/*
* System-dependent procedures for pppd under Solaris 2.
*
* Parts re-written by Adi Masputra <adi.masputra@sun.com>, based on
* the original sys-svr4.c
*
* Copyright (c) 2000 by Sun Microsystems, Inc.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, provided that the above copyright
* notice appears in all copies.
*
* SUN MAKES NO REPRESENTATION OR WARRANTIES ABOUT THE SUITABILITY OF
* THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES
*
* Copyright (c) 1995-2002 Paul Mackerras. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. The name(s) of the authors of this software must not be used to
* endorse or promote products derived from this software without
* prior written permission.
*
* 3. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by Paul Mackerras
* <paulus@samba.org>".
*
* THE AUTHORS OF THIS SOFTWARE DISCLAIM ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Derived from main.c and pppd.h, which are:
*
* Copyright (c) 1984-2000 Carnegie Mellon University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The name "Carnegie Mellon University" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For permission or any legal
* details, please contact
* Office of Technology Transfer
* Carnegie Mellon University
* 5000 Forbes Avenue
* Pittsburgh, PA 15213-3890
* (412) 268-4387, fax: (412) 268-7395
* tech-transfer@andrew.cmu.edu
*
* 4. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by Computing Services
* at Carnegie Mellon University (http://www.cmu.edu/computing/)."
*
* CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define RCSID "$Id: sys-solaris.c,v 1.16 2008/01/30 14:26:53 carlsonj Exp $"
#include <limits.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#ifndef CRTSCTS
#include <sys/termiox.h>
#endif
#include <signal.h>
#include <utmpx.h>
#include <stropts.h>
#include <sys/types.h>
#include <sys/ioccom.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysmacros.h>
#include <sys/systeminfo.h>
#include <sys/dlpi.h>
#include <sys/stat.h>
#include <sys/mkdev.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/route.h>
#include <net/ppp_defs.h>
#include <net/pppio.h>
#include <netinet/in.h>
#ifdef SOL2
#include <sys/tihdr.h>
#include <sys/tiuser.h>
#include <inet/common.h>
#include <inet/mib2.h>
#include <sys/ethernet.h>
#endif
#include "pppd.h"
#include "fsm.h"
#include "lcp.h"
#include "ipcp.h"
#include "ccp.h"
#if !defined(PPP_DRV_NAME)
#define PPP_DRV_NAME "ppp"
#endif /* !defined(PPP_DRV_NAME) */
#if !defined(PPP_DEV_NAME)
#define PPP_DEV_NAME "/dev/" PPP_DRV_NAME
#endif /* !defined(PPP_DEV_NAME) */
#if !defined(AHDLC_MOD_NAME)
#define AHDLC_MOD_NAME "ppp_ahdl"
#endif /* !defined(AHDLC_MOD_NAME) */
#if !defined(COMP_MOD_NAME)
#define COMP_MOD_NAME "ppp_comp"
#endif /* !defined(COMP_MOD_NAME) */
#if !defined(IP_DEV_NAME)
#define IP_DEV_NAME "/dev/ip"
#endif /* !defined(IP_DEV_NAME) */
#if !defined(IP_MOD_NAME)
#define IP_MOD_NAME "ip"
#endif /* !defined(IP_MOD_NAME) */
#if !defined(UDP_DEV_NAME) && defined(SOL2)
#define UDP_DEV_NAME "/dev/udp"
#endif /* !defined(UDP_DEV_NAME) && defined(SOL2) */
#if !defined(UDP6_DEV_NAME) && defined(SOL2)
#define UDP6_DEV_NAME "/dev/udp6"
#endif /* !defined(UDP6_DEV_NAME) && defined(SOL2) */
static const char rcsid[] = RCSID;
#if defined(SOL2)
/*
* "/dev/udp" is used as a multiplexor to PLINK the interface stream
* under. It is used in place of "/dev/ip" since STREAMS will not let
* a driver be PLINK'ed under itself, and "/dev/ip" is typically the
* driver at the bottom of the tunneling interfaces stream.
*/
static char *mux_dev_name = UDP_DEV_NAME;
#else
static char *mux_dev_name = IP_DEV_NAME;
#endif
static int pppfd;
static int fdmuxid = -1;
static int ipfd;
static int ipmuxid = -1;
#if defined(INET6) && defined(SOL2)
static int ip6fd; /* IP file descriptor */
static int ip6muxid = -1; /* Multiplexer file descriptor */
static int if6_is_up = 0; /* IPv6 interface has been marked up */
#define _IN6_LLX_FROM_EUI64(l, s, eui64, as) do { \
s->sin6_addr.s6_addr32[0] = htonl(as); \
eui64_copy(eui64, s->sin6_addr.s6_addr32[2]); \
s->sin6_family = AF_INET6; \
l.lifr_addr.ss_family = AF_INET6; \
l.lifr_addrlen = 64; \
l.lifr_addr = laddr; \
} while (0)
#define IN6_LLADDR_FROM_EUI64(l, s, eui64) \
_IN6_LLX_FROM_EUI64(l, s, eui64, 0xfe800000)
#define IN6_LLTOKEN_FROM_EUI64(l, s, eui64) \
_IN6_LLX_FROM_EUI64(l, s, eui64, 0)
#endif /* defined(INET6) && defined(SOL2) */
#if defined(INET6) && defined(SOL2)
static char first_ether_name[LIFNAMSIZ]; /* Solaris 8 and above */
#else
static char first_ether_name[IFNAMSIZ]; /* Before Solaris 8 */
#define MAXIFS 256 /* Max # of interfaces */
#endif /* defined(INET6) && defined(SOL2) */
static int restore_term;
static struct termios inittermios;
#ifndef CRTSCTS
static struct termiox inittermiox;
static int termiox_ok;
#endif
static struct winsize wsinfo; /* Initial window size info */
static pid_t tty_sid; /* original session ID for terminal */
extern u_char inpacket_buf[]; /* borrowed from main.c */
#define MAX_POLLFDS 32
static struct pollfd pollfds[MAX_POLLFDS];
static int n_pollfds;
static int link_mtu, link_mru;
#define NMODULES 32
static int tty_nmodules;
static char tty_modules[NMODULES][FMNAMESZ+1];
static int tty_npushed;
static int if_is_up; /* Interface has been marked up */
static u_int32_t remote_addr; /* IP address of peer */
static u_int32_t default_route_gateway; /* Gateway for default route added */
static u_int32_t proxy_arp_addr; /* Addr for proxy arp entry added */
/* Prototypes for procedures local to this file. */
static int translate_speed __P((int));
static int baud_rate_of __P((int));
static int get_ether_addr __P((u_int32_t, struct sockaddr *));
static int get_hw_addr __P((char *, u_int32_t, struct sockaddr *));
static int get_hw_addr_dlpi __P((char *, struct sockaddr *));
static int dlpi_attach __P((int, int));
static int dlpi_info_req __P((int));
static int dlpi_get_reply __P((int, union DL_primitives *, int, int));
static int strioctl __P((int, int, void *, int, int));
#ifdef SOL2
/*
* sifppa - Sets interface ppa
*
* without setting the ppa, ip module will return EINVAL upon setting the
* interface UP (SIOCSxIFFLAGS). This is because ip module in 2.8 expects
* two DLPI_INFO_REQ to be sent down to the driver (below ip) before
* IFF_UP can be set. Plumbing the device causes one DLPI_INFO_REQ to
* be sent down, and the second DLPI_INFO_REQ is sent upon receiving
* IF_UNITSEL (old) or SIOCSLIFNAME (new) ioctls. Such setting of the ppa
* is required because the ppp DLPI provider advertises itself as
* a DLPI style 2 type, which requires a point of attachment to be
* specified. The only way the user can specify a point of attachment
* is via SIOCSLIFNAME or IF_UNITSEL.
*
* Such changes in the behavior of ip module was made to meet new or
* evolving standards requirements.
