); } int TrueDestination(LChunk* chunk) { return chunk->LookupDestination(true_block_id()); } int FalseDestination(LChunk* chunk) { return chunk->LookupDestination(false_block_id()); } Label* TrueLabel(LChunk* chunk) { if (true_label_ == NULL) { true_label_ = chunk->GetAssemblyLabel(TrueDestination(chunk)); } return true_label_; } Label* FalseLabel(LChunk* chunk) { if (false_label_ == NULL) { false_label_ = chunk->GetAssemblyLabel(FalseDestination(chunk)); } return false_label_; } protected: int true_block_id() { return SuccessorAt(0)->block_id(); } int false_block_id() { return SuccessorAt(1)->block_id(); } private: HControlInstruction* hydrogen() { return HControlInstruction::cast(this->hydrogen_value()); } Label* false_label_; Label* true_label_; }; class LWrapReceiver final : public LTemplateInstruction<1, 2, 1> { public: LWrapReceiver(LOperand* receiver, LOperand* function, LOperand* temp) { inputs_[0] = receiver; inputs_[1] = function; temps_[0] = temp; } LOperand* receiver() { return inputs_[0]; } LOperand* function() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver") DECLARE_HYDROGEN_ACCESSOR(WrapReceiver) }; class LApplyArguments final : public LTemplateInstruction<1, 4, 0> { public: LApplyArguments(LOperand* function, LOperand* receiver, LOperand* length, LOperand* elements) { inputs_[0] = function; inputs_[1] = receiver; inputs_[2] = length; inputs_[3] = elements; } LOperand* function() { return inputs_[0]; } LOperand* receiver() { return inputs_[1]; } LOperand* length() { return inputs_[2]; } LOperand* elements() { return inputs_[3]; } DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments") DECLARE_HYDROGEN_ACCESSOR(ApplyArguments) }; class LAccessArgumentsAt final : public LTemplateInstruction<1, 3, 0> { public: LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) { inputs_[0] = arguments; inputs_[1] = length; inputs_[2] = index; } LOperand* arguments() { return inputs_[0]; } LOperand* length() { return inputs_[1]; } LOperand* index() { return inputs_[2]; } DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at") void PrintDataTo(StringStream* stream) override; }; class LArgumentsLength final : public LTemplateInstruction<1, 1, 0> { public: explicit LArgumentsLength(LOperand* elements) { inputs_[0] = elements; } LOperand* elements() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length") }; class LArgumentsElements final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements") DECLARE_HYDROGEN_ACCESSOR(ArgumentsElements) }; class LDebugBreak final : public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(DebugBreak, "break") }; class LModByPowerOf2I final : public LTemplateInstruction<1, 1, 0> { public: LModByPowerOf2I(LOperand* dividend, int32_t divisor) { inputs_[0] = dividend; divisor_ = divisor; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } DECLARE_CONCRETE_INSTRUCTION(ModByPowerOf2I, "mod-by-power-of-2-i") DECLARE_HYDROGEN_ACCESSOR(Mod) private: int32_t divisor_; }; class LModByConstI final : public LTemplateInstruction<1, 1, 2> { public: LModByConstI(LOperand* dividend, int32_t divisor, LOperand* temp1, LOperand* temp2) { inputs_[0] = dividend; divisor_ = divisor; temps_[0] = temp1; temps_[1] = temp2; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } LOperand* temp1() { return temps_[0]; } LOperand* temp2() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(ModByConstI, "mod-by-const-i") DECLARE_HYDROGEN_ACCESSOR(Mod) private: int32_t divisor_; }; class LModI final : public LTemplateInstruction<1, 2, 1> { public: LModI(LOperand* left, LOperand* right, LOperand* temp) { inputs_[0] = left; inputs_[1] = right; temps_[0] = temp; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i") DECLARE_HYDROGEN_ACCESSOR(Mod) }; class LDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> { public: LDivByPowerOf2I(LOperand* dividend, int32_t divisor) { inputs_[0] = dividend; divisor_ = divisor; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } DECLARE_CONCRETE_INSTRUCTION(DivByPowerOf2I, "div-by-power-of-2-i") DECLARE_HYDROGEN_ACCESSOR(Div) private: int32_t divisor_; }; class LDivByConstI final : public LTemplateInstruction<1, 1, 2> { public: LDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp1, LOperand* temp2) { inputs_[0] = dividend; divisor_ = divisor; temps_[0] = temp1; temps_[1] = temp2; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } LOperand* temp1() { return temps_[0]; } LOperand* temp2() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(DivByConstI, "div-by-const-i") DECLARE_HYDROGEN_ACCESSOR(Div) private: int32_t divisor_; }; class LDivI final : public LTemplateInstruction<1, 2, 1> { public: LDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) { inputs_[0] = dividend; inputs_[1] = divisor; temps_[0] = temp; } LOperand* dividend() { return inputs_[0]; } LOperand* divisor() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i") DECLARE_HYDROGEN_ACCESSOR(BinaryOperation) }; class LFlooringDivByPowerOf2I final : public LTemplateInstruction<1, 1, 0> { public: LFlooringDivByPowerOf2I(LOperand* dividend, int32_t divisor) { inputs_[0] = dividend; divisor_ = divisor; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } DECLARE_CONCRETE_INSTRUCTION(FlooringDivByPowerOf2I, "flooring-div-by-power-of-2-i") DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv) private: int32_t divisor_; }; class LFlooringDivByConstI final : public LTemplateInstruction<1, 1, 3> { public: LFlooringDivByConstI(LOperand* dividend, int32_t divisor, LOperand* temp1, LOperand* temp2, LOperand* temp3) { inputs_[0] = dividend; divisor_ = divisor; temps_[0] = temp1; temps_[1] = temp2; temps_[2] = temp3; } LOperand* dividend() { return