/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrYUVProvider.h" #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrRenderTargetContext.h" #include "GrTextureProxy.h" #include "SkAutoMalloc.h" #include "SkCachedData.h" #include "SkRefCnt.h" #include "SkResourceCache.h" #include "SkYUVPlanesCache.h" #include "effects/GrSRGBEffect.h" #include "effects/GrYUVEffect.h" namespace { /** * Helper class to manage the resources used for storing the YUV planar data. Depending on the * useCache option, we may find (and lock) the data in our ResourceCache, or we may have allocated * it in scratch storage. */ class YUVScoper { public: bool init(GrYUVProvider*, SkYUVPlanesCache::Info*, void* planes[3], bool useCache); private: // we only use one or the other of these sk_sp<SkCachedData> fCachedData; SkAutoMalloc fStorage; }; } bool YUVScoper::init(GrYUVProvider* provider, SkYUVPlanesCache::Info* yuvInfo, void* planes[3], bool useCache) { if (useCache) { fCachedData.reset(SkYUVPlanesCache::FindAndRef(provider->onGetID(), yuvInfo)); } if (fCachedData.get()) { planes[0] = (void*)fCachedData->data(); planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); } else { // Fetch yuv plane sizes for memory allocation. if (!provider->onQueryYUV8(&yuvInfo->fSizeInfo, &yuvInfo->fColorSpace)) { return false; } // Allocate the memory for YUV size_t totalSize(0); for (int i = 0; i < 3; i++) { totalSize += yuvInfo->fSizeInfo.fWidthBytes[i] * yuvInfo->fSizeInfo.fSizes[i].fHeight; } if (useCache) { fCachedData.reset(SkResourceCache::NewCachedData(totalSize)); planes[0] = fCachedData->writable_data(); } else { fStorage.reset(totalSize); planes[0] = fStorage.get(); } planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); // Get the YUV planes. if (!provider->onGetYUV8Planes(yuvInfo->fSizeInfo, planes)) { return false; } if (useCache) { // Decoding is done, cache the resulting YUV planes SkYUVPlanesCache::Add(provider->onGetID(), fCachedData.get(), yuvInfo); } } return true; } sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc, bool useCache) { SkYUVPlanesCache::Info yuvInfo; void* planes[3]; YUVScoper scoper; if (!scoper.init(this, &yuvInfo, planes, useCache)) { return nullptr; } GrSurfaceDesc yuvDesc; yuvDesc.fOrigin = kTopLeft_GrSurfaceOrigin; yuvDesc.fConfig = kAlpha_8_GrPixelConfig; sk_sp<GrSurfaceContext> yuvTextureContexts[3]; for (int i = 0; i < 3; i++) { yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth; yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight; // TODO: why do we need this check? SkBackingFit fit = (yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) || (yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight) ? SkBackingFit::kExact : SkBackingFit::kApprox; yuvTextureContexts[i] = ctx->contextPriv().makeDeferredSurfaceContext(yuvDesc, fit, SkBudgeted::kYes); if (!yuvTextureContexts[i]) { return nullptr; } const SkImageInfo ii = SkImageInfo::MakeA8(yuvDesc.fWidth, yuvDesc.fHeight); if (!yuvTextureContexts[i]->writePixels(ii, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i], 0, 0)) { return nullptr; } } // We never want to perform color-space conversion during the decode sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeRenderTargetContext( SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, nullptr, desc.fSampleCnt)); if (!renderTargetContext) { return nullptr; } GrPaint paint; sk_sp<GrFragmentProcessor> yuvToRgbProcessor( GrYUVEffect::MakeYUVToRGB(ctx->resourceProvider(), yuvTextureContexts[0]->asTextureProxyRef(), yuvTextureContexts[1]->asTextureProxyRef(), yuvTextureContexts[2]->asTextureProxyRef(), yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false)); paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor)); // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need // to output the results of that math directly to the buffer that we will then consider sRGB. // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step. // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear, // then let the HW convert Linear -> sRGB. if (GrPixelConfigIsSRGB(desc.fConfig)) { if (ctx->caps()->srgbWriteControl()) { paint.setDisableOutputConversionToSRGB(true); } else { paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear)); } } paint.setPorterDuffXPFactory(SkBlendMode::kSrc); const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth, yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r); return renderTargetContext->asTextureProxyRef(); }