*
*/
static int
sifppa(fd, ppa)
int fd;
int ppa;
{
return (int)ioctl(fd, IF_UNITSEL, (char *)&ppa);
}
#endif /* SOL2 */
#if defined(SOL2) && defined(INET6)
/*
* get_first_ethernet - returns the first Ethernet interface name found in
* the system, or NULL if none is found
*
* NOTE: This is the lifreq version (Solaris 8 and above)
*/
char *
get_first_ethernet()
{
struct lifnum lifn;
struct lifconf lifc;
struct lifreq *plifreq;
struct lifreq lifr;
int fd, num_ifs, i, found;
uint_t fl, req_size;
char *req;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
return 0;
}
/*
* Find out how many interfaces are running
*/
lifn.lifn_family = AF_UNSPEC;
lifn.lifn_flags = LIFC_NOXMIT;
if (ioctl(fd, SIOCGLIFNUM, &lifn) < 0) {
close(fd);
error("could not determine number of interfaces: %m");
return 0;
}
num_ifs = lifn.lifn_count;
req_size = num_ifs * sizeof(struct lifreq);
req = malloc(req_size);
if (req == NULL) {
close(fd);
error("out of memory");
return 0;
}
/*
* Get interface configuration info for all interfaces
*/
lifc.lifc_family = AF_UNSPEC;
lifc.lifc_flags = LIFC_NOXMIT;
lifc.lifc_len = req_size;
lifc.lifc_buf = req;
if (ioctl(fd, SIOCGLIFCONF, &lifc) < 0) {
close(fd);
free(req);
error("SIOCGLIFCONF: %m");
return 0;
}
/*
* And traverse each interface to look specifically for the first
* occurence of an Ethernet interface which has been marked up
*/
plifreq = lifc.lifc_req;
found = 0;
for (i = lifc.lifc_len / sizeof(struct lifreq); i > 0; i--, plifreq++) {
if (strchr(plifreq->lifr_name, ':') != NULL)
continue;
memset(&lifr, 0, sizeof(lifr));
strncpy(lifr.lifr_name, plifreq->lifr_name, sizeof(lifr.lifr_name));
if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) {
close(fd);
free(req);
error("SIOCGLIFFLAGS: %m");
return 0;
}
fl = lifr.lifr_flags;
if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP))
!= (IFF_UP | IFF_BROADCAST))
continue;
found = 1;
break;
}
free(req);
close(fd);
if (found) {
strncpy(first_ether_name, lifr.lifr_name, sizeof(first_ether_name));
return (char *)first_ether_name;
} else
return NULL;
}
#else
/*
* get_first_ethernet - returns the first Ethernet interface name found in
* the system, or NULL if none is found
*
* NOTE: This is the ifreq version (before Solaris 8).
*/
char *
get_first_ethernet()
{
struct ifconf ifc;
struct ifreq *pifreq;
struct ifreq ifr;
int fd, num_ifs, i, found;
uint_t fl, req_size;
char *req;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
return 0;
}
/*
* Find out how many interfaces are running
*/
if (ioctl(fd, SIOCGIFNUM, (char *)&num_ifs) < 0) {
num_ifs = MAXIFS;
}
req_size = num_ifs * sizeof(struct ifreq);
req = malloc(req_size);
if (req == NULL) {
close(fd);
error("out of memory");
return 0;
}
/*
* Get interface configuration info for all interfaces
*/
ifc.ifc_len = req_size;
ifc.ifc_buf = req;
if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) {
close(fd);
free(req);
error("SIOCGIFCONF: %m");
return 0;
}
/*
* And traverse each interface to look specifically for the first
* occurence of an Ethernet interface which has been marked up
*/
pifreq = ifc.ifc_req;
found = 0;
for (i = ifc.ifc_len / sizeof(struct ifreq); i > 0; i--, pifreq++) {
if (strchr(pifreq->ifr_name, ':') != NULL)
continue;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, pifreq->ifr_name, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFFLAGS, &ifr) < 0) {
close(fd);
free(req);
error("SIOCGIFFLAGS: %m");
return 0;
}
fl = ifr.ifr_flags;
if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP))
!= (IFF_UP | IFF_BROADCAST))
continue;
found = 1;
break;
}
free(req);
close(fd);
if (found) {
strncpy(first_ether_name, ifr.ifr_name, sizeof(first_ether_name));
return (char *)first_ether_name;
} else
return NULL;
}
#endif /* defined(SOL2) && defined(INET6) */
#if defined(SOL2)
/*
* get_if_hwaddr - get the hardware address for the specified
* network interface device.
*/
int
get_if_hwaddr(u_char *addr, char *if_name)
{
struct sockaddr s_eth_addr;
struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data;
if (if_name == NULL)
return -1;
/*
* Send DL_INFO_REQ to the driver to solicit its MAC address
*/
if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) {
error("could not obtain hardware address for %s", if_name);
return -1;
}
memcpy(addr, eth_addr->ether_addr_octet, 6);
return 1;
}
#endif /* SOL2 */
#if defined(SOL2) && defined(INET6)
/*
* slifname - Sets interface ppa and flags
*
* in addition to the comments stated in sifppa(), IFF_IPV6 bit must
* be set in order to declare this as an IPv6 interface
*/
static int
slifname(fd, ppa)
int fd;
int ppa;
{
struct lifreq lifr;
int ret;
memset(&lifr, 0, sizeof(lifr));
ret = ioctl(fd, SIOCGLIFFLAGS, &lifr);
if (ret < 0)
goto slifname_done;
lifr.lifr_flags |= IFF_IPV6;
lifr.lifr_flags &= ~(IFF_BROADCAST | IFF_IPV4);
lifr.lifr_ppa = ppa;
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
ret = ioctl(fd, SIOCSLIFNAME, &lifr);
slifname_done:
return ret;
}
/*
* ether_to_eui64 - Convert 48-bit Ethernet address into 64-bit EUI
*
* walks the list of valid ethernet interfaces, and convert the first
* found 48-bit MAC address into EUI 64. caller also assumes that
* the system has a properly configured Ethernet interface for this
* function to return non-zero.
*/
int
ether_to_eui64(eui64_t *p_eui64)
{
struct sockaddr s_eth_addr;
struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data;
char *if_name;
if ((if_name = get_first_ethernet()) == NULL) {
error("no persistent id can be found");
return 0;
}
/*
* Send DL_INFO_REQ to the driver to solicit its MAC address
*/
if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) {
error("could not obtain hardware address for %s", if_name);
return 0;
}
/*
* And convert the EUI-48 into EUI-64, per RFC 2472 [sec 4.1]
*/
p_eui64->e8[0] = (eth_addr->ether_addr_octet[0] & 0xFF) | 0x02;
p_eui64->e8[1] = (eth_addr->ether_addr_octet[1] & 0xFF);
p_eui64->e8[2] = (eth_addr->ether_addr_octet[2] & 0xFF);
p_eui64->e8[3] = 0xFF;
p_eui64->e8[4] = 0xFE;
p_eui64->e8[5] = (eth_addr->ether_addr_octet[3] & 0xFF);
p_eui64->e8[6] = (eth_addr->ether_addr_octet[4] & 0xFF);
p_eui64->e8[7] = (eth_addr->ether_addr_octet[5] & 0xFF);
return 1;
}
#endif /* defined(SOL2) && defined(INET6) */
/*
* sys_init - System-dependent initialization.