inputs_[0]; } int32_t divisor() const { return divisor_; } LOperand* temp1() { return temps_[0]; } LOperand* temp2() { return temps_[1]; } LOperand* temp3() { return temps_[2]; } DECLARE_CONCRETE_INSTRUCTION(FlooringDivByConstI, "flooring-div-by-const-i") DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv) private: int32_t divisor_; }; class LFlooringDivI final : public LTemplateInstruction<1, 2, 1> { public: LFlooringDivI(LOperand* dividend, LOperand* divisor, LOperand* temp) { inputs_[0] = dividend; inputs_[1] = divisor; temps_[0] = temp; } LOperand* dividend() { return inputs_[0]; } LOperand* divisor() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(FlooringDivI, "flooring-div-i") DECLARE_HYDROGEN_ACCESSOR(MathFloorOfDiv) }; class LMulI final : public LTemplateInstruction<1, 2, 1> { public: LMulI(LOperand* left, LOperand* right, LOperand* temp) { inputs_[0] = left; inputs_[1] = right; temps_[0] = temp; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i") DECLARE_HYDROGEN_ACCESSOR(Mul) }; class LCompareNumericAndBranch final : public LControlInstruction<2, 0> { public: LCompareNumericAndBranch(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(CompareNumericAndBranch, "compare-numeric-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareNumericAndBranch) Token::Value op() const { return hydrogen()->token(); } bool is_double() const { return hydrogen()->representation().IsDouble(); } void PrintDataTo(StringStream* stream) override; }; class LMathFloor final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathFloor(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathFloor, "math-floor") DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation) }; class LMathRound final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathRound(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathRound, "math-round") DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation) }; class LMathFround final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathFround(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathFround, "math-fround") }; class LMathAbs final : public LTemplateInstruction<1, 2, 0> { public: LMathAbs(LOperand* context, LOperand* value) { inputs_[1] = context; inputs_[0] = value; } LOperand* context() { return inputs_[1]; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathAbs, "math-abs") DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation) }; class LMathLog final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathLog(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathLog, "math-log") }; class LMathClz32 final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathClz32(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathClz32, "math-clz32") }; class LMathCos final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathCos(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathCos, "math-cos") }; class LMathSin final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathSin(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathSin, "math-sin") }; class LMathExp final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathExp(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathExp, "math-exp") }; class LMathSqrt final : public LTemplateInstruction<1, 1, 2> { public: explicit LMathSqrt(LOperand* value, LOperand* temp1, LOperand* temp2) { inputs_[0] = value; temps_[0] = temp1; temps_[1] = temp2; } LOperand* value() { return inputs_[0]; } LOperand* temp1() { return temps_[0]; } LOperand* temp2() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(MathSqrt, "math-sqrt") }; class LMathPowHalf final : public LTemplateInstruction<1, 1, 0> { public: explicit LMathPowHalf(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathPowHalf, "math-pow-half") }; class LCmpObjectEqAndBranch final : public LControlInstruction<2, 0> { public: LCmpObjectEqAndBranch(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch") }; class LCmpHoleAndBranch final : public LControlInstruction<1, 0> { public: explicit LCmpHoleAndBranch(LOperand* object) { inputs_[0] = object; } LOperand* object() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CmpHoleAndBranch, "cmp-hole-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareHoleAndBranch) }; class LIsStringAndBranch final : public LControlInstruction<1, 1> { public: LIsStringAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch) void PrintDataTo(StringStream* stream) override; }; class LIsSmiAndBranch final : public LControlInstruction<1, 0> { public: explicit LIsSmiAndBranch(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch) void PrintDataTo(StringStream* stream) override; }; class LIsUndetectableAndBranch final : public LControlInstruction<1, 1> { public: LIsUndetectableAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch, "is-undetectable-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch) void PrintDataTo(StringStream* stream) override; }; class LStringCompareAndBranch final : public LControlInstruction<3, 0> { public: LStringCompareAndBranch(LOperand* context, LOperand* left, LOperand* right) { inputs_[0] = context; inputs_[1] = left; inputs_[2] = right; } LOperand* context() { return inputs_[0]; } LOperand* left() { return inputs_[1]; } LOperand* right() { return inputs_[2]; } DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch, "string-compare-and-branch") DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch) void PrintDataTo(StringStream* stream) override; Token::Value op() const { return hydrogen()->token(); } }; class LHasInstanceTypeAndBranch final : public LControlInstruction<1, 