// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
#define V8_ARM64_ASSEMBLER_ARM64_INL_H_
#include "src/arm64/assembler-arm64.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return true; }
bool CpuFeatures::SupportsSimd128() { return false; }
void RelocInfo::apply(intptr_t delta) {
// On arm64 only internal references need extra work.
DCHECK(RelocInfo::IsInternalReference(rmode_));
// Absolute code pointer inside code object moves with the code object.
intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
*p += delta; // Relocate entry.
}
inline int CPURegister::code() const {
DCHECK(IsValid());
return reg_code;
}
inline CPURegister::RegisterType CPURegister::type() const {
DCHECK(IsValidOrNone());
return reg_type;
}
inline RegList CPURegister::Bit() const {
DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
return IsValid() ? 1UL << reg_code : 0;
}
inline int CPURegister::SizeInBits() const {
DCHECK(IsValid());
return reg_size;
}
inline int CPURegister::SizeInBytes() const {
DCHECK(IsValid());
DCHECK(SizeInBits() % 8 == 0);
return reg_size / 8;
}
inline bool CPURegister::Is32Bits() const {
DCHECK(IsValid());
return reg_size == 32;
}
inline bool CPURegister::Is64Bits() const {
DCHECK(IsValid());
return reg_size == 64;
}
inline bool CPURegister::IsValid() const {
if (IsValidRegister() || IsValidFPRegister()) {
DCHECK(!IsNone());
return true;
} else {
DCHECK(IsNone());
return false;
}
}
inline bool CPURegister::IsValidRegister() const {
return IsRegister() &&
((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
}
inline bool CPURegister::IsValidFPRegister() const {
return IsFPRegister() &&
((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
(reg_code < kNumberOfFPRegisters);
}
inline bool CPURegister::IsNone() const {
// kNoRegister types should always have size 0 and code 0.
DCHECK((reg_type != kNoRegister) || (reg_code == 0));
DCHECK((reg_type != kNoRegister) || (reg_size == 0));
return reg_type == kNoRegister;
}
inline bool CPURegister::Is(const CPURegister& other) const {
DCHECK(IsValidOrNone() && other.IsValidOrNone());
return Aliases(other) && (reg_size == other.reg_size);
}
inline bool CPURegister::Aliases(const CPURegister& other) const {
DCHECK(IsValidOrNone() && other.IsValidOrNone());
return (reg_code == other.reg_code) && (reg_type == other.reg_type);
}
inline bool CPURegister::IsRegister() const {
return reg_type == kRegister;
}
inline bool CPURegister::IsFPRegister() const {
return reg_type == kFPRegister;
}
inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
return (reg_size == other.reg_size) && (reg_type == other.reg_type);
}
inline bool CPURegister::IsValidOrNone() const {
return IsValid() || IsNone();
}
inline bool CPURegister::IsZero() const {
DCHECK(IsValid());
return IsRegister() && (reg_code == kZeroRegCode);
}
inline bool CPURegister::IsSP() const {
DCHECK(IsValid());
return IsRegister() && (reg_code == kSPRegInternalCode);
}
inline void CPURegList::Combine(const CPURegList& other) {
DCHECK(IsValid());
DCHECK(other.type() == type_);
DCHECK(other.RegisterSizeInBits() == size_);
list_ |= other.list();
}
inline void CPURegList::Remove(const CPURegList& other) {
DCHECK(IsValid());
if (other.type() == type_) {
list_ &= ~other.list();
}
}
inline void CPURegList::Combine(const CPURegister& other) {
DCHECK(other.type() == type_);
DCHECK(other.SizeInBits() == size_);
Combine(other.code());
}
inline void CPURegList::Remove(const CPURegister& other1,
const CPURegister& other2,
const CPURegister& other3,
const CPURegister& other4) {
if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