*/
void
sys_init()
{
int ifd, x;
struct ifreq ifr;
#if defined(INET6) && defined(SOL2)
int i6fd;
struct lifreq lifr;
#endif /* defined(INET6) && defined(SOL2) */
#if !defined(SOL2)
struct {
union DL_primitives prim;
char space[64];
} reply;
#endif /* !defined(SOL2) */
ipfd = open(mux_dev_name, O_RDWR, 0);
if (ipfd < 0)
fatal("Couldn't open IP device: %m");
#if defined(INET6) && defined(SOL2)
ip6fd = open(UDP6_DEV_NAME, O_RDWR, 0);
if (ip6fd < 0)
fatal("Couldn't open IP device (2): %m");
#endif /* defined(INET6) && defined(SOL2) */
if (default_device && !notty)
tty_sid = getsid((pid_t)0);
pppfd = open(PPP_DEV_NAME, O_RDWR | O_NONBLOCK, 0);
if (pppfd < 0)
fatal("Can't open %s: %m", PPP_DEV_NAME);
if (kdebugflag & 1) {
x = PPPDBG_LOG + PPPDBG_DRIVER;
strioctl(pppfd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
/* Assign a new PPA and get its unit number. */
if (strioctl(pppfd, PPPIO_NEWPPA, &ifunit, 0, sizeof(int)) < 0)
fatal("Can't create new PPP interface: %m");
#if defined(SOL2)
/*
* Since sys_init() is called prior to ifname being set in main(),
* we need to get the ifname now, otherwise slifname(), and others,
* will fail, or maybe, I should move them to a later point ?
* <adi.masputra@sun.com>
*/
sprintf(ifname, PPP_DRV_NAME "%d", ifunit);
#endif /* defined(SOL2) */
/*
* Open the ppp device again and link it under the ip multiplexor.
* IP will assign a unit number which hopefully is the same as ifunit.
* I don't know any way to be certain they will be the same. :-(
*/
ifd = open(PPP_DEV_NAME, O_RDWR, 0);
if (ifd < 0)
fatal("Can't open %s (2): %m", PPP_DEV_NAME);
if (kdebugflag & 1) {
x = PPPDBG_LOG + PPPDBG_DRIVER;
strioctl(ifd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
#if defined(INET6) && defined(SOL2)
i6fd = open(PPP_DEV_NAME, O_RDWR, 0);
if (i6fd < 0) {
close(ifd);
fatal("Can't open %s (3): %m", PPP_DEV_NAME);
}
if (kdebugflag & 1) {
x = PPPDBG_LOG + PPPDBG_DRIVER;
strioctl(i6fd, PPPIO_DEBUG, &x, sizeof(int), 0);
}
#endif /* defined(INET6) && defined(SOL2) */
#if defined(SOL2)
if (ioctl(ifd, I_PUSH, IP_MOD_NAME) < 0) {
close(ifd);
#if defined(INET6)
close(i6fd);
#endif /* defined(INET6) */
fatal("Can't push IP module: %m");
}
/*
* Assign ppa according to the unit number returned by ppp device
* after plumbing is completed above.
*/
if (sifppa(ifd, ifunit) < 0) {
close (ifd);
#if defined(INET6)
close(i6fd);
#endif /* defined(INET6) */
fatal("Can't set ppa for unit %d: %m", ifunit);
}
#if defined(INET6)
/*
* An IPv6 interface is created anyway, even when the user does not
* explicitly enable it. Note that the interface will be marked
* IPv6 during slifname().
*/
if (ioctl(i6fd, I_PUSH, IP_MOD_NAME) < 0) {
close(ifd);
close(i6fd);
fatal("Can't push IP module (2): %m");
}
/*
* Assign ppa according to the unit number returned by ppp device
* after plumbing is completed above. In addition, mark the interface
* as an IPv6 interface.
*/
if (slifname(i6fd, ifunit) < 0) {
close(ifd);
close(i6fd);
fatal("Can't set ifname for unit %d: %m", ifunit);
}
#endif /* defined(INET6) */
ipmuxid = ioctl(ipfd, I_PLINK, ifd);
close(ifd);
if (ipmuxid < 0) {
#if defined(INET6)
close(i6fd);
#endif /* defined(INET6) */
fatal("Can't I_PLINK PPP device to IP: %m");
}
memset(&ifr, 0, sizeof(ifr));
sprintf(ifr.ifr_name, "%s", ifname);
ifr.ifr_ip_muxid = ipmuxid;
/*
* In Sol 8 and later, STREAMS dynamic module plumbing feature exists.
* This is so that an arbitrary module can be inserted, or deleted,
* between ip module and the device driver without tearing down the
* existing stream. Such feature requires the mux ids, which is set
* by SIOCSIFMUXID (or SIOCLSIFMUXID).
*/
if (ioctl(ipfd, SIOCSIFMUXID, &ifr) < 0) {
ioctl(ipfd, I_PUNLINK, ipmuxid);
#if defined(INET6)
close(i6fd);
#endif /* defined(INET6) */
fatal("SIOCSIFMUXID: %m");
}
#else /* else if !defined(SOL2) */
if (dlpi_attach(ifd, ifunit) < 0 ||
dlpi_get_reply(ifd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0) {
close(ifd);
fatal("Can't attach to ppp%d: %m", ifunit);
}
ipmuxid = ioctl(ipfd, I_LINK, ifd);
close(ifd);
if (ipmuxid < 0)
fatal("Can't link PPP device to IP: %m");
#endif /* defined(SOL2) */
#if defined(INET6) && defined(SOL2)
ip6muxid = ioctl(ip6fd, I_PLINK, i6fd);
close(i6fd);
if (ip6muxid < 0) {
ioctl(ipfd, I_PUNLINK, ipmuxid);
fatal("Can't I_PLINK PPP device to IP (2): %m");
}
memset(&lifr, 0, sizeof(lifr));
sprintf(lifr.lifr_name, "%s", ifname);
lifr.lifr_ip_muxid = ip6muxid;
/*
* Let IP know of the mux id [see comment for SIOCSIFMUXID above]
*/
if (ioctl(ip6fd, SIOCSLIFMUXID, &lifr) < 0) {
ioctl(ipfd, I_PUNLINK, ipmuxid);
ioctl(ip6fd, I_PUNLINK, ip6muxid);
fatal("Can't link PPP device to IP (2): %m");
}
#endif /* defined(INET6) && defined(SOL2) */
#if !defined(SOL2)
/* Set the interface name for the link. */
slprintf(ifr.ifr_name, sizeof(ifr.ifr_name), PPP_DRV_NAME "%d", ifunit);
ifr.ifr_metric = ipmuxid;
if (strioctl(ipfd, SIOCSIFNAME, (char *)&ifr, sizeof ifr, 0) < 0)
fatal("Can't set interface name %s: %m", ifr.ifr_name);
#endif /* !defined(SOL2) */
n_pollfds = 0;
}
/*
* sys_cleanup - restore any system state we modified before exiting:
* mark the interface down, delete default route and/or proxy arp entry.
* This should call die() because it's called from die().
*/
void
sys_cleanup()
{
#if defined(SOL2)
struct ifreq ifr;
#if defined(INET6)
struct lifreq lifr;
#endif /* defined(INET6) */
#endif /* defined(SOL2) */
#if defined(SOL2) && defined(INET6)
if (if6_is_up)
sif6down(0);
#endif /* defined(SOL2) && defined(INET6) */
if (if_is_up)
sifdown(0);
if (default_route_gateway)
cifdefaultroute(0, default_route_gateway, default_route_gateway);
if (proxy_arp_addr)
cifproxyarp(0, proxy_arp_addr);
#if defined(SOL2)
/*
* Make sure we ask ip what the muxid, because 'ifconfig modlist' will
* unlink and re-link the modules, causing the muxid to change.
*/
memset(&ifr, 0, sizeof(ifr));
sprintf(ifr.ifr_name, "%s", ifname);
if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) {
error("SIOCGIFFLAGS: %m");
return;
}
if (ioctl(ipfd, SIOCGIFMUXID, &ifr) < 0) {
error("SIOCGIFMUXID: %m");
return;
}
ipmuxid = ifr.ifr_ip_muxid;
if (ioctl(ipfd, I_PUNLINK, ipmuxid) < 0) {
error("Can't I_PUNLINK PPP from IP: %m");
return;
}
#if defined(INET6)
/*
* Make sure we ask ip what the muxid, because 'ifconfig modlist' will
* unlink and re-link the modules, causing the muxid to change.
