/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrYUVProvider.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrRenderTargetContext.h"
#include "GrTextureProxy.h"
#include "SkAutoMalloc.h"
#include "SkCachedData.h"
#include "SkRefCnt.h"
#include "SkResourceCache.h"
#include "SkYUVPlanesCache.h"
#include "effects/GrSRGBEffect.h"
#include "effects/GrYUVEffect.h"
namespace {
/**
* Helper class to manage the resources used for storing the YUV planar data. Depending on the
* useCache option, we may find (and lock) the data in our ResourceCache, or we may have allocated
* it in scratch storage.
*/
class YUVScoper {
public:
bool init(GrYUVProvider*, SkYUVPlanesCache::Info*, void* planes[3], bool useCache);
private:
// we only use one or the other of these
sk_sp<SkCachedData> fCachedData;
SkAutoMalloc fStorage;
};
}
bool YUVScoper::init(GrYUVProvider* provider, SkYUVPlanesCache::Info* yuvInfo, void* planes[3],
bool useCache) {
if (useCache) {
fCachedData.reset(SkYUVPlanesCache::FindAndRef(provider->onGetID(), yuvInfo));
}
if (fCachedData.get()) {
planes[0] = (void*)fCachedData->data();
planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight);
} else {
// Fetch yuv plane sizes for memory allocation.
if (!provider->onQueryYUV8(&yuvInfo->fSizeInfo, &yuvInfo->fColorSpace)) {
return false;
}
// Allocate the memory for YUV
size_t totalSize(0);
for (int i = 0; i < 3; i++) {
totalSize += yuvInfo->fSizeInfo.fWidthBytes[i] * yuvInfo->fSizeInfo.fSizes[i].fHeight;
}
if (useCache) {
fCachedData.reset(SkResourceCache::NewCachedData(totalSize));
planes[0] = fCachedData->writable_data();
} else {
fStorage.reset(totalSize);
planes[0] = fStorage.get();
}
planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight);
// Get the YUV planes.
if (!provider->onGetYUV8Planes(yuvInfo->fSizeInfo, planes)) {
return false;
}
if (useCache) {
// Decoding is done, cache the resulting YUV planes
SkYUVPlanesCache::Add(provider->onGetID(), fCachedData.get(), yuvInfo);
}
}
return true;
}
sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx,
const GrSurfaceDesc& desc,
bool useCache) {
SkYUVPlanesCache::Info yuvInfo;
void* planes[3];
YUVScoper scoper;
if (!scoper.init(this, &yuvInfo, planes, useCache)) {
return nullptr;
}
GrSurfaceDesc yuvDesc;
yuvDesc.fOrigin = kTopLeft_GrSurfaceOrigin;
yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
sk_sp<GrSurfaceContext> yuvTextureContexts[3];
for (int i = 0; i < 3; i++) {
yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth;
yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
// TODO: why do we need this check?
SkBackingFit fit =
(yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
(yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight)
? SkBackingFit::kExact : SkBackingFit::kApprox;
yuvTextureContexts[i] = ctx->contextPriv().makeDeferredSurfaceContext(yuvDesc, fit,
SkBudgeted::kYes);
if (!yuvTextureContexts[i]) {
return nullptr;
}
const SkImageInfo ii = SkImageInfo::MakeA8(yuvDesc.fWidth, yuvDesc.fHeight);
if (!yuvTextureContexts[i]->writePixels(ii, planes[i],
yuvInfo.fSizeInfo.fWidthBytes[i], 0, 0)) {
return nullptr;
}
}
// We never want to perform color-space conversion during the decode
sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeRenderTargetContext(
SkBackingFit::kExact,
desc.fWidth, desc.fHeight,
desc.fConfig, nullptr,
desc.fSampleCnt));
if (!renderTargetContext) {
return nullptr;
}
GrPaint paint;
sk_sp<GrFragmentProcessor> yuvToRgbProcessor(
GrYUVEffect::MakeYUVToRGB(ctx->resourceProvider(),
yuvTextureContexts[0]->asTextureProxyRef(),
yuvTextureContexts[1]->asTextureProxyRef(),
yuvTextureContexts[2]->asTextureProxyRef(),
yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false));
paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));
// If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
// in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
// to output the results of that math directly to the buffer that we will then consider sRGB.
// If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
// Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
// then let the HW convert Linear -> sRGB.
if (GrPixelConfigIsSRGB(desc.fConfig)) {
if (ctx->caps()->srgbWriteControl()) {
paint.setDisableOutputConversionToSRGB(true);
} else {
paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear));
}
}
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);
return renderTargetContext->asTextureProxyRef();
}