1> { public: LHasInstanceTypeAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch, "has-instance-type-and-branch") DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch) void PrintDataTo(StringStream* stream) override; }; class LClassOfTestAndBranch final : public LControlInstruction<1, 2> { public: LClassOfTestAndBranch(LOperand* value, LOperand* temp, LOperand* temp2) { inputs_[0] = value; temps_[0] = temp; temps_[1] = temp2; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } LOperand* temp2() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch, "class-of-test-and-branch") DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch) void PrintDataTo(StringStream* stream) override; }; class LCmpT final : public LTemplateInstruction<1, 3, 0> { public: LCmpT(LOperand* context, LOperand* left, LOperand* right) { inputs_[0] = context; inputs_[1] = left; inputs_[2] = right; } DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t") DECLARE_HYDROGEN_ACCESSOR(CompareGeneric) LOperand* context() { return inputs_[0]; } Token::Value op() const { return hydrogen()->token(); } }; class LHasInPrototypeChainAndBranch final : public LControlInstruction<2, 1> { public: LHasInPrototypeChainAndBranch(LOperand* object, LOperand* prototype, LOperand* scratch) { inputs_[0] = object; inputs_[1] = prototype; temps_[0] = scratch; } LOperand* object() const { return inputs_[0]; } LOperand* prototype() const { return inputs_[1]; } LOperand* scratch() const { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(HasInPrototypeChainAndBranch, "has-in-prototype-chain-and-branch") DECLARE_HYDROGEN_ACCESSOR(HasInPrototypeChainAndBranch) }; class LBoundsCheck final : public LTemplateInstruction<0, 2, 0> { public: LBoundsCheck(LOperand* index, LOperand* length) { inputs_[0] = index; inputs_[1] = length; } LOperand* index() { return inputs_[0]; } LOperand* length() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check") DECLARE_HYDROGEN_ACCESSOR(BoundsCheck) }; class LBitI final : public LTemplateInstruction<1, 2, 0> { public: LBitI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i") DECLARE_HYDROGEN_ACCESSOR(Bitwise) Token::Value op() const { return hydrogen()->op(); } }; class LShiftI final : public LTemplateInstruction<1, 2, 0> { public: LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt) : op_(op), can_deopt_(can_deopt) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i") Token::Value op() const { return op_; } bool can_deopt() const { return can_deopt_; } private: Token::Value op_; bool can_deopt_; }; class LSubI final : public LTemplateInstruction<1, 2, 0> { public: LSubI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i") DECLARE_HYDROGEN_ACCESSOR(Sub) }; class LConstantI final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i") DECLARE_HYDROGEN_ACCESSOR(Constant) int32_t value() const { return hydrogen()->Integer32Value(); } }; class LConstantS final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantS, "constant-s") DECLARE_HYDROGEN_ACCESSOR(Constant) Smi* value() const { return Smi::FromInt(hydrogen()->Integer32Value()); } }; class LConstantD final : public LTemplateInstruction<1, 0, 1> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d") DECLARE_HYDROGEN_ACCESSOR(Constant) uint64_t bits() const { return hydrogen()->DoubleValueAsBits(); } }; class LConstantE final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantE, "constant-e") DECLARE_HYDROGEN_ACCESSOR(Constant) ExternalReference value() const { return hydrogen()->ExternalReferenceValue(); } }; class LConstantT final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t") DECLARE_HYDROGEN_ACCESSOR(Constant) Handle<Object> value(Isolate* isolate) const { return hydrogen()->handle(isolate); } }; class LBranch final : public LControlInstruction<1, 1> { public: LBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(Branch, "branch") DECLARE_HYDROGEN_ACCESSOR(Branch) void PrintDataTo(StringStream* stream) override; }; class LCmpMapAndBranch final : public LControlInstruction<1, 0> { public: explicit LCmpMapAndBranch(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareMap) Handle<Map> map() const { return hydrogen()->map().handle(); } }; class LSeqStringGetChar final : public LTemplateInstruction<1, 2, 0> { public: LSeqStringGetChar(LOperand* string, LOperand* index) { inputs_[0] = string; inputs_[1] = index; } LOperand* string() const { return inputs_[0]; } LOperand* index() const { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(SeqStringGetChar, "seq-string-get-char") DECLARE_HYDROGEN_ACCESSOR(SeqStringGetChar) }; class LSeqStringSetChar final : public LTemplateInstruction<1, 4, 0> { public: LSeqStringSetChar(LOperand* context, LOperand* string, LOperand* index, LOperand* value) { inputs_[0] = context; inputs_[1] = string; inputs_[2] = index; inputs_[3] = value; } LOperand* string() { return inputs_[1]; } LOperand* index() { return inputs_[2]; } LOperand* value() { return inputs_[3]; } DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar, "seq-string-set-char") DECLARE_HYDROGEN_ACCESSOR(SeqStringSetChar) }; class LAddI final : public LTemplateInstruction<1, 2, 0> { public: LAddI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } static bool UseLea(HAdd* add) { return !add->CheckFlag(HValue::kCanOverflow) && add->BetterLeftOperand()->UseCount() > 1; } DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i") DECLARE_HYDROGEN_ACCESSOR(Add) }; class LMathMinMax final : public LTemplateInstruction<1, 2, 1> { public: LMathMinMax(LOperand* left, LOperand* right, LOperand* temp) { inputs_[0] = left; inputs_[1] = right; temps_[0] = temp; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(MathMinMax, "math-min-max") DECLARE_HYDROGEN_ACCESSOR(MathMinMax) }; class