*/
memset(&lifr, 0, sizeof(lifr));
sprintf(lifr.lifr_name, "%s", ifname);
if (ioctl(ip6fd, SIOCGLIFFLAGS, &lifr) < 0) {
error("SIOCGLIFFLAGS: %m");
return;
}
if (ioctl(ip6fd, SIOCGLIFMUXID, &lifr) < 0) {
error("SIOCGLIFMUXID: %m");
return;
}
ip6muxid = lifr.lifr_ip_muxid;
if (ioctl(ip6fd, I_PUNLINK, ip6muxid) < 0) {
error("Can't I_PUNLINK PPP from IP (2): %m");
}
#endif /* defined(INET6) */
#endif /* defined(SOL2) */
}
/*
* sys_close - Clean up in a child process before execing.
*/
void
sys_close()
{
close(ipfd);
#if defined(INET6) && defined(SOL2)
close(ip6fd);
#endif /* defined(INET6) && defined(SOL2) */
if (pppfd >= 0)
close(pppfd);
}
/*
* sys_check_options - check the options that the user specified
*/
int
sys_check_options()
{
return 1;
}
#if 0
/*
* daemon - Detach us from controlling terminal session.
*/
int
daemon(nochdir, noclose)
int nochdir, noclose;
{
int pid;
if ((pid = fork()) < 0)
return -1;
if (pid != 0)
exit(0); /* parent dies */
setsid();
if (!nochdir)
chdir("/");
if (!noclose) {
fclose(stdin); /* don't need stdin, stdout, stderr */
fclose(stdout);
fclose(stderr);
}
return 0;
}
#endif
/*
* ppp_available - check whether the system has any ppp interfaces
*/
int
ppp_available()
{
struct stat buf;
return stat(PPP_DEV_NAME, &buf) >= 0;
}
/*
* any_compressions - see if compression is enabled or not
*
* In the STREAMS implementation of kernel-portion pppd,
* the comp STREAMS module performs the ACFC, PFC, as well
* CCP and VJ compressions. However, if the user has explicitly
* declare to not enable them from the command line, there is
* no point of having the comp module be pushed on the stream.
*/
static int
any_compressions()
{
if ((!lcp_wantoptions[0].neg_accompression) &&
(!lcp_wantoptions[0].neg_pcompression) &&
(!ccp_protent.enabled_flag) &&
(!ipcp_wantoptions[0].neg_vj)) {
return 0;
}
return 1;
}
/*
* tty_establish_ppp - Turn the serial port into a ppp interface.
*/
int
tty_establish_ppp(fd)
int fd;
{
int i;
/* Pop any existing modules off the tty stream. */
for (i = 0;; ++i)
if (ioctl(fd, I_LOOK, tty_modules[i]) < 0
|| strcmp(tty_modules[i], "ptem") == 0
|| ioctl(fd, I_POP, 0) < 0)
break;
tty_nmodules = i;
/* Push the async hdlc module and the compressor module. */
tty_npushed = 0;
if(!sync_serial) {
if (ioctl(fd, I_PUSH, AHDLC_MOD_NAME) < 0) {
error("Couldn't push PPP Async HDLC module: %m");
return -1;
}
++tty_npushed;
}
if (kdebugflag & 4) {
i = PPPDBG_LOG + PPPDBG_AHDLC;
strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0);
}
/*
* There's no need to push comp module if we don't intend
* to compress anything
*/
if (any_compressions()) {
if (ioctl(fd, I_PUSH, COMP_MOD_NAME) < 0)
error("Couldn't push PPP compression module: %m");
else
++tty_npushed;
}
if (kdebugflag & 2) {
i = PPPDBG_LOG;
if (any_compressions())
i += PPPDBG_COMP;
strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0);
}
/* Link the serial port under the PPP multiplexor. */
if ((fdmuxid = ioctl(pppfd, I_LINK, fd)) < 0) {
error("Can't link tty to PPP mux: %m");
return -1;
}
return pppfd;
}
/*
* tty_disestablish_ppp - Restore the serial port to normal operation.
* It attempts to reconstruct the stream with the previously popped
* modules. This shouldn't call die() because it's called from die().
*/
void
tty_disestablish_ppp(fd)
int fd;
{
int i;
if (fdmuxid >= 0) {
if (ioctl(pppfd, I_UNLINK, fdmuxid) < 0) {
if (!hungup)
error("Can't unlink tty from PPP mux: %m");
}
fdmuxid = -1;
if (!hungup) {
while (tty_npushed > 0 && ioctl(fd, I_POP, 0) >= 0)
--tty_npushed;
for (i = tty_nmodules - 1; i >= 0; --i)
if (ioctl(fd, I_PUSH, tty_modules[i]) < 0)
error("Couldn't restore tty module %s: %m",
tty_modules[i]);
}
if (hungup && default_device && tty_sid > 0) {
/*
* If we have received a hangup, we need to send a SIGHUP
* to the terminal's controlling process. The reason is
* that the original stream head for the terminal hasn't
* seen the M_HANGUP message (it went up through the ppp
* driver to the stream head for our fd to /dev/ppp).
*/
kill(tty_sid, SIGHUP);
}
}
}
/*
* Check whether the link seems not to be 8-bit clean.
*/
void
clean_check()
{
int x;
char *s;
if (strioctl(pppfd, PPPIO_GCLEAN, &x, 0, sizeof(x)) < 0)
return;
s = NULL;
switch (~x) {
case RCV_B7_0:
s = "bit 7 set to 1";
break;
case RCV_B7_1:
s = "bit 7 set to 0";
break;
case RCV_EVNP:
s = "odd parity";
break;
case RCV_ODDP:
s = "even parity";
break;
}
if (s != NULL) {
warn("Serial link is not 8-bit clean:");
warn("All received characters had %s", s);
}
}
/*
* List of valid speeds.
*/
struct speed {
int speed_int, speed_val;
} speeds[] = {
#ifdef B50
{ 50, B50 },
#endif
#ifdef B75
{ 75, B75 },
#endif
#ifdef B110
{ 110, B110 },
#endif
#ifdef B134
{ 134, B134 },
#endif
#ifdef B150
{ 150, B150 },
#endif
#ifdef B200
{ 200, B200 },
#endif
#ifdef B300
{ 300, B300 },
#endif
#ifdef B600
{ 600, B600 },
#endif
#ifdef B1200
{ 1200, B1200 },
#endif
#ifdef B1800
{ 1800, B1800 },
#endif
#ifdef B2000
{ 2000, B2000 },
#endif
#ifdef B2400
{ 2400, B2400 },
#endif
#ifdef B3600
{ 3600, B3600 },
#endif
#ifdef B4800
{ 4800, B4800 },
#endif
#ifdef B7200
{ 7200, B7200 },
#endif
#ifdef B9600
{ 9600, B9600 },
#endif
#ifdef B19200
{ 19200, B19200 },
#endif
#ifdef B38400
{ 38400, B38400 },
#endif
#ifdef EXTA
{ 19200, EXTA },
#endif
#ifdef EXTB
{ 38400, EXTB },
#endif
#ifdef B57600
{ 57600, B57600 },
#endif
#ifdef B76800
{ 76800, B76800 },
#endif
#ifdef B115200
{ 115200, B115200 },
#endif
#ifdef B153600
{ 153600, B153600 },
#endif
#ifdef B230400
{ 230400, B230400 },
#endif
#ifdef B307200
{ 307200, B307200 },
#endif
#ifdef B460800
{ 460800, B460800 },
#endif
{ 0, 0 }
};
/*
* Translate from bits/second to a speed_t.
*/
static int
translate_speed(bps)
int bps;
{
struct speed *speedp;
if (bps == 0)
return 0;
for (speedp = speeds; speedp->speed_int; speedp++)
if (bps == speedp->speed_int)
return speedp->speed_val;
warn("speed %d not supported", bps);
return 0;
}
/*
* Translate from a speed_t to bits/second.
