// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_ #define V8_ARM64_ASSEMBLER_ARM64_INL_H_ #include "src/arm64/assembler-arm64.h" #include "src/assembler.h" #include "src/debug/debug.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsCrankshaft() { return true; } bool CpuFeatures::SupportsSimd128() { return false; } void RelocInfo::apply(intptr_t delta) { // On arm64 only internal references need extra work. DCHECK(RelocInfo::IsInternalReference(rmode_)); // Absolute code pointer inside code object moves with the code object. intptr_t* p = reinterpret_cast<intptr_t*>(pc_); *p += delta; // Relocate entry. } inline int CPURegister::code() const { DCHECK(IsValid()); return reg_code; } inline CPURegister::RegisterType CPURegister::type() const { DCHECK(IsValidOrNone()); return reg_type; } inline RegList CPURegister::Bit() const { DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte)); return IsValid() ? 1UL << reg_code : 0; } inline int CPURegister::SizeInBits() const { DCHECK(IsValid()); return reg_size; } inline int CPURegister::SizeInBytes() const { DCHECK(IsValid()); DCHECK(SizeInBits() % 8 == 0); return reg_size / 8; } inline bool CPURegister::Is32Bits() const { DCHECK(IsValid()); return reg_size == 32; } inline bool CPURegister::Is64Bits() const { DCHECK(IsValid()); return reg_size == 64; } inline bool CPURegister::IsValid() const { if (IsValidRegister() || IsValidFPRegister()) { DCHECK(!IsNone()); return true; } else { DCHECK(IsNone()); return false; } } inline bool CPURegister::IsValidRegister() const { return IsRegister() && ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) && ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode)); } inline bool CPURegister::IsValidFPRegister() const { return IsFPRegister() && ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) && (reg_code < kNumberOfFPRegisters); } inline bool CPURegister::IsNone() const { // kNoRegister types should always have size 0 and code 0. DCHECK((reg_type != kNoRegister) || (reg_code == 0)); DCHECK((reg_type != kNoRegister) || (reg_size == 0)); return reg_type == kNoRegister; } inline bool CPURegister::Is(const CPURegister& other) const { DCHECK(IsValidOrNone() && other.IsValidOrNone()); return Aliases(other) && (reg_size == other.reg_size); } inline bool CPURegister::Aliases(const CPURegister& other) const { DCHECK(IsValidOrNone() && other.IsValidOrNone()); return (reg_code == other.reg_code) && (reg_type == other.reg_type); } inline bool CPURegister::IsRegister() const { return reg_type == kRegister; } inline bool CPURegister::IsFPRegister() const { return reg_type == kFPRegister; } inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const { return (reg_size == other.reg_size) && (reg_type == other.reg_type); } inline bool CPURegister::IsValidOrNone() const { return IsValid() || IsNone(); } inline bool CPURegister::IsZero() const { DCHECK(IsValid()); return IsRegister() && (reg_code == kZeroRegCode); } inline bool CPURegister::IsSP() const { DCHECK(IsValid()); return IsRegister() && (reg_code == kSPRegInternalCode); } inline void CPURegList::Combine(const CPURegList& other) { DCHECK(IsValid()); DCHECK(other.type() == type_); DCHECK(other.RegisterSizeInBits() == size_); list_ |= other.list(); } inline void CPURegList::Remove(const CPURegList& other) { DCHECK(IsValid()); if (other.type() == type_) { list_ &= ~other.list(); } } inline void CPURegList::Combine(const CPURegister& other) { DCHECK(other.type() == type_); DCHECK(other.SizeInBits() == size_); Combine(other.code()); } inline void CPURegList::Remove(const CPURegister& other1, const CPURegister& other2, const CPURegister& other3, const CPURegister& other4) { if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code()); if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code()); if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code()); if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code()); } inline void CPURegList::Combine(int code) { DCHECK(IsValid()); DCHECK(CPURegister::Create(code, size_, type_).IsValid()); list_ |= (1UL << code); } inline void CPURegList::Remove(int code) { DCHECK(IsValid()); DCHECK(CPURegister::Create(code, size_, type_).IsValid()); list_ &= ~(1UL << code); } inline Register Register::XRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return