LPower final : public LTemplateInstruction<1, 2, 0> { public: LPower(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(Power, "power") DECLARE_HYDROGEN_ACCESSOR(Power) }; class LArithmeticD final : public LTemplateInstruction<1, 2, 0> { public: LArithmeticD(Token::Value op, LOperand* left, LOperand* right) : op_(op) { inputs_[0] = left; inputs_[1] = right; } LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } Token::Value op() const { return op_; } Opcode opcode() const override { return LInstruction::kArithmeticD; } void CompileToNative(LCodeGen* generator) override; const char* Mnemonic() const override; private: Token::Value op_; }; class LArithmeticT final : public LTemplateInstruction<1, 3, 0> { public: LArithmeticT(Token::Value op, LOperand* context, LOperand* left, LOperand* right) : op_(op) { inputs_[0] = context; inputs_[1] = left; inputs_[2] = right; } LOperand* context() { return inputs_[0]; } LOperand* left() { return inputs_[1]; } LOperand* right() { return inputs_[2]; } Token::Value op() const { return op_; } Opcode opcode() const override { return LInstruction::kArithmeticT; } void CompileToNative(LCodeGen* generator) override; const char* Mnemonic() const override; DECLARE_HYDROGEN_ACCESSOR(BinaryOperation) private: Token::Value op_; }; class LReturn final : public LTemplateInstruction<0, 3, 0> { public: explicit LReturn(LOperand* value, LOperand* context, LOperand* parameter_count) { inputs_[0] = value; inputs_[1] = context; inputs_[2] = parameter_count; } bool has_constant_parameter_count() { return parameter_count()->IsConstantOperand(); } LConstantOperand* constant_parameter_count() { DCHECK(has_constant_parameter_count()); return LConstantOperand::cast(parameter_count()); } LOperand* parameter_count() { return inputs_[2]; } DECLARE_CONCRETE_INSTRUCTION(Return, "return") DECLARE_HYDROGEN_ACCESSOR(Return) }; class LLoadNamedField final : public LTemplateInstruction<1, 1, 0> { public: explicit LLoadNamedField(LOperand* object) { inputs_[0] = object; } LOperand* object() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field") DECLARE_HYDROGEN_ACCESSOR(LoadNamedField) }; class LLoadFunctionPrototype final : public LTemplateInstruction<1, 1, 1> { public: LLoadFunctionPrototype(LOperand* function, LOperand* temp) { inputs_[0] = function; temps_[0] = temp; } LOperand* function() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype") DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype) }; class LLoadRoot final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(LoadRoot, "load-root") DECLARE_HYDROGEN_ACCESSOR(LoadRoot) Heap::RootListIndex index() const { return hydrogen()->index(); } }; class LLoadKeyed final : public LTemplateInstruction<1, 3, 0> { public: LLoadKeyed(LOperand* elements, LOperand* key, LOperand* backing_store_owner) { inputs_[0] = elements; inputs_[1] = key; inputs_[2] = backing_store_owner; } LOperand* elements() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* backing_store_owner() { return inputs_[2]; } ElementsKind elements_kind() const { return hydrogen()->elements_kind(); } bool is_fixed_typed_array() const { return hydrogen()->is_fixed_typed_array(); } DECLARE_CONCRETE_INSTRUCTION(LoadKeyed, "load-keyed") DECLARE_HYDROGEN_ACCESSOR(LoadKeyed) void PrintDataTo(StringStream* stream) override; uint32_t base_offset() const { return hydrogen()->base_offset(); } bool key_is_smi() { return hydrogen()->key()->representation().IsTagged(); } }; inline static bool ExternalArrayOpRequiresTemp( Representation key_representation, ElementsKind elements_kind) { // Operations that require the key to be divided by two to be converted into // an index cannot fold the scale operation into a load and need an extra // temp register to do the work. return key_representation.IsSmi() && (elements_kind == UINT8_ELEMENTS || elements_kind == INT8_ELEMENTS || elements_kind == UINT8_CLAMPED_ELEMENTS); } class LLoadContextSlot final : public LTemplateInstruction<1, 1, 0> { public: explicit LLoadContextSlot(LOperand* context) { inputs_[0] = context; } LOperand* context() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot") DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot) int slot_index() { return hydrogen()->slot_index(); } void PrintDataTo(StringStream* stream) override; }; class LStoreContextSlot final : public LTemplateInstruction<0, 2, 1> { public: LStoreContextSlot(LOperand* context, LOperand* value, LOperand* temp) { inputs_[0] = context; inputs_[1] = value; temps_[0] = temp; } LOperand* context() { return inputs_[0]; } LOperand* value() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot") DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot) int slot_index() { return hydrogen()->slot_index(); } void PrintDataTo(StringStream* stream) override; }; class LPushArgument final : public LTemplateInstruction<0, 1, 0> { public: explicit LPushArgument(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument") }; class LDrop final : public LTemplateInstruction<0, 0, 0> { public: explicit LDrop(int count) : count_(count) { } int count() const { return count_; } DECLARE_CONCRETE_INSTRUCTION(Drop, "drop") private: int count_; }; class LStoreCodeEntry final : public LTemplateInstruction<0, 2, 0> { public: LStoreCodeEntry(LOperand* function, LOperand* code_object) { inputs_[0] = function; inputs_[1] = code_object; } LOperand* function() { return inputs_[0]; } LOperand* code_object() { return inputs_[1]; } void PrintDataTo(StringStream* stream) override; DECLARE_CONCRETE_INSTRUCTION(StoreCodeEntry, "store-code-entry") DECLARE_HYDROGEN_ACCESSOR(StoreCodeEntry) }; class