*/
static int
baud_rate_of(speed)
int speed;
{
struct speed *speedp;
if (speed == 0)
return 0;
for (speedp = speeds; speedp->speed_int; speedp++)
if (speed == speedp->speed_val)
return speedp->speed_int;
return 0;
}
/*
* set_up_tty: Set up the serial port on `fd' for 8 bits, no parity,
* at the requested speed, etc. If `local' is true, set CLOCAL
* regardless of whether the modem option was specified.
*/
void
set_up_tty(fd, local)
int fd, local;
{
int speed;
struct termios tios;
#if !defined (CRTSCTS)
struct termiox tiox;
#endif
if (!sync_serial && tcgetattr(fd, &tios) < 0)
fatal("tcgetattr: %m");
#ifndef CRTSCTS
termiox_ok = 1;
if (!sync_serial && ioctl (fd, TCGETX, &tiox) < 0) {
termiox_ok = 0;
if (errno != ENOTTY)
error("TCGETX: %m");
}
#endif
if (!restore_term) {
inittermios = tios;
#ifndef CRTSCTS
inittermiox = tiox;
#endif
if (!sync_serial)
ioctl(fd, TIOCGWINSZ, &wsinfo);
}
tios.c_cflag &= ~(CSIZE | CSTOPB | PARENB | CLOCAL);
#ifdef CRTSCTS
if (crtscts > 0)
tios.c_cflag |= CRTSCTS;
else if (crtscts < 0)
tios.c_cflag &= ~CRTSCTS;
#else
if (crtscts != 0 && !termiox_ok) {
error("Can't set RTS/CTS flow control");
} else if (crtscts > 0) {
tiox.x_hflag |= RTSXOFF|CTSXON;
} else if (crtscts < 0) {
tiox.x_hflag &= ~(RTSXOFF|CTSXON);
}
#endif
if (stop_bits >= 2)
tios.c_cflag |= CSTOPB;
tios.c_cflag |= CS8 | CREAD | HUPCL;
if (local || !modem)
tios.c_cflag |= CLOCAL;
tios.c_iflag = IGNBRK | IGNPAR;
tios.c_oflag = 0;
tios.c_lflag = 0;
tios.c_cc[VMIN] = 1;
tios.c_cc[VTIME] = 0;
if (crtscts == -2) {
tios.c_iflag |= IXON | IXOFF;
tios.c_cc[VSTOP] = 0x13; /* DC3 = XOFF = ^S */
tios.c_cc[VSTART] = 0x11; /* DC1 = XON = ^Q */
}
speed = translate_speed(inspeed);
if (speed) {
cfsetospeed(&tios, speed);
cfsetispeed(&tios, speed);
} else {
speed = cfgetospeed(&tios);
/*
* We can't proceed if the serial port speed is 0,
* since that implies that the serial port is disabled.
*/
if ((speed == B0) && !sync_serial)
fatal("Baud rate for %s is 0; need explicit baud rate", devnam);
}
if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &tios) < 0)
fatal("tcsetattr: %m");
#ifndef CRTSCTS
if (!sync_serial && termiox_ok && ioctl (fd, TCSETXF, &tiox) < 0){
error("TCSETXF: %m");
}
#endif
baud_rate = inspeed = baud_rate_of(speed);
if (!sync_serial)
restore_term = 1;
}
/*
* restore_tty - restore the terminal to the saved settings.
*/
void
restore_tty(fd)
int fd;
{
if (restore_term) {
if (!default_device) {
/*
* Turn off echoing, because otherwise we can get into
* a loop with the tty and the modem echoing to each other.
* We presume we are the sole user of this tty device, so
* when we close it, it will revert to its defaults anyway.
*/
inittermios.c_lflag &= ~(ECHO | ECHONL);
}
if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &inittermios) < 0)
if (!hungup && errno != ENXIO)
warn("tcsetattr: %m");
#ifndef CRTSCTS
if (!sync_serial && ioctl (fd, TCSETXF, &inittermiox) < 0){
if (!hungup && errno != ENXIO)
error("TCSETXF: %m");
}
#endif
if (!sync_serial)
ioctl(fd, TIOCSWINSZ, &wsinfo);
restore_term = 0;
}
}
/*
* setdtr - control the DTR line on the serial port.
* This is called from die(), so it shouldn't call die().
*/
void
setdtr(fd, on)
int fd, on;
{
int modembits = TIOCM_DTR;
ioctl(fd, (on? TIOCMBIS: TIOCMBIC), &modembits);
}
/*
* open_loopback - open the device we use for getting packets
* in demand mode. Under Solaris 2, we use our existing fd
* to the ppp driver.
*/
int
open_ppp_loopback()
{
return pppfd;
}
/*
* output - Output PPP packet.
*/
void
output(unit, p, len)
int unit;
u_char *p;
int len;
{
struct strbuf data;
int retries;
struct pollfd pfd;
dump_packet("sent", p, len);
if (snoop_send_hook) snoop_send_hook(p, len);
data.len = len;
data.buf = (caddr_t) p;
retries = 4;
while (putmsg(pppfd, NULL, &data, 0) < 0) {
if (--retries < 0 || (errno != EWOULDBLOCK && errno != EAGAIN)) {
if (errno != ENXIO)
error("Couldn't send packet: %m");
break;
}
pfd.fd = pppfd;
pfd.events = POLLOUT;
poll(&pfd, 1, 250); /* wait for up to 0.25 seconds */
}
}
/*
* wait_input - wait until there is data available,
* for the length of time specified by *timo (indefinite
* if timo is NULL).
*/
void
wait_input(timo)
struct timeval *timo;
{
int t;
t = timo == NULL? -1: timo->tv_sec * 1000 + timo->tv_usec / 1000;
if (poll(pollfds, n_pollfds, t) < 0 && errno != EINTR)
fatal("poll: %m");
}
/*
* add_fd - add an fd to the set that wait_input waits for.
*/
void add_fd(fd)
int fd;
{
int n;
for (n = 0; n < n_pollfds; ++n)
if (pollfds[n].fd == fd)
return;
if (n_pollfds < MAX_POLLFDS) {
pollfds[n_pollfds].fd = fd;
pollfds[n_pollfds].events = POLLIN | POLLPRI | POLLHUP;
++n_pollfds;
} else
error("Too many inputs!");
}
/*
* remove_fd - remove an fd from the set that wait_input waits for.
*/
void remove_fd(fd)
int fd;
{
int n;
for (n = 0; n < n_pollfds; ++n) {
if (pollfds[n].fd == fd) {
while (++n < n_pollfds)
pollfds[n-1] = pollfds[n];
--n_pollfds;
break;
}
}
}
#if 0
/*
* wait_loop_output - wait until there is data available on the
* loopback, for the length of time specified by *timo (indefinite
* if timo is NULL).
*/
void
wait_loop_output(timo)
struct timeval *timo;
{
wait_input(timo);
}
/*
* wait_time - wait for a given length of time or until a
* signal is received.
*/
void
wait_time(timo)
struct timeval *timo;
{
int n;
n = select(0, NULL, NULL, NULL, timo);
if (n < 0 && errno != EINTR)
fatal("select: %m");
}
#endif
/*
* read_packet - get a PPP packet from the serial device.
*/
int
read_packet(buf)
u_char *buf;
{
struct strbuf ctrl, data;
int flags, len;
unsigned char ctrlbuf[sizeof(union DL_primitives) + 64];
for (;;) {
data.maxlen = PPP_MRU + PPP_HDRLEN;
data.buf = (caddr_t) buf;
ctrl.maxlen = sizeof(ctrlbuf);
ctrl.buf = (caddr_t) ctrlbuf;
flags = 0;
len = getmsg(pppfd, &ctrl, &data, &flags);
if (len < 0) {
if (errno == EAGAIN || errno == EINTR)
return -1;
fatal("Error reading packet: %m");
}
if (ctrl.len <= 0)
return data.len;
/*
* Got a M_PROTO or M_PCPROTO message. Interpret it
* as a DLPI primitive??