csp; } else { DCHECK(code < kNumberOfRegisters); return Register::Create(code, kXRegSizeInBits); } } inline Register Register::WRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return wcsp; } else { DCHECK(code < kNumberOfRegisters); return Register::Create(code, kWRegSizeInBits); } } inline FPRegister FPRegister::SRegFromCode(unsigned code) { DCHECK(code < kNumberOfFPRegisters); return FPRegister::Create(code, kSRegSizeInBits); } inline FPRegister FPRegister::DRegFromCode(unsigned code) { DCHECK(code < kNumberOfFPRegisters); return FPRegister::Create(code, kDRegSizeInBits); } inline Register CPURegister::W() const { DCHECK(IsValidRegister()); return Register::WRegFromCode(reg_code); } inline Register CPURegister::X() const { DCHECK(IsValidRegister()); return Register::XRegFromCode(reg_code); } inline FPRegister CPURegister::S() const { DCHECK(IsValidFPRegister()); return FPRegister::SRegFromCode(reg_code); } inline FPRegister CPURegister::D() const { DCHECK(IsValidFPRegister()); return FPRegister::DRegFromCode(reg_code); } // Immediate. // Default initializer is for int types template<typename T> struct ImmediateInitializer { static const bool kIsIntType = true; static inline RelocInfo::Mode rmode_for(T) { return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32; } static inline int64_t immediate_for(T t) { STATIC_ASSERT(sizeof(T) <= 8); return t; } }; template<> struct ImmediateInitializer<Smi*> { static const bool kIsIntType = false; static inline RelocInfo::Mode rmode_for(Smi* t) { return RelocInfo::NONE64; } static inline int64_t immediate_for(Smi* t) {; return reinterpret_cast<int64_t>(t); } }; template<> struct ImmediateInitializer<ExternalReference> { static const bool kIsIntType = false; static inline RelocInfo::Mode rmode_for(ExternalReference t) { return RelocInfo::EXTERNAL_REFERENCE; } static inline int64_t immediate_for(ExternalReference t) {; return reinterpret_cast<int64_t>(t.address()); } }; template<typename T> Immediate::Immediate(Handle<T> value) { InitializeHandle(value); } template<typename T> Immediate::Immediate(T t) : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(ImmediateInitializer<T>::rmode_for(t)) {} template<typename T> Immediate::Immediate(T t, RelocInfo::Mode rmode) : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(rmode) { STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType); } // Operand. template<typename T> Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {} template<typename T> Operand::Operand(T t) : immediate_(t), reg_(NoReg) {} template<typename T> Operand::Operand(T t, RelocInfo::Mode rmode) : immediate_(t, rmode), reg_(NoReg) {} Operand::Operand(Register reg, Shift shift, unsigned shift_amount) : immediate_(0), reg_(reg), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits)); DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits)); DCHECK(!reg.IsSP()); } Operand::Operand(Register reg, Extend extend, unsigned shift_amount) : immediate_(0), reg_(reg), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { DCHECK(reg.IsValid()); DCHECK(shift_amount <= 4); DCHECK(!reg.IsSP()); // Extend modes SXTX and UXTX require a 64-bit register. DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX))); } bool Operand::IsImmediate() const { return reg_.Is(NoReg); } bool Operand::IsShiftedRegister() const { return reg_.IsValid() && (shift_ != NO_SHIFT); } bool Operand::IsExtendedRegister() const { return reg_.IsValid() && (extend_ != NO_EXTEND); } bool Operand::IsZero() const { if (IsImmediate()) { return ImmediateValue() == 0; } else { return reg().IsZero(); } } Operand Operand::ToExtendedRegister() const { DCHECK(IsShiftedRegister()); DCHECK((shift_ == LSL) && (shift_amount_ <= 4)); return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); } Immediate Operand::immediate() const { DCHECK(IsImmediate()); return immediate_; } int64_t Operand::ImmediateValue() const { DCHECK(IsImmediate()); return immediate_.value(); } Register Operand::reg() const { DCHECK(IsShiftedRegister() || IsExtendedRegister()); return reg_; } Shift Operand::shift() const { DCHECK(IsShiftedRegister()); return shift_; } Extend Operand::extend() const { DCHECK(IsExtendedRegister()); return extend_; } unsigned Operand::shift_amount() const { DCHECK(IsShiftedRegister() || IsExtendedRegister()); return shift_amount_; } Operand Operand::UntagSmi(Register smi) { STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift + kSmiValueSize)); DCHECK(smi.Is64Bits()); return Operand(smi, ASR, kSmiShift); } Operand Operand::UntagSmiAndScale(Register smi, int scale) { STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift + kSmiValueSize)); DCHECK(smi.Is64Bits()); DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize))); if (scale > kSmiShift) { return Operand(smi, LSL, scale - kSmiShift); } else if (scale < kSmiShift) { return Operand(smi, ASR, kSmiShift - scale); } return Operand(smi); } MemOperand::MemOperand() : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) { } MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) { DCHECK(base.Is64Bits() && !base.IsZero()); } MemOperand::MemOperand(Register base, Register regoffset, Extend extend, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { DCHECK(base.Is64Bits() && !base.IsZero()); DCHECK(!regoffset.IsSP()); DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); // SXTX extend mode requires a 64-bit offset register. DCHECK(regoffset.Is64Bits() || (extend != SXTX)); } MemOperand::MemOperand(Register base, Register regoffset, Shift shift, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { DCHECK(base.Is64Bits() && !base.IsZero()); DCHECK(regoffset.Is64Bits() && !regoffset.IsSP()); DCHECK(shift == LSL); } MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) : base_(base), addrmode_(addrmode) { DCHECK(base.Is64Bits() && !base.IsZero()); if (offset.IsImmediate()) { offset_ = offset.ImmediateValue(); regoffset_ = NoReg; } else if (offset.IsShiftedRegister()) { DCHECK(addrmode == Offset); regoffset_ = offset.reg(); shift_ = offset.shift(); shift_amount_ = offset.shift_amount(); extend_ = NO_EXTEND; offset_ = 0; // These assertions match those in the shifted-register constructor. DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP()); DCHECK(shift_ == LSL); } else { DCHECK(offset.IsExtendedRegister()); DCHECK(addrmode == Offset); regoffset_ = offset.reg(); extend_ = offset.extend(); shift_amount_ = offset.shift_amount(); shift_ = NO_SHIFT; offset_ = 0; // These assertions match those in the extended-register constructor. DCHECK(!regoffset_.IsSP()); DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX))); } } bool MemOperand::IsImmediateOffset() const { return (addrmode_ == Offset) && regoffset_.Is(NoReg); } bool MemOperand::IsRegisterOffset() const { return (addrmode_ == Offset) && !regoffset_.Is(NoReg); } bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; } bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; } Operand MemOperand::OffsetAsOperand() const { if (IsImmediateOffset()) { return offset(); } else { DCHECK(IsRegisterOffset()); if (extend() == NO_EXTEND) { return Operand(regoffset(), shift(), shift_amount()); } else { return Operand(regoffset(), extend(), shift_amount()); } } } void Assembler::Unreachable() { #ifdef USE_SIMULATOR debug("UNREACHABLE", __LINE__, BREAK); #else // Crash by branching to 0. lr now points near the fault. Emit(BLR | Rn(xzr)); #endif } Address Assembler::target_pointer_address_at(Address pc) { Instruction* instr = reinterpret_cast<Instruction*>(pc); DCHECK(instr->IsLdrLiteralX()); return reinterpret_cast<Address>(instr->ImmPCOffsetTarget()); } // Read/Modify the code target address in the branch/call instruction at pc. Address Assembler::target_address_at(Address pc, Address constant_pool) { return Memory::Address_at(target_pointer_address_at(pc)); } Address Assembler::target_address_at(Address pc, Code* code) { Address constant_pool = code ? code->constant_pool() : NULL; return target_address_at(pc, constant_pool); } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Call sequence on ARM64 is: // ldr ip0, #... @ load from literal pool // blr ip0 Address candidate = pc - 2 * kInstructionSize; Instruction* instr = reinterpret_cast<Instruction*>(candidate); USE(instr); DCHECK(instr->IsLdrLiteralX()); return candidate; } Address Assembler::return_address_from_call_start(Address pc) { // The call, generated by MacroAssembler::Call, is one of two possible // sequences: // // Without relocation: // movz temp, #(target & 0x000000000000ffff) // movk temp, #(target & 