}
inline void CPURegList::Combine(int code) {
DCHECK(IsValid());
DCHECK(CPURegister::Create(code, size_, type_).IsValid());
list_ |= (1UL << code);
}
inline void CPURegList::Remove(int code) {
DCHECK(IsValid());
DCHECK(CPURegister::Create(code, size_, type_).IsValid());
list_ &= ~(1UL << code);
}
inline Register Register::XRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return csp;
} else {
DCHECK(code < kNumberOfRegisters);
return Register::Create(code, kXRegSizeInBits);
}
}
inline Register Register::WRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return wcsp;
} else {
DCHECK(code < kNumberOfRegisters);
return Register::Create(code, kWRegSizeInBits);
}
}
inline FPRegister FPRegister::SRegFromCode(unsigned code) {
DCHECK(code < kNumberOfFPRegisters);
return FPRegister::Create(code, kSRegSizeInBits);
}
inline FPRegister FPRegister::DRegFromCode(unsigned code) {
DCHECK(code < kNumberOfFPRegisters);
return FPRegister::Create(code, kDRegSizeInBits);
}
inline Register CPURegister::W() const {
DCHECK(IsValidRegister());
return Register::WRegFromCode(reg_code);
}
inline Register CPURegister::X() const {
DCHECK(IsValidRegister());
return Register::XRegFromCode(reg_code);
}
inline FPRegister CPURegister::S() const {
DCHECK(IsValidFPRegister());
return FPRegister::SRegFromCode(reg_code);
}
inline FPRegister CPURegister::D() const {
DCHECK(IsValidFPRegister());
return FPRegister::DRegFromCode(reg_code);
}
// Immediate.
// Default initializer is for int types
template<typename T>
struct ImmediateInitializer {
static const bool kIsIntType = true;
static inline RelocInfo::Mode rmode_for(T) {
return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
}
static inline int64_t immediate_for(T t) {
STATIC_ASSERT(sizeof(T) <= 8);
return t;
}
};
template<>
struct ImmediateInitializer<Smi*> {
static const bool kIsIntType = false;
static inline RelocInfo::Mode rmode_for(Smi* t) {
return RelocInfo::NONE64;
}
static inline int64_t immediate_for(Smi* t) {;
return reinterpret_cast<int64_t>(t);
}
};
template<>
struct ImmediateInitializer<ExternalReference> {
static const bool kIsIntType = false;
static inline RelocInfo::Mode rmode_for(ExternalReference t) {
return RelocInfo::EXTERNAL_REFERENCE;
}
static inline int64_t immediate_for(ExternalReference t) {;
return reinterpret_cast<int64_t>(t.address());
}
};
template<typename T>
Immediate::Immediate(Handle<T> value) {
InitializeHandle(value);
}
template<typename T>
Immediate::Immediate(T t)
: value_(ImmediateInitializer<T>::immediate_for(t)),
rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
template<typename T>
Immediate::Immediate(T t, RelocInfo::Mode rmode)
: value_(ImmediateInitializer<T>::immediate_for(t)),
rmode_(rmode) {
STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
}
// Operand.
template<typename T>
Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
template<typename T>
Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
template<typename T>
Operand::Operand(T t, RelocInfo::Mode rmode)
: immediate_(t, rmode),
reg_(NoReg) {}
Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
: immediate_(0),
reg_(reg),
shift_(shift),
extend_(NO_EXTEND),
shift_amount_(shift_amount) {
DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
DCHECK(!reg.IsSP());
}
Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
: immediate_(0),
reg_(reg),
shift_(NO_SHIFT),
extend_(extend),
shift_amount_(shift_amount) {
DCHECK(reg.IsValid());
DCHECK(shift_amount <= 4);
DCHECK(!reg.IsSP());
// Extend modes SXTX and UXTX require a 64-bit register.
DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
}
bool Operand::IsImmediate() const {
return reg_.Is(NoReg);
}
bool Operand::IsShiftedRegister() const {
return reg_.IsValid() && (shift_ != NO_SHIFT);
}
bool Operand::IsExtendedRegister() const {
return reg_.IsValid() && (extend_ != NO_EXTEND);
}
bool Operand::IsZero() const {
if (IsImmediate()) {
return ImmediateValue() == 0;
} else {
return reg().IsZero();
}
}
Operand Operand::ToExtendedRegister() const {
DCHECK(IsShiftedRegister());
DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
}
Immediate Operand::immediate() const {
DCHECK(IsImmediate());
return immediate_;
}
int64_t Operand::ImmediateValue() const {
DCHECK(IsImmediate());
return immediate_.value();
}
Register Operand::reg() const {
DCHECK(IsShiftedRegister() || IsExtendedRegister());
return reg_;
}
Shift Operand::shift() const {
DCHECK(IsShiftedRegister());
return shift_;
}
Extend Operand::extend() const {
DCHECK(IsExtendedRegister());
return extend_;
}
unsigned Operand::shift_amount() const {
DCHECK(IsShiftedRegister() || IsExtendedRegister());
return shift_amount_;
}
Operand Operand::UntagSmi(Register smi) {
STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
kSmiValueSize));
DCHECK(smi.Is64Bits());
return Operand(smi, ASR, kSmiShift);
}
Operand Operand::UntagSmiAndScale(Register smi, int scale) {
STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
kSmiValueSize));
DCHECK(smi.Is64Bits());
DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
if (scale > kSmiShift) {
return Operand(smi, LSL, scale - kSmiShift);
} else if (scale < kSmiShift) {
return Operand(smi, ASR, kSmiShift - scale);
}
return Operand(smi);
}
MemOperand::MemOperand()
: base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
}
MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
: base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
DCHECK(base.Is64Bits() && !base.IsZero());
}
MemOperand::MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
DCHECK(base.Is64Bits() && !base.IsZero());
DCHECK(!regoffset.IsSP());
DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
// SXTX extend mode requires a 64-bit offset register.
DCHECK(regoffset.Is64Bits() || (extend != SXTX));
}
MemOperand::MemOperand(Register base,
Register regoffset,
Shift shift,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
DCHECK(base.Is64Bits() && !base.IsZero());
DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
DCHECK(shift == LSL);
}
MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
: base_(base), addrmode_(addrmode) {
DCHECK(base.Is64Bits() && !base.IsZero());
if (offset.IsImmediate()) {
offset_ = offset.ImmediateValue();
regoffset_ = NoReg;
} else if (offset.IsShiftedRegister()) {
DCHECK(addrmode == Offset);
regoffset_ = offset.reg();
shift_ = offset.shift();
shift_amount_ = offset.shift_amount();
extend_ = NO_EXTEND;
offset_ = 0;
// These assertions match those in the shifted-register constructor.
DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
DCHECK(shift_ == LSL);
} else {
DCHECK(offset.IsExtendedRegister());
DCHECK(addrmode == Offset);
regoffset_ = offset.reg();
extend_ = offset.extend();
shift_amount_ = offset.shift_amount();
shift_ = NO_SHIFT;
offset_ = 0;
// These assertions match those in the extended-register constructor.
DCHECK(!regoffset_.IsSP());
DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
}
}
bool MemOperand::IsImmediateOffset() const {
return (addrmode_ == Offset) && regoffset_.Is(NoReg);
}
bool MemOperand::IsRegisterOffset() const {
return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
}
bool MemOperand::IsPreIndex() const {
return addrmode_ == PreIndex;
}
bool MemOperand::IsPostIndex() const {
return addrmode_ == PostIndex;
}
Operand MemOperand::OffsetAsOperand() const {
if (IsImmediateOffset()) {
return offset();
} else {
DCHECK(IsRegisterOffset());
if (extend() == NO_EXTEND) {
return Operand(regoffset(), shift(), shift_amount());
} else {
return Operand(regoffset(), extend(), shift_amount());
}
}
}
void Assembler::Unreachable() {
#ifdef USE_SIMULATOR
debug("UNREACHABLE", __LINE__, BREAK);
#else
// Crash by branching to 0. lr now points near the fault.