*/
if (debug)
dbglog("got dlpi prim 0x%x, len=%d",
((union DL_primitives *)ctrlbuf)->dl_primitive, ctrl.len);
}
}
/*
* get_loop_output - get outgoing packets from the ppp device,
* and detect when we want to bring the real link up.
* Return value is 1 if we need to bring up the link, 0 otherwise.
*/
int
get_loop_output()
{
int len;
int rv = 0;
while ((len = read_packet(inpacket_buf)) > 0) {
if (loop_frame(inpacket_buf, len))
rv = 1;
}
return rv;
}
/*
* netif_set_mtu - set the MTU on the PPP network interface.
*/
void
netif_set_mtu(unit, mtu)
int unit, mtu;
{
struct ifreq ifr;
#if defined(INET6) && defined(SOL2)
struct lifreq lifr;
int fd;
#endif /* defined(INET6) && defined(SOL2) */
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
ifr.ifr_metric = link_mtu;
if (ioctl(ipfd, SIOCSIFMTU, &ifr) < 0) {
error("Couldn't set IP MTU (%s): %m", ifr.ifr_name);
}
#if defined(INET6) && defined(SOL2)
fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0)
error("Couldn't open IPv6 socket: %m");
memset(&lifr, 0, sizeof(lifr));
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
lifr.lifr_mtu = link_mtu;
if (ioctl(fd, SIOCSLIFMTU, &lifr) < 0) {
close(fd);
error("Couldn't set IPv6 MTU (%s): %m", ifr.ifr_name);
}
close(fd);
#endif /* defined(INET6) && defined(SOL2) */
}
/*
* tty_send_config - configure the transmit characteristics of
* the ppp interface.
*/
void
tty_send_config(mtu, asyncmap, pcomp, accomp)
int mtu;
u_int32_t asyncmap;
int pcomp, accomp;
{
int cf[2];
link_mtu = mtu;
if (strioctl(pppfd, PPPIO_MTU, &mtu, sizeof(mtu), 0) < 0) {
if (hungup && errno == ENXIO) {
++error_count;
return;
}
error("Couldn't set MTU: %m");
}
if (fdmuxid >= 0) {
if (!sync_serial) {
if (strioctl(pppfd, PPPIO_XACCM, &asyncmap, sizeof(asyncmap), 0) < 0)
error("Couldn't set transmit ACCM: %m");
}
cf[0] = (pcomp? COMP_PROT: 0) + (accomp? COMP_AC: 0);
cf[1] = COMP_PROT | COMP_AC;
if (any_compressions() &&
strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0)
error("Couldn't set prot/AC compression: %m");
}
}
/*
* tty_set_xaccm - set the extended transmit ACCM for the interface.
*/
void
tty_set_xaccm(accm)
ext_accm accm;
{
if (sync_serial)
return;
if (fdmuxid >= 0
&& strioctl(pppfd, PPPIO_XACCM, accm, sizeof(ext_accm), 0) < 0) {
if (!hungup || errno != ENXIO)
warn("Couldn't set extended ACCM: %m");
}
}
/*
* tty_recv_config - configure the receive-side characteristics of
* the ppp interface.
*/
void
tty_recv_config(mru, asyncmap, pcomp, accomp)
int mru;
u_int32_t asyncmap;
int pcomp, accomp;
{
int cf[2];
link_mru = mru;
if (strioctl(pppfd, PPPIO_MRU, &mru, sizeof(mru), 0) < 0) {
if (hungup && errno == ENXIO) {
++error_count;
return;
}
error("Couldn't set MRU: %m");
}
if (fdmuxid >= 0) {
if (!sync_serial) {
if (strioctl(pppfd, PPPIO_RACCM, &asyncmap, sizeof(asyncmap), 0) < 0)
error("Couldn't set receive ACCM: %m");
}
cf[0] = (pcomp? DECOMP_PROT: 0) + (accomp? DECOMP_AC: 0);
cf[1] = DECOMP_PROT | DECOMP_AC;
if (any_compressions() &&
strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0)
error("Couldn't set prot/AC decompression: %m");
}
}
/*
* ccp_test - ask kernel whether a given compression method
* is acceptable for use.
*/
int
ccp_test(unit, opt_ptr, opt_len, for_transmit)
int unit, opt_len, for_transmit;
u_char *opt_ptr;
{
if (strioctl(pppfd, (for_transmit? PPPIO_XCOMP: PPPIO_RCOMP),
opt_ptr, opt_len, 0) >= 0)
return 1;
return (errno == ENOSR)? 0: -1;
}
/*
* ccp_flags_set - inform kernel about the current state of CCP.
*/
void
ccp_flags_set(unit, isopen, isup)
int unit, isopen, isup;
{
int cf[2];
cf[0] = (isopen? CCP_ISOPEN: 0) + (isup? CCP_ISUP: 0);
cf[1] = CCP_ISOPEN | CCP_ISUP | CCP_ERROR | CCP_FATALERROR;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (!hungup || errno != ENXIO)
error("Couldn't set kernel CCP state: %m");
}
}
/*
* get_idle_time - return how long the link has been idle.
*/
int
get_idle_time(u, ip)
int u;
struct ppp_idle *ip;
{
return strioctl(pppfd, PPPIO_GIDLE, ip, 0, sizeof(struct ppp_idle)) >= 0;
}
/*
* get_ppp_stats - return statistics for the link.
*/
int
get_ppp_stats(u, stats)
int u;
struct pppd_stats *stats;
{
struct ppp_stats s;
if (!sync_serial &&
strioctl(pppfd, PPPIO_GETSTAT, &s, 0, sizeof(s)) < 0) {
error("Couldn't get link statistics: %m");
return 0;
}
stats->bytes_in = s.p.ppp_ibytes;
stats->bytes_out = s.p.ppp_obytes;
stats->pkts_in = s.p.ppp_ipackets;
stats->pkts_out = s.p.ppp_opackets;
return 1;
}
#if 0
/*
* set_filters - transfer the pass and active filters to the kernel.
*/
int
set_filters(pass, active)
struct bpf_program *pass, *active;
{
int ret = 1;
if (pass->bf_len > 0) {
if (strioctl(pppfd, PPPIO_PASSFILT, pass,
sizeof(struct bpf_program), 0) < 0) {
error("Couldn't set pass-filter in kernel: %m");
ret = 0;
}
}
if (active->bf_len > 0) {
if (strioctl(pppfd, PPPIO_ACTIVEFILT, active,
sizeof(struct bpf_program), 0) < 0) {
error("Couldn't set active-filter in kernel: %m");
ret = 0;
}
}
return ret;
}
#endif
/*
* ccp_fatal_error - returns 1 if decompression was disabled as a
* result of an error detected after decompression of a packet,
* 0 otherwise. This is necessary because of patent nonsense.
*/
int
ccp_fatal_error(unit)
int unit;
{
int cf[2];
cf[0] = cf[1] = 0;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (errno != ENXIO && errno != EINVAL)
error("Couldn't get compression flags: %m");
return 0;
}
return cf[0] & CCP_FATALERROR;
}
/*
* sifvjcomp - config tcp header compression
*/
int
sifvjcomp(u, vjcomp, xcidcomp, xmaxcid)
int u, vjcomp, xcidcomp, xmaxcid;
{
int cf[2];
char maxcid[2];
if (vjcomp) {
maxcid[0] = xcidcomp;
maxcid[1] = 15; /* XXX should be rmaxcid */
if (strioctl(pppfd, PPPIO_VJINIT, maxcid, sizeof(maxcid), 0) < 0) {
error("Couldn't initialize VJ compression: %m");
}
}
cf[0] = (vjcomp? COMP_VJC + DECOMP_VJC: 0) /* XXX this is wrong */
+ (xcidcomp? COMP_VJCCID + DECOMP_VJCCID: 0);
cf[1] = COMP_VJC + DECOMP_VJC + COMP_VJCCID + DECOMP_VJCCID;
if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) {
if (vjcomp)
error("Couldn't enable VJ compression: %m");
}
return 1;
}
/*
* sifup - Config the interface up and enable IP packets to pass.