0x00000000ffff0000) // movk temp, #(target & 0x0000ffff00000000) // blr temp // // With relocation: // ldr temp, =target // blr temp // // The return address is immediately after the blr instruction in both cases, // so it can be found by adding the call size to the address at the start of // the call sequence. STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize); STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize); Instruction* instr = reinterpret_cast<Instruction*>(pc); if (instr->IsMovz()) { // Verify the instruction sequence. DCHECK(instr->following(1)->IsMovk()); DCHECK(instr->following(2)->IsMovk()); DCHECK(instr->following(3)->IsBranchAndLinkToRegister()); return pc + Assembler::kCallSizeWithoutRelocation; } else { // Verify the instruction sequence. DCHECK(instr->IsLdrLiteralX()); DCHECK(instr->following(1)->IsBranchAndLinkToRegister()); return pc + Assembler::kCallSizeWithRelocation; } } void Assembler::deserialization_set_special_target_at( Isolate* isolate, Address constant_pool_entry, Code* code, Address target) { Memory::Address_at(constant_pool_entry) = target; } void Assembler::deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { Memory::Address_at(pc) = target; } void Assembler::set_target_address_at(Isolate* isolate, Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { Memory::Address_at(target_pointer_address_at(pc)) = target; // Intuitively, we would think it is necessary to always flush the // instruction cache after patching a target address in the code as follows: // Assembler::FlushICache(isolate(), pc, sizeof(target)); // However, on ARM, an instruction is actually patched in the case of // embedded constants of the form: // ldr ip, [pc, #...] // since the instruction accessing this address in the constant pool remains // unchanged, a flush is not required. } void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code, Address target, ICacheFlushMode icache_flush_mode) { Address constant_pool = code ? code->constant_pool() : NULL; set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode); } int RelocInfo::target_address_size() { return kPointerSize; } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); return Assembler::target_pointer_address_at(pc_); } Address RelocInfo::constant_pool_entry_address() { DCHECK(IsInConstantPool()); return Assembler::target_pointer_address_at(pc_); } Object* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); } Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Handle<Object>(reinterpret_cast<Object**>( Assembler::target_address_at(pc_, host_))); } void RelocInfo::set_target_object(Object* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(isolate_, pc_, host_, reinterpret_cast<Address>(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target)); host()->GetHeap()->RecordWriteIntoCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_internal_reference() { DCHECK(rmode_ == INTERNAL_REFERENCE); return Memory::Address_at(pc_); } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return reinterpret_cast<Address>(pc_); } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) { set_target_address(target, write_barrier_mode, icache_flush_mode); } } Handle<Cell> RelocInfo::target_cell_handle() { UNIMPLEMENTED(); Cell *null_cell = NULL; return Handle<Cell>(null_cell); } Cell* RelocInfo::target_cell() { DCHECK(rmode_ == RelocInfo::CELL); return Cell::FromValueAddress(Memory::Address_at(pc_)); } void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { UNIMPLEMENTED(); } static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize; static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize; Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { UNREACHABLE(); // This should never be reached on ARM64. return Handle<Object>(); } Code* RelocInfo::code_age_stub() { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); // Read the stub entry point from the code age sequence. Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset; return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address)); } void RelocInfo::set_code_age_stub(Code* stub, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_)); // Overwrite the stub entry point in the code age sequence. This is loaded as // a literal so there is no need to call FlushICache here. Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset; Memory::Address_at(stub_entry_address) = stub->instruction_start(); } Address RelocInfo::debug_call_address() { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); // For the above sequences the Relocinfo points to the load literal loading // the call address. STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0); return Assembler::target_address_at(pc_, host_); } void RelocInfo::set_debug_call_address(Address target) { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0); Assembler::set_target_address_at(isolate_, pc_, host_, target); if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_)); if (IsInternalReference(rmode_)) { Memory::Address_at(pc_) = NULL; } else { Assembler::set_target_address_at(isolate_, pc_, host_, NULL); } } template <typename ObjectVisitor> void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::CELL) { visitor->VisitCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { visitor->VisitDebugTarget(this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(this); } } template<typename StaticVisitor> void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::CELL) { StaticVisitor::VisitCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { StaticVisitor::VisitInternalReference(this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { StaticVisitor::VisitDebugTarget(heap, this); } else if (RelocInfo::IsRuntimeEntry(mode)) { StaticVisitor::VisitRuntimeEntry(this); } } LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { DCHECK(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x : LDR_w; } else { DCHECK(rt.IsFPRegister()); return rt.Is64Bits() ? LDR_d : LDR_s; } } LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, const CPURegister& rt2) { DCHECK(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? LDP_x : LDP_w; } else { DCHECK(rt.IsFPRegister()); return rt.Is64Bits() ? LDP_d : LDP_s; } } LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { DCHECK(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? STR_x : STR_w; } else { DCHECK(rt.IsFPRegister()); return rt.Is64Bits() ? STR_d : STR_s; } } LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, const CPURegister& rt2) { DCHECK(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STP_x : STP_w; } else { DCHECK(rt.IsFPRegister()); return rt.Is64Bits() ? STP_d : STP_s; } } LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) { if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit; } else { DCHECK(rt.IsFPRegister()); return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit; } } int Assembler::LinkAndGetInstructionOffsetTo(Label* label) { DCHECK(kStartOfLabelLinkChain == 0); int offset = LinkAndGetByteOffsetTo(label); DCHECK(IsAligned(offset, kInstructionSize)); return offset >> kInstructionSizeLog2; } Instr Assembler::Flags(FlagsUpdate S) { if (S == SetFlags) { return 1 << FlagsUpdate_offset; } else if (S == LeaveFlags) { return 0 << FlagsUpdate_offset; } UNREACHABLE(); return 0; } Instr Assembler::Cond(Condition cond) { return cond << Condition_offset; } Instr Assembler::ImmPCRelAddress(int imm21) { CHECK(is_int21(imm21)); Instr imm = static_cast<Instr>(truncate_to_int21(imm21)); Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset; Instr immlo = imm << ImmPCRelLo_offset; return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask); } Instr Assembler::ImmUncondBranch(int imm26) { CHECK(is_int26(imm26)); return truncate_to_int26(imm26) << ImmUncondBranch_offset; } Instr Assembler::ImmCondBranch(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmCondBranch_offset; } Instr Assembler::ImmCmpBranch(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmCmpBranch_offset; } Instr Assembler::ImmTestBranch(int imm14) { CHECK(is_int14(imm14)); return truncate_to_int14(imm14) << ImmTestBranch_offset; } Instr Assembler::ImmTestBranchBit(unsigned bit_pos) { DCHECK(is_uint6(bit_pos)); // Subtract five from the shift offset, as we need bit 5 from bit_pos. unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5); unsigned b40 = bit_pos << ImmTestBranchBit40_offset; b5 &= ImmTestBranchBit5_mask; b40 &= ImmTestBranchBit40_mask; return b5 | b40; } Instr Assembler::SF(Register rd) { return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits; } Instr