Emit(BLR | Rn(xzr));
#endif
}
Address Assembler::target_pointer_address_at(Address pc) {
Instruction* instr = reinterpret_cast<Instruction*>(pc);
DCHECK(instr->IsLdrLiteralX());
return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
}
// Read/Modify the code target address in the branch/call instruction at pc.
Address Assembler::target_address_at(Address pc, Address constant_pool) {
return Memory::Address_at(target_pointer_address_at(pc));
}
Address Assembler::target_address_at(Address pc, Code* code) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
Address Assembler::target_address_from_return_address(Address pc) {
// Returns the address of the call target from the return address that will
// be returned to after a call.
// Call sequence on ARM64 is:
// ldr ip0, #... @ load from literal pool
// blr ip0
Address candidate = pc - 2 * kInstructionSize;
Instruction* instr = reinterpret_cast<Instruction*>(candidate);
USE(instr);
DCHECK(instr->IsLdrLiteralX());
return candidate;
}
Address Assembler::return_address_from_call_start(Address pc) {
// The call, generated by MacroAssembler::Call, is one of two possible
// sequences:
//
// Without relocation:
// movz temp, #(target & 0x000000000000ffff)
// movk temp, #(target & 0x00000000ffff0000)
// movk temp, #(target & 0x0000ffff00000000)
// blr temp
//
// With relocation:
// ldr temp, =target
// blr temp
//
// The return address is immediately after the blr instruction in both cases,
// so it can be found by adding the call size to the address at the start of
// the call sequence.
STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
Instruction* instr = reinterpret_cast<Instruction*>(pc);
if (instr->IsMovz()) {
// Verify the instruction sequence.
DCHECK(instr->following(1)->IsMovk());
DCHECK(instr->following(2)->IsMovk());
DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
return pc + Assembler::kCallSizeWithoutRelocation;
} else {
// Verify the instruction sequence.
DCHECK(instr->IsLdrLiteralX());
DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
return pc + Assembler::kCallSizeWithRelocation;
}
}
void Assembler::deserialization_set_special_target_at(
Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
Memory::Address_at(constant_pool_entry) = target;
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
Memory::Address_at(pc) = target;
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode) {
Memory::Address_at(target_pointer_address_at(pc)) = target;
// Intuitively, we would think it is necessary to always flush the
// instruction cache after patching a target address in the code as follows:
// Assembler::FlushICache(isolate(), pc, sizeof(target));
// However, on ARM, an instruction is actually patched in the case of
// embedded constants of the form:
// ldr ip, [pc, #...]
// since the instruction accessing this address in the constant pool remains
// unchanged, a flush is not required.
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
Address target,
ICacheFlushMode icache_flush_mode) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
}
int RelocInfo::target_address_size() {
return kPointerSize;
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|| rmode_ == EMBEDDED_OBJECT
|| rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_pointer_address_at(pc_);
}
Address RelocInfo::constant_pool_entry_address() {
DCHECK(IsInConstantPool());
return Assembler::target_pointer_address_at(pc_);
}
Object* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<Object>(reinterpret_cast<Object**>(
Assembler::target_address_at(pc_, host_)));
}
void RelocInfo::set_target_object(Object* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(isolate_, pc_, host_,
reinterpret_cast<Address>(target),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_internal_reference() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return Memory::Address_at(pc_);
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target) {
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
}
Handle<Cell> RelocInfo::target_cell_handle() {
UNIMPLEMENTED();
Cell *null_cell = NULL;
return Handle<Cell>(null_cell);
}
Cell* RelocInfo::target_cell() {
DCHECK(rmode_ == RelocInfo::CELL);
return Cell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(Cell* cell,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
UNIMPLEMENTED();
}
static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
UNREACHABLE(); // This should never be reached on ARM64.
return Handle<Object>();
}
Code* RelocInfo::code_age_stub() {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
// Read the stub entry point from the code age sequence.
Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
}
void RelocInfo::set_code_age_stub(Code* stub,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
// Overwrite the stub entry point in the code age sequence. This is loaded as
// a literal so there is no need to call FlushICache here.
Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
Memory::Address_at(stub_entry_address) = stub->instruction_start();
}
Address RelocInfo::debug_call_address() {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
// For the above sequences the Relocinfo points to the load literal loading
// the call address.
STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_debug_call_address(Address target) {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
Assembler::set_target_address_at(isolate_, pc_, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
void RelocInfo::WipeOut() {
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_));
if (IsInternalReference(rmode_)) {
Memory::Address_at(pc_) = NULL;
} else {
Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::CELL) {
visitor->VisitCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
visitor->VisitInternalReference(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
visitor->VisitDebugTarget(this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::CELL) {
StaticVisitor::VisitCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
StaticVisitor::VisitInternalReference(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
StaticVisitor::VisitDebugTarget(heap, this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
DCHECK(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDR_x : LDR_w;
} else {
DCHECK(rt.IsFPRegister());
return rt.Is64Bits() ? LDR_d : LDR_s;
}
}
LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
DCHECK(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDP_x : LDP_w;
} else {
DCHECK(rt.IsFPRegister());
return rt.Is64Bits() ? LDP_d : LDP_s;
}
}
LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
DCHECK(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? STR_x : STR_w;
} else {
DCHECK(rt.IsFPRegister());
return rt.Is64Bits() ? STR_d : STR_s;
}
}
LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
DCHECK(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? STP_x : STP_w;
} else {
DCHECK(rt.IsFPRegister());
return rt.Is64Bits() ? STP_d : STP_s;
}
}
LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
} else {
DCHECK(rt.IsFPRegister());
return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
}
}
int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
DCHECK(kStartOfLabelLinkChain == 0);
int offset = LinkAndGetByteOffsetTo(label);
DCHECK(IsAligned(offset, kInstructionSize));
return offset >> kInstructionSizeLog2;
}
Instr Assembler::Flags(FlagsUpdate S) {
if (S == SetFlags) {
return 1 << FlagsUpdate_offset;
} else if (S == LeaveFlags) {
return 0 << FlagsUpdate_offset;
}
UNREACHABLE();
return 0;
}
Instr Assembler::Cond(Condition cond) {
return cond << Condition_offset;
}
Instr Assembler::ImmPCRelAddress(int imm21) {
CHECK(is_int21(imm21));
Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
Instr immlo = imm << ImmPCRelLo_offset;
return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
}
Instr Assembler::ImmUncondBranch(int imm26) {
CHECK(is_int26(imm26));
return truncate_to_int26(imm26) << ImmUncondBranch_offset;
}
Instr Assembler::ImmCondBranch(int imm19) {
CHECK(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCondBranch_offset;
}
Instr Assembler::ImmCmpBranch(int imm19) {
CHECK(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCmpBranch_offset;
}
Instr Assembler::ImmTestBranch(int imm14) {
CHECK(is_int14(imm14));
return truncate_to_int14(imm14) << ImmTestBranch_offset;
}
Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
DCHECK(is_uint6(bit_pos));
// Subtract five from the shift offset, as we need bit 5 from bit_pos.
unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
b5 &= ImmTestBranchBit5_mask;
b40 &= ImmTestBranchBit40_mask;
return b5 | b40;
}
Instr Assembler::SF(Register rd) {
return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
}
Instr Assembler::ImmAddSub(int imm) {
DCHECK(IsImmAddSub(imm));
if (is_uint12(imm)) { // No shift required.