*/
int
sifup(u)
int u;
{
struct ifreq ifr;
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface up (get): %m");
return 0;
}
ifr.ifr_flags |= IFF_UP;
if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface up (set): %m");
return 0;
}
if_is_up = 1;
return 1;
}
/*
* sifdown - Config the interface down and disable IP.
*/
int
sifdown(u)
int u;
{
struct ifreq ifr;
if (ipmuxid < 0)
return 1;
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface down (get): %m");
return 0;
}
ifr.ifr_flags &= ~IFF_UP;
if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface down (set): %m");
return 0;
}
if_is_up = 0;
return 1;
}
/*
* sifnpmode - Set the mode for handling packets for a given NP.
*/
int
sifnpmode(u, proto, mode)
int u;
int proto;
enum NPmode mode;
{
int npi[2];
npi[0] = proto;
npi[1] = (int) mode;
if (strioctl(pppfd, PPPIO_NPMODE, &npi, 2 * sizeof(int), 0) < 0) {
error("ioctl(set NP %d mode to %d): %m", proto, mode);
return 0;
}
return 1;
}
#if defined(SOL2) && defined(INET6)
/*
* sif6up - Config the IPv6 interface up and enable IPv6 packets to pass.
*/
int
sif6up(u)
int u;
{
struct lifreq lifr;
int fd;
fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0) {
return 0;
}
memset(&lifr, 0, sizeof(lifr));
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) {
close(fd);
return 0;
}
lifr.lifr_flags |= IFF_UP;
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
if (ioctl(fd, SIOCSLIFFLAGS, &lifr) < 0) {
close(fd);
return 0;
}
if6_is_up = 1;
close(fd);
return 1;
}
/*
* sifdown - Config the IPv6 interface down and disable IPv6.
*/
int
sif6down(u)
int u;
{
struct lifreq lifr;
int fd;
fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0)
return 0;
memset(&lifr, 0, sizeof(lifr));
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) {
close(fd);
return 0;
}
lifr.lifr_flags &= ~IFF_UP;
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) {
close(fd);
return 0;
}
if6_is_up = 0;
close(fd);
return 1;
}
/*
* sif6addr - Config the interface with an IPv6 link-local address
*/
int
sif6addr(u, o, h)
int u;
eui64_t o, h;
{
struct lifreq lifr;
struct sockaddr_storage laddr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&laddr;
int fd;
fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0)
return 0;
memset(&lifr, 0, sizeof(lifr));
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
/*
* Do this because /dev/ppp responds to DL_PHYS_ADDR_REQ with
* zero values, hence the interface token came to be zero too,
* and without this, in.ndpd will complain
*/
IN6_LLTOKEN_FROM_EUI64(lifr, sin6, o);
if (ioctl(fd, SIOCSLIFTOKEN, &lifr) < 0) {
close(fd);
return 0;
}
/*
* Set the interface address and destination address
*/
IN6_LLADDR_FROM_EUI64(lifr, sin6, o);
if (ioctl(fd, SIOCSLIFADDR, &lifr) < 0) {
close(fd);
return 0;
}
memset(&lifr, 0, sizeof(lifr));
strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name));
IN6_LLADDR_FROM_EUI64(lifr, sin6, h);
if (ioctl(fd, SIOCSLIFDSTADDR, &lifr) < 0) {
close(fd);
return 0;
}
return 1;
}
/*
* cif6addr - Remove the IPv6 address from interface
*/
int
cif6addr(u, o, h)
int u;
eui64_t o, h;
{
return 1;
}
#endif /* defined(SOL2) && defined(INET6) */
#define INET_ADDR(x) (((struct sockaddr_in *) &(x))->sin_addr.s_addr)
/*
* sifaddr - Config the interface IP addresses and netmask.
*/
int
sifaddr(u, o, h, m)
int u;
u_int32_t o, h, m;
{
struct ifreq ifr;
int ret = 1;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
ifr.ifr_addr.sa_family = AF_INET;
INET_ADDR(ifr.ifr_addr) = m;
if (ioctl(ipfd, SIOCSIFNETMASK, &ifr) < 0) {
error("Couldn't set IP netmask: %m");
ret = 0;
}
ifr.ifr_addr.sa_family = AF_INET;
INET_ADDR(ifr.ifr_addr) = o;
if (ioctl(ipfd, SIOCSIFADDR, &ifr) < 0) {
error("Couldn't set local IP address: %m");
ret = 0;
}
/*
* On some systems, we have to explicitly set the point-to-point
* flag bit before we can set a destination address.
*/
if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) >= 0
&& (ifr.ifr_flags & IFF_POINTOPOINT) == 0) {
ifr.ifr_flags |= IFF_POINTOPOINT;
if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) {
error("Couldn't mark interface pt-to-pt: %m");
ret = 0;
}
}
ifr.ifr_dstaddr.sa_family = AF_INET;
INET_ADDR(ifr.ifr_dstaddr) = h;
if (ioctl(ipfd, SIOCSIFDSTADDR, &ifr) < 0) {
error("Couldn't set remote IP address: %m");
ret = 0;
}
remote_addr = h;
return ret;
}
/*
* cifaddr - Clear the interface IP addresses, and delete routes
* through the interface if possible.
*/
int
cifaddr(u, o, h)
int u;
u_int32_t o, h;
{
#if defined(__USLC__) /* was: #if 0 */
cifroute(unit, ouraddr, hisaddr);
if (ipmuxid >= 0) {
notice("Removing ppp interface unit");
if (ioctl(ipfd, I_UNLINK, ipmuxid) < 0) {
error("Can't remove ppp interface unit: %m");
return 0;
}
ipmuxid = -1;
}
#endif
remote_addr = 0;
return 1;
}
/*
* sifdefaultroute - assign a default route through the address given.
*/
int
sifdefaultroute(u, l, g)
int u;
u_int32_t l, g;
{
struct rtentry rt;
#if defined(__USLC__)
g = l; /* use the local address as gateway */
#endif
memset(&rt, 0, sizeof(rt));
rt.rt_dst.sa_family = AF_INET;
INET_ADDR(rt.rt_dst) = 0;
rt.rt_gateway.sa_family = AF_INET;
INET_ADDR(rt.rt_gateway) = g;
rt.rt_flags = RTF_GATEWAY;
if (ioctl(ipfd, SIOCADDRT, &rt) < 0) {
error("Can't add default route: %m");
return 0;
}
default_route_gateway = g;
return 1;
}
/*
* cifdefaultroute - delete a default route through the address given.
*/
int
cifdefaultroute(u, l, g)
int u;
u_int32_t l, g;
{
struct rtentry rt;
#if defined(__USLC__)
g = l; /* use the local address as gateway */
#endif
memset(&rt, 0, sizeof(rt));
rt.rt_dst.sa_family = AF_INET;
INET_ADDR(rt.rt_dst) = 0;
rt.rt_gateway.sa_family = AF_INET;
INET_ADDR(rt.rt_gateway) = g;
rt.rt_flags = RTF_GATEWAY;
if (ioctl(ipfd, SIOCDELRT, &rt) < 0) {
error("Can't delete default route: %m");
return 0;
}
default_route_gateway = 0;
return 1;
}
/*
* sifproxyarp - Make a proxy ARP entry for the peer.