LInnerAllocatedObject final : public LTemplateInstruction<1, 2, 0> { public: LInnerAllocatedObject(LOperand* base_object, LOperand* offset) { inputs_[0] = base_object; inputs_[1] = offset; } LOperand* base_object() const { return inputs_[0]; } LOperand* offset() const { return inputs_[1]; } void PrintDataTo(StringStream* stream) override; DECLARE_CONCRETE_INSTRUCTION(InnerAllocatedObject, "inner-allocated-object") }; class LThisFunction final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function") DECLARE_HYDROGEN_ACCESSOR(ThisFunction) }; class LContext final : public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(Context, "context") DECLARE_HYDROGEN_ACCESSOR(Context) }; class LDeclareGlobals final : public LTemplateInstruction<0, 1, 0> { public: explicit LDeclareGlobals(LOperand* context) { inputs_[0] = context; } LOperand* context() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals") DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals) }; class LCallWithDescriptor final : public LTemplateResultInstruction<1> { public: LCallWithDescriptor(CallInterfaceDescriptor descriptor, const ZoneList<LOperand*>& operands, Zone* zone) : inputs_(descriptor.GetRegisterParameterCount() + kImplicitRegisterParameterCount, zone) { DCHECK(descriptor.GetRegisterParameterCount() + kImplicitRegisterParameterCount == operands.length()); inputs_.AddAll(operands, zone); } LOperand* target() const { return inputs_[0]; } DECLARE_HYDROGEN_ACCESSOR(CallWithDescriptor) // The target and context are passed as implicit parameters that are not // explicitly listed in the descriptor. static const int kImplicitRegisterParameterCount = 2; private: DECLARE_CONCRETE_INSTRUCTION(CallWithDescriptor, "call-with-descriptor") void PrintDataTo(StringStream* stream) override; int arity() const { return hydrogen()->argument_count() - 1; } ZoneList<LOperand*> inputs_; // Iterator support. int InputCount() final { return inputs_.length(); } LOperand* InputAt(int i) final { return inputs_[i]; } int TempCount() final { return 0; } LOperand* TempAt(int i) final { return NULL; } }; class LInvokeFunction final : public LTemplateInstruction<1, 2, 0> { public: LInvokeFunction(LOperand* context, LOperand* function) { inputs_[0] = context; inputs_[1] = function; } LOperand* context() { return inputs_[0]; } LOperand* function() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function") DECLARE_HYDROGEN_ACCESSOR(InvokeFunction) void PrintDataTo(StringStream* stream) override; int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallNewArray final : public LTemplateInstruction<1, 2, 0> { public: LCallNewArray(LOperand* context, LOperand* constructor) { inputs_[0] = context; inputs_[1] = constructor; } LOperand* context() { return inputs_[0]; } LOperand* constructor() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(CallNewArray, "call-new-array") DECLARE_HYDROGEN_ACCESSOR(CallNewArray) void PrintDataTo(StringStream* stream) override; int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallRuntime final : public LTemplateInstruction<1, 1, 0> { public: explicit LCallRuntime(LOperand* context) { inputs_[0] = context; } LOperand* context() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime") DECLARE_HYDROGEN_ACCESSOR(CallRuntime) bool ClobbersDoubleRegisters(Isolate* isolate) const override { return save_doubles() == kDontSaveFPRegs; } const Runtime::Function* function() const { return hydrogen()->function(); } int arity() const { return hydrogen()->argument_count(); } SaveFPRegsMode save_doubles() const { return hydrogen()->save_doubles(); } }; class LInteger32ToDouble final : public LTemplateInstruction<1, 1, 0> { public: explicit LInteger32ToDouble(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double") }; class LUint32ToDouble final : public LTemplateInstruction<1, 1, 1> { public: explicit LUint32ToDouble(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(Uint32ToDouble, "uint32-to-double") }; class LNumberTagI final : public LTemplateInstruction<1, 1, 1> { public: LNumberTagI(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i") }; class LNumberTagU final : public LTemplateInstruction<1, 1, 1> { public: LNumberTagU(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(NumberTagU, "number-tag-u") }; class LNumberTagD final : public LTemplateInstruction<1, 1, 1> { public: LNumberTagD(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d") DECLARE_HYDROGEN_ACCESSOR(Change) }; // Sometimes truncating conversion from a tagged value to an int32. class LDoubleToI final : public LTemplateInstruction<1, 1, 0> { public: explicit LDoubleToI(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i") DECLARE_HYDROGEN_ACCESSOR(UnaryOperation) bool truncating() { return hydrogen()->CanTruncateToInt32(); } }; class LDoubleToSmi final : public LTemplateInstruction<1, 1, 0> { public: explicit LDoubleToSmi(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(DoubleToSmi, "double-to-smi") DECLARE_HYDROGEN_ACCESSOR(UnaryOperation) }; // Truncating conversion from a tagged value to an int32. class LTaggedToI final : public LTemplateInstruction<1, 1, 0> { public: explicit LTaggedToI(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i") DECLARE_HYDROGEN_ACCESSOR(Change) bool truncating() { return hydrogen()->CanTruncateToInt32(); } }; class LSmiTag final : public LTemplateInstruction<1, 1, 0> { public: explicit LSmiTag(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag") DECLARE_HYDROGEN_ACCESSOR(Change) }; class LNumberUntagD final : public LTemplateInstruction<1, 1, 1> { public: explicit