Assembler::ImmAddSub(int imm) { DCHECK(IsImmAddSub(imm)); if (is_uint12(imm)) { // No shift required. imm <<= ImmAddSub_offset; } else { imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset); } return imm; } Instr Assembler::ImmS(unsigned imms, unsigned reg_size) { DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) || ((reg_size == kWRegSizeInBits) && is_uint5(imms))); USE(reg_size); return imms << ImmS_offset; } Instr Assembler::ImmR(unsigned immr, unsigned reg_size) { DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) || ((reg_size == kWRegSizeInBits) && is_uint5(immr))); USE(reg_size); DCHECK(is_uint6(immr)); return immr << ImmR_offset; } Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK(is_uint6(imms)); DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3)); USE(reg_size); return imms << ImmSetBits_offset; } Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) || ((reg_size == kWRegSizeInBits) && is_uint5(immr))); USE(reg_size); return immr << ImmRotate_offset; } Instr Assembler::ImmLLiteral(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmLLiteral_offset; } Instr Assembler::BitN(unsigned bitn, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0)); USE(reg_size); return bitn << BitN_offset; } Instr Assembler::ShiftDP(Shift shift) { DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR); return shift << ShiftDP_offset; } Instr Assembler::ImmDPShift(unsigned amount) { DCHECK(is_uint6(amount)); return amount << ImmDPShift_offset; } Instr Assembler::ExtendMode(Extend extend) { return extend << ExtendMode_offset; } Instr Assembler::ImmExtendShift(unsigned left_shift) { DCHECK(left_shift <= 4); return left_shift << ImmExtendShift_offset; } Instr Assembler::ImmCondCmp(unsigned imm) { DCHECK(is_uint5(imm)); return imm << ImmCondCmp_offset; } Instr Assembler::Nzcv(StatusFlags nzcv) { return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset; } Instr Assembler::ImmLSUnsigned(int imm12) { DCHECK(is_uint12(imm12)); return imm12 << ImmLSUnsigned_offset; } Instr Assembler::ImmLS(int imm9) { DCHECK(is_int9(imm9)); return truncate_to_int9(imm9) << ImmLS_offset; } Instr Assembler::ImmLSPair(int imm7, LSDataSize size) { DCHECK(((imm7 >> size) << size) == imm7); int scaled_imm7 = imm7 >> size; DCHECK(is_int7(scaled_imm7)); return truncate_to_int7(scaled_imm7) << ImmLSPair_offset; } Instr Assembler::ImmShiftLS(unsigned shift_amount) { DCHECK(is_uint1(shift_amount)); return shift_amount << ImmShiftLS_offset; } Instr Assembler::ImmException(int imm16) { DCHECK(is_uint16(imm16)); return imm16 << ImmException_offset; } Instr Assembler::ImmSystemRegister(int imm15) { DCHECK(is_uint15(imm15)); return imm15 << ImmSystemRegister_offset; } Instr Assembler::ImmHint(int imm7) { DCHECK(is_uint7(imm7)); return imm7 << ImmHint_offset; } Instr Assembler::ImmBarrierDomain(int imm2) { DCHECK(is_uint2(imm2)); return imm2 << ImmBarrierDomain_offset; } Instr Assembler::ImmBarrierType(int imm2) { DCHECK(is_uint2(imm2)); return imm2 << ImmBarrierType_offset; } LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) { DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8)); return static_cast<LSDataSize>(op >> SizeLS_offset); } Instr Assembler::ImmMoveWide(int imm) { DCHECK(is_uint16(imm)); return imm << ImmMoveWide_offset; } Instr Assembler::ShiftMoveWide(int shift) { DCHECK(is_uint2(shift)); return shift << ShiftMoveWide_offset; } Instr Assembler::FPType(FPRegister fd) { return fd.Is64Bits() ? FP64 : FP32; } Instr Assembler::FPScale(unsigned scale) { DCHECK(is_uint6(scale)); return scale << FPScale_offset; } const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const { return reg.Is64Bits() ? xzr : wzr; } inline void Assembler::CheckBufferSpace() { DCHECK(pc_ < (buffer_ + buffer_size_)); if (buffer_space() < kGap) { GrowBuffer(); } } inline void Assembler::CheckBuffer() { CheckBufferSpace(); if (pc_offset() >= next_veneer_pool_check_) { CheckVeneerPool(false, true); } if (pc_offset() >= next_constant_pool_check_) { CheckConstPool(false, true); } } TypeFeedbackId Assembler::RecordedAstId() { DCHECK(!recorded_ast_id_.IsNone()); return recorded_ast_id_; } void Assembler::ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } } // namespace internal } // namespace v8 #endif // V8_ARM64_ASSEMBLER_ARM64_INL_H_