imm <<= ImmAddSub_offset;
} else {
imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
}
return imm;
}
Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
((reg_size == kWRegSizeInBits) && is_uint5(imms)));
USE(reg_size);
return imms << ImmS_offset;
}
Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
((reg_size == kWRegSizeInBits) && is_uint5(immr)));
USE(reg_size);
DCHECK(is_uint6(immr));
return immr << ImmR_offset;
}
Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
DCHECK(is_uint6(imms));
DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
USE(reg_size);
return imms << ImmSetBits_offset;
}
Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
((reg_size == kWRegSizeInBits) && is_uint5(immr)));
USE(reg_size);
return immr << ImmRotate_offset;
}
Instr Assembler::ImmLLiteral(int imm19) {
CHECK(is_int19(imm19));
return truncate_to_int19(imm19) << ImmLLiteral_offset;
}
Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
USE(reg_size);
return bitn << BitN_offset;
}
Instr Assembler::ShiftDP(Shift shift) {
DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
return shift << ShiftDP_offset;
}
Instr Assembler::ImmDPShift(unsigned amount) {
DCHECK(is_uint6(amount));
return amount << ImmDPShift_offset;
}
Instr Assembler::ExtendMode(Extend extend) {
return extend << ExtendMode_offset;
}
Instr Assembler::ImmExtendShift(unsigned left_shift) {
DCHECK(left_shift <= 4);
return left_shift << ImmExtendShift_offset;
}
Instr Assembler::ImmCondCmp(unsigned imm) {
DCHECK(is_uint5(imm));
return imm << ImmCondCmp_offset;
}
Instr Assembler::Nzcv(StatusFlags nzcv) {
return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
}
Instr Assembler::ImmLSUnsigned(int imm12) {
DCHECK(is_uint12(imm12));
return imm12 << ImmLSUnsigned_offset;
}
Instr Assembler::ImmLS(int imm9) {
DCHECK(is_int9(imm9));
return truncate_to_int9(imm9) << ImmLS_offset;
}
Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
DCHECK(((imm7 >> size) << size) == imm7);
int scaled_imm7 = imm7 >> size;
DCHECK(is_int7(scaled_imm7));
return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
}
Instr Assembler::ImmShiftLS(unsigned shift_amount) {
DCHECK(is_uint1(shift_amount));
return shift_amount << ImmShiftLS_offset;
}
Instr Assembler::ImmException(int imm16) {
DCHECK(is_uint16(imm16));
return imm16 << ImmException_offset;
}
Instr Assembler::ImmSystemRegister(int imm15) {
DCHECK(is_uint15(imm15));
return imm15 << ImmSystemRegister_offset;
}
Instr Assembler::ImmHint(int imm7) {
DCHECK(is_uint7(imm7));
return imm7 << ImmHint_offset;
}
Instr Assembler::ImmBarrierDomain(int imm2) {
DCHECK(is_uint2(imm2));
return imm2 << ImmBarrierDomain_offset;
}
Instr Assembler::ImmBarrierType(int imm2) {
DCHECK(is_uint2(imm2));
return imm2 << ImmBarrierType_offset;
}
LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
return static_cast<LSDataSize>(op >> SizeLS_offset);
}
Instr Assembler::ImmMoveWide(int imm) {
DCHECK(is_uint16(imm));
return imm << ImmMoveWide_offset;
}
Instr Assembler::ShiftMoveWide(int shift) {
DCHECK(is_uint2(shift));
return shift << ShiftMoveWide_offset;
}
Instr Assembler::FPType(FPRegister fd) {
return fd.Is64Bits() ? FP64 : FP32;
}
Instr Assembler::FPScale(unsigned scale) {
DCHECK(is_uint6(scale));
return scale << FPScale_offset;
}
const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
return reg.Is64Bits() ? xzr : wzr;
}
inline void Assembler::CheckBufferSpace() {
DCHECK(pc_ < (buffer_ + buffer_size_));
if (buffer_space() < kGap) {
GrowBuffer();
}
}
inline void Assembler::CheckBuffer() {
CheckBufferSpace();
if (pc_offset() >= next_veneer_pool_check_) {
CheckVeneerPool(false, true);
}
if (pc_offset() >= next_constant_pool_check_) {
CheckConstPool(false, true);
}
}
TypeFeedbackId Assembler::RecordedAstId() {
DCHECK(!recorded_ast_id_.IsNone());
return recorded_ast_id_;
}
void Assembler::ClearRecordedAstId() {
recorded_ast_id_ = TypeFeedbackId::None();
}
} // namespace internal
} // namespace v8
#endif // V8_ARM64_ASSEMBLER_ARM64_INL_H_