LNumberUntagD(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag") DECLARE_HYDROGEN_ACCESSOR(Change); bool truncating() { return hydrogen()->CanTruncateToNumber(); } }; class LSmiUntag final : public LTemplateInstruction<1, 1, 0> { public: LSmiUntag(LOperand* value, bool needs_check) : needs_check_(needs_check) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag") bool needs_check() const { return needs_check_; } private: bool needs_check_; }; class LStoreNamedField final : public LTemplateInstruction<0, 2, 2> { public: LStoreNamedField(LOperand* obj, LOperand* val, LOperand* temp, LOperand* temp_map) { inputs_[0] = obj; inputs_[1] = val; temps_[0] = temp; temps_[1] = temp_map; } LOperand* object() { return inputs_[0]; } LOperand* value() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } LOperand* temp_map() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field") DECLARE_HYDROGEN_ACCESSOR(StoreNamedField) void PrintDataTo(StringStream* stream) override; }; class LStoreKeyed final : public LTemplateInstruction<0, 4, 0> { public: LStoreKeyed(LOperand* obj, LOperand* key, LOperand* val, LOperand* backing_store_owner) { inputs_[0] = obj; inputs_[1] = key; inputs_[2] = val; inputs_[3] = backing_store_owner; } bool is_fixed_typed_array() const { return hydrogen()->is_fixed_typed_array(); } LOperand* elements() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* value() { return inputs_[2]; } LOperand* backing_store_owner() { return inputs_[3]; } ElementsKind elements_kind() const { return hydrogen()->elements_kind(); } DECLARE_CONCRETE_INSTRUCTION(StoreKeyed, "store-keyed") DECLARE_HYDROGEN_ACCESSOR(StoreKeyed) void PrintDataTo(StringStream* stream) override; uint32_t base_offset() const { return hydrogen()->base_offset(); } bool NeedsCanonicalization() { return hydrogen()->NeedsCanonicalization(); } }; class LTransitionElementsKind final : public LTemplateInstruction<0, 2, 2> { public: LTransitionElementsKind(LOperand* object, LOperand* context, LOperand* new_map_temp, LOperand* temp) { inputs_[0] = object; inputs_[1] = context; temps_[0] = new_map_temp; temps_[1] = temp; } LOperand* context() { return inputs_[1]; } LOperand* object() { return inputs_[0]; } LOperand* new_map_temp() { return temps_[0]; } LOperand* temp() { return temps_[1]; } DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind, "transition-elements-kind") DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind) void PrintDataTo(StringStream* stream) override; Handle<Map> original_map() { return hydrogen()->original_map().handle(); } Handle<Map> transitioned_map() { return hydrogen()->transitioned_map().handle(); } ElementsKind from_kind() { return hydrogen()->from_kind(); } ElementsKind to_kind() { return hydrogen()->to_kind(); } }; class LTrapAllocationMemento final : public LTemplateInstruction<0, 1, 1> { public: LTrapAllocationMemento(LOperand* object, LOperand* temp) { inputs_[0] = object; temps_[0] = temp; } LOperand* object() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(TrapAllocationMemento, "trap-allocation-memento") }; class LMaybeGrowElements final : public LTemplateInstruction<1, 5, 0> { public: LMaybeGrowElements(LOperand* context, LOperand* object, LOperand* elements, LOperand* key, LOperand* current_capacity) { inputs_[0] = context; inputs_[1] = object; inputs_[2] = elements; inputs_[3] = key; inputs_[4] = current_capacity; } LOperand* context() { return inputs_[0]; } LOperand* object() { return inputs_[1]; } LOperand* elements() { return inputs_[2]; } LOperand* key() { return inputs_[3]; } LOperand* current_capacity() { return inputs_[4]; } bool ClobbersDoubleRegisters(Isolate* isolate) const override { return true; } DECLARE_HYDROGEN_ACCESSOR(MaybeGrowElements) DECLARE_CONCRETE_INSTRUCTION(MaybeGrowElements, "maybe-grow-elements") }; class LStringAdd final : public LTemplateInstruction<1, 3, 0> { public: LStringAdd(LOperand* context, LOperand* left, LOperand* right) { inputs_[0] = context; inputs_[1] = left; inputs_[2] = right; } LOperand* context() { return inputs_[0]; } LOperand* left() { return inputs_[1]; } LOperand* right() { return inputs_[2]; } DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add") DECLARE_HYDROGEN_ACCESSOR(StringAdd) }; class LStringCharCodeAt final : public LTemplateInstruction<1, 3, 0> { public: LStringCharCodeAt(LOperand* context, LOperand* string, LOperand* index) { inputs_[0] = context; inputs_[1] = string; inputs_[2] = index; } LOperand* context() { return inputs_[0]; } LOperand* string() { return inputs_[1]; } LOperand* index() { return inputs_[2]; } DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at") DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt) }; class LStringCharFromCode final : public LTemplateInstruction<1, 2, 0> { public: LStringCharFromCode(LOperand* context, LOperand* char_code) { inputs_[0] = context; inputs_[1] = char_code; } LOperand* context() { return inputs_[0]; } LOperand* char_code() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code") DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode) }; class LCheckValue final : public LTemplateInstruction<0, 1, 0> { public: explicit LCheckValue(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckValue, "check-value") DECLARE_HYDROGEN_ACCESSOR(CheckValue) }; class LCheckArrayBufferNotNeutered final : public LTemplateInstruction<0, 1, 1> { public: explicit LCheckArrayBufferNotNeutered(LOperand* view, LOperand* scratch) { inputs_[0] = view; temps_[0] = scratch; } LOperand* view() { return inputs_[0]; } LOperand* scratch() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckArrayBufferNotNeutered, "check-array-buffer-not-neutered") DECLARE_HYDROGEN_ACCESSOR(CheckArrayBufferNotNeutered) }; class LCheckInstanceType final : public LTemplateInstruction<0, 1, 1> { public: LCheckInstanceType(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* value() { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type") DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType) }; class LCheckMaps final : public LTemplateInstruction<0, 1, 0> { public: explicit LCheckMaps(LOperand* value = NULL) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckMaps, "check-maps") DECLARE_HYDROGEN_ACCESSOR(CheckMaps) }; class LCheckSmi final : public LTemplateInstruction<1, 1, 0> { public: explicit LCheckSmi(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi") }; class LClampDToUint8 final : public LTemplateInstruction<1, 1, 0> { public: explicit LClampDToUint8(LOperand* value) { inputs_[0] = value; } LOperand* unclamped() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8") }; class LClampIToUint8 final : public LTemplateInstruction<1, 1, 0> { public: explicit LClampIToUint8(LOperand* value) { inputs_[0] = value; } LOperand* unclamped() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8") }; // Truncating conversion from a tagged value to an int32. class LClampTToUint8NoSSE2 final : public LTemplateInstruction<1, 1, 3> { public: LClampTToUint8NoSSE2(LOperand* unclamped, LOperand* temp1, LOperand* temp2, LOperand* temp3) { inputs_[0] = unclamped; temps_[0] = temp1; temps_[1] = temp2; temps_[2] = temp3; } LOperand* unclamped() { return inputs_[0]; } LOperand* scratch() { return temps_[0]; } LOperand* scratch2() { return temps_[1]; } LOperand* scratch3() { return temps_[2]; } DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8NoSSE2, "clamp-t-to-uint8-nosse2") DECLARE_HYDROGEN_ACCESSOR(UnaryOperation) }; class LCheckNonSmi final : public LTemplateInstruction<0, 1, 0> { public: explicit LCheckNonSmi(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi") DECLARE_HYDROGEN_ACCESSOR(CheckHeapObject) }; class LAllocate final : public LTemplateInstruction<1, 2, 1> { public: LAllocate(LOperand* context, LOperand* size, LOperand* temp) { inputs_[0] = context; inputs_[1] = size; temps_[0] = temp; } LOperand* context() { return inputs_[0]; } LOperand* size() { return inputs_[1]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(Allocate, "allocate") DECLARE_HYDROGEN_ACCESSOR(Allocate) }; class LFastAllocate final : public LTemplateInstruction<1, 1, 1> { public: LFastAllocate(LOperand* size, LOperand* temp) { inputs_[0] = size; temps_[0] = temp; } LOperand* size() const { return inputs_[0]; } LOperand* temp() { return temps_[0]; } DECLARE_CONCRETE_INSTRUCTION(FastAllocate, "fast-allocate") DECLARE_HYDROGEN_ACCESSOR(Allocate) }; class LTypeof final : public LTemplateInstruction<1, 2, 0> { public: LTypeof(LOperand* context, LOperand* value) { inputs_[0] = context; inputs_[1] = value; } LOperand* context() { return inputs_[0]; } LOperand* value() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof") }; class LTypeofIsAndBranch final : public LControlInstruction<1, 0> { public: explicit LTypeofIsAndBranch(LOperand* value) { inputs_[0] = value; } LOperand* value() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch") DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch) Handle<String> type_literal() { return hydrogen()->type_literal(); } void PrintDataTo(StringStream* stream) override; }; class LOsrEntry final : public LTemplateInstruction<0, 0, 0> { public: bool HasInterestingComment(LCodeGen* gen) const override { return false; } DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry") }; class LStackCheck final : public LTemplateInstruction<0, 1, 0> { public: explicit LStackCheck(LOperand* context) { inputs_[0] = context; } LOperand* context() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check") DECLARE_HYDROGEN_ACCESSOR(StackCheck) Label* done_label() { return &done_label_; } private: Label done_label_; }; class LForInPrepareMap final : public LTemplateInstruction<1, 2, 0> { public: LForInPrepareMap(LOperand* context, LOperand* object) { inputs_[0] = context; inputs_[1] = object; } LOperand* context() { return inputs_[0]; } LOperand* object() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map") }; class LForInCacheArray final : public LTemplateInstruction<1, 1, 0> { public: explicit LForInCacheArray(LOperand* map) { inputs_[0] = map; } LOperand* map() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array") int idx() { return HForInCacheArray::cast(this->hydrogen_value())->idx(); } }; class LCheckMapValue final : public LTemplateInstruction<0, 2, 0> { public: LCheckMapValue(LOperand* value, LOperand* map) { inputs_[0] = value; inputs_[1] = map; } LOperand* value() { return inputs_[0]; } LOperand* map() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value") }; class LLoadFieldByIndex final : public LTemplateInstruction<1, 2, 0> { public: LLoadFieldByIndex(LOperand* object, LOperand* index) { inputs_[0] = object; inputs_[1] = index; } LOperand* object() { return inputs_[0]; } LOperand* index() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index") }; class LChunkBuilder; class LPlatformChunk final : public LChunk { public: LPlatformChunk(CompilationInfo* info, HGraph* graph) : LChunk(info, graph), num_double_slots_(0) { } int GetNextSpillIndex(RegisterKind kind); LOperand* GetNextSpillSlot(RegisterKind kind); int num_double_slots() const { return num_double_slots_; } private: int num_double_slots_; }; class LChunkBuilder final : public LChunkBuilderBase { public: LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator) : LChunkBuilderBase(info, graph), current_instruction_(NULL), current_block_(NULL), next_block_(NULL), allocator_(allocator) {} // Build the sequence for the graph. LPlatformChunk* Build(); // Declare methods that deal with the individual node types. #define DECLARE_DO(type) LInstruction* Do##type(H##type* node); HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO) #undef DECLARE_DO LInstruction* DoMathFloor(HUnaryMathOperation* instr); LInstruction* DoMathRound(HUnaryMathOperation* instr); LInstruction* DoMathFround(HUnaryMathOperation* instr); LInstruction* DoMathAbs(HUnaryMathOperation* instr); LInstruction* DoMathLog(HUnaryMathOperation* instr); LInstruction* DoMathCos(HUnaryMathOperation* instr); LInstruction* DoMathSin(HUnaryMathOperation* instr); LInstruction* DoMathExp(HUnaryMathOperation* instr); LInstruction* DoMathSqrt(HUnaryMathOperation* instr); LInstruction* DoMathPowHalf(HUnaryMathOperation* instr); LInstruction* DoMathClz32(HUnaryMathOperation* instr); LInstruction* DoDivByPowerOf2I(HDiv* instr); LInstruction* DoDivByConstI(HDiv* instr); LInstruction* DoDivI(HDiv* instr); LInstruction* DoModByPowerOf2I(HMod* instr); LInstruction* DoModByConstI(HMod* instr); LInstruction* DoModI(HMod* instr); LInstruction* DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr); LInstruction* DoFlooringDivByConstI(HMathFloorOfDiv* instr); LInstruction* DoFlooringDivI(HMathFloorOfDiv* instr); private: // Methods for getting operands for Use / Define / Temp. LUnallocated* ToUnallocated(Register reg); LUnallocated* ToUnallocated(X87Register reg); // Methods for setting up define-use relationships. MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand); MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register); // A value that is guaranteed to be allocated to a register. // Operand created by UseRegister is guaranteed to be live until the end of // instruction. This means that register allocator will not reuse it's // register for any other operand inside instruction. // Operand created by UseRegisterAtStart is guaranteed to be live only at // instruction start. Register allocator is free to assign the same register // to some other operand used inside instruction (i.e. temporary or // output). MUST_USE_RESULT LOperand* UseRegister(HValue* value); MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value); // An input operand in a register that may be trashed. MUST_USE_RESULT LOperand* UseTempRegister(HValue* value); // An input operand in a register or stack slot. MUST_USE_RESULT LOperand* Use(HValue* value); MUST_USE_RESULT LOperand* UseAtStart(HValue* value); // An input operand in a register, stack slot or a constant operand. MUST_USE_RESULT LOperand* UseOrConstant(HValue* value); MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value); // An input operand in a fixed register or a constant operand. MUST_USE_RESULT LOperand* UseFixedOrConstant(HValue* value, Register fixed_register); // An input operand in a register or a constant operand. MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value); MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value); // An input operand in a constant operand. MUST_USE_RESULT LOperand* UseConstant(HValue* value); // An input operand in register, stack slot or a constant operand. // Will not be moved to a register even if one is freely available. MUST_USE_RESULT LOperand* UseAny(HValue* value) override; // Temporary operand that must be in a register. MUST_USE_RESULT LUnallocated* TempRegister(); MUST_USE_RESULT LOperand* FixedTemp(Register reg); // Methods for setting up define-use relationships. // Return the same instruction that they are passed. LInstruction* Define(LTemplateResultInstruction<1>* instr, LUnallocated* result); LInstruction* DefineAsRegister(LTemplateResultInstruction<1>* instr); LInstruction* DefineAsSpilled(LTemplateResultInstruction<1>* instr, int index); LInstruction* DefineSameAsFirst(LTemplateResultInstruction<1>* instr); LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr, Register reg); LInstruction* DefineFixed(LTemplateResultInstruction<1>* instr, X87Register reg); LInstruction* DefineX87TOS(LTemplateResultInstruction<1>* instr); // Assigns an environment to an instruction. An instruction which can // deoptimize must have an environment. LInstruction* AssignEnvironment(LInstruction* instr); // Assigns a pointer map to an instruction. An instruction which can // trigger a GC or a lazy deoptimization must have a pointer map. LInstruction* AssignPointerMap(LInstruction* instr); enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY }; LOperand* GetSeqStringSetCharOperand(HSeqStringSetChar* instr); // Marks a call for the register allocator. Assigns a pointer map to // support GC and lazy deoptimization. Assigns an environment to support // eager deoptimization if CAN_DEOPTIMIZE_EAGERLY. LInstruction* MarkAsCall( LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY); void VisitInstruction(HInstruction* current); void AddInstruction(LInstruction* instr, HInstruction* current); void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block); LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr); LInstruction* DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr); LInstruction* DoArithmeticT(Token::Value op, HBinaryOperation* instr); LOperand* GetStoreKeyedValueOperand(HStoreKeyed* instr); HInstruction* current_instruction_; HBasicBlock* current_block_; HBasicBlock* next_block_; LAllocator* allocator_; DISALLOW_COPY_AND_ASSIGN(LChunkBuilder); }; #undef DECLARE_HYDROGEN_ACCESSOR #undef DECLARE_CONCRETE_INSTRUCTION } // namespace internal } // namespace v8 #endif // V8_CRANKSHAFT_X87_LITHIUM_X87_H_