*/
int
sifproxyarp(unit, hisaddr)
int unit;
u_int32_t hisaddr;
{
struct arpreq arpreq;
memset(&arpreq, 0, sizeof(arpreq));
if (!get_ether_addr(hisaddr, &arpreq.arp_ha))
return 0;
arpreq.arp_pa.sa_family = AF_INET;
INET_ADDR(arpreq.arp_pa) = hisaddr;
arpreq.arp_flags = ATF_PERM | ATF_PUBL;
if (ioctl(ipfd, SIOCSARP, (caddr_t) &arpreq) < 0) {
error("Couldn't set proxy ARP entry: %m");
return 0;
}
proxy_arp_addr = hisaddr;
return 1;
}
/*
* cifproxyarp - Delete the proxy ARP entry for the peer.
*/
int
cifproxyarp(unit, hisaddr)
int unit;
u_int32_t hisaddr;
{
struct arpreq arpreq;
memset(&arpreq, 0, sizeof(arpreq));
arpreq.arp_pa.sa_family = AF_INET;
INET_ADDR(arpreq.arp_pa) = hisaddr;
if (ioctl(ipfd, SIOCDARP, (caddr_t)&arpreq) < 0) {
error("Couldn't delete proxy ARP entry: %m");
return 0;
}
proxy_arp_addr = 0;
return 1;
}
/*
* get_ether_addr - get the hardware address of an interface on the
* the same subnet as ipaddr.
*/
#define MAX_IFS 32
static int
get_ether_addr(ipaddr, hwaddr)
u_int32_t ipaddr;
struct sockaddr *hwaddr;
{
struct ifreq *ifr, *ifend, ifreq;
int nif;
struct ifconf ifc;
u_int32_t ina, mask;
/*
* Scan through the system's network interfaces.
*/
#ifdef SIOCGIFNUM
if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0)
#endif
nif = MAX_IFS;
ifc.ifc_len = nif * sizeof(struct ifreq);
ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len);
if (ifc.ifc_buf == 0)
return 0;
if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) {
warn("Couldn't get system interface list: %m");
free(ifc.ifc_buf);
return 0;
}
ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len);
for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) {
if (ifr->ifr_addr.sa_family != AF_INET)
continue;
/*
* Check that the interface is up, and not point-to-point or loopback.
*/
strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name));
if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0)
continue;
if ((ifreq.ifr_flags &
(IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP))
!= (IFF_UP|IFF_BROADCAST))
continue;
/*
* Get its netmask and check that it's on the right subnet.
*/
if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0)
continue;
ina = INET_ADDR(ifr->ifr_addr);
mask = INET_ADDR(ifreq.ifr_addr);
if ((ipaddr & mask) == (ina & mask))
break;
}
if (ifr >= ifend) {
warn("No suitable interface found for proxy ARP");
free(ifc.ifc_buf);
return 0;
}
info("found interface %s for proxy ARP", ifr->ifr_name);
if (!get_hw_addr(ifr->ifr_name, ina, hwaddr)) {
error("Couldn't get hardware address for %s", ifr->ifr_name);
free(ifc.ifc_buf);
return 0;
}
free(ifc.ifc_buf);
return 1;
}
/*
* get_hw_addr_dlpi - obtain the hardware address using DLPI
*/
static int
get_hw_addr_dlpi(name, hwaddr)
char *name;
struct sockaddr *hwaddr;
{
char *q;
int unit, iffd, adrlen;
unsigned char *adrp;
char ifdev[24];
struct {
union DL_primitives prim;
char space[64];
} reply;
/*
* We have to open the device and ask it for its hardware address.
* First split apart the device name and unit.
*/
slprintf(ifdev, sizeof(ifdev), "/dev/%s", name);
for (q = ifdev + strlen(ifdev); --q >= ifdev; )
if (!isdigit(*q))
break;
unit = atoi(q+1);
q[1] = 0;
/*
* Open the device and do a DLPI attach and phys_addr_req.
*/
iffd = open(ifdev, O_RDWR);
if (iffd < 0) {
error("Can't open %s: %m", ifdev);
return 0;
}
if (dlpi_attach(iffd, unit) < 0
|| dlpi_get_reply(iffd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0
|| dlpi_info_req(iffd) < 0
|| dlpi_get_reply(iffd, &reply.prim, DL_INFO_ACK, sizeof(reply)) < 0) {
close(iffd);
return 0;
}
adrlen = reply.prim.info_ack.dl_addr_length;
adrp = (unsigned char *)&reply + reply.prim.info_ack.dl_addr_offset;
#if DL_CURRENT_VERSION >= 2
if (reply.prim.info_ack.dl_sap_length < 0)
adrlen += reply.prim.info_ack.dl_sap_length;
else
adrp += reply.prim.info_ack.dl_sap_length;
#endif
hwaddr->sa_family = AF_UNSPEC;
memcpy(hwaddr->sa_data, adrp, adrlen);
return 1;
}
/*
* get_hw_addr - obtain the hardware address for a named interface.
*/
static int
get_hw_addr(name, ina, hwaddr)
char *name;
u_int32_t ina;
struct sockaddr *hwaddr;
{
/* New way - get the address by doing an arp request. */
int s;
struct arpreq req;
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0)
return 0;
memset(&req, 0, sizeof(req));
req.arp_pa.sa_family = AF_INET;
INET_ADDR(req.arp_pa) = ina;
if (ioctl(s, SIOCGARP, &req) < 0) {
error("Couldn't get ARP entry for %s: %m", ip_ntoa(ina));
return 0;
}
*hwaddr = req.arp_ha;
hwaddr->sa_family = AF_UNSPEC;
return 1;
}
static int
dlpi_attach(fd, ppa)
int fd, ppa;
{
dl_attach_req_t req;
struct strbuf buf;
req.dl_primitive = DL_ATTACH_REQ;
req.dl_ppa = ppa;
buf.len = sizeof(req);
buf.buf = (void *) &req;
return putmsg(fd, &buf, NULL, RS_HIPRI);
}
static int
dlpi_info_req(fd)
int fd;
{
dl_info_req_t req;
struct strbuf buf;
req.dl_primitive = DL_INFO_REQ;
buf.len = sizeof(req);
buf.buf = (void *) &req;
return putmsg(fd, &buf, NULL, RS_HIPRI);
}
static int
dlpi_get_reply(fd, reply, expected_prim, maxlen)
union DL_primitives *reply;
int fd, expected_prim, maxlen;
{
struct strbuf buf;
int flags, n;
struct pollfd pfd;
/*
* Use poll to wait for a message with a timeout.
*/
pfd.fd = fd;
pfd.events = POLLIN | POLLPRI;
do {
n = poll(&pfd, 1, 1000);
} while (n == -1 && errno == EINTR);
if (n <= 0)
return -1;
/*
* Get the reply.
*/
buf.maxlen = maxlen;
buf.buf = (void *) reply;
flags = 0;
if (getmsg(fd, &buf, NULL, &flags) < 0)
return -1;
if (buf.len < sizeof(ulong)) {
if (debug)
dbglog("dlpi response short (len=%d)\n", buf.len);
return -1;
}
if (reply->dl_primitive == expected_prim)
return 0;
if (debug) {
if (reply->dl_primitive == DL_ERROR_ACK) {
dbglog("dlpi error %d (unix errno %d) for prim %x\n",
reply->error_ack.dl_errno, reply->error_ack.dl_unix_errno,
reply->error_ack.dl_error_primitive);
} else {
dbglog("dlpi unexpected response prim %x\n",
reply->dl_primitive);
}
}
return -1;
}
/*
* Return user specified netmask, modified by any mask we might determine
* for address `addr' (in network byte order).
* Here we scan through the system's list of interfaces, looking for
* any non-point-to-point interfaces which might appear to be on the same
* network as `addr'. If we find any, we OR in their netmask to the
* user-specified netmask.
*/
u_int32_t
GetMask(addr)
u_int32_t addr;
{
u_int32_t mask, nmask, ina;
struct ifreq *ifr, *ifend, ifreq;
int nif;
struct ifconf ifc;
addr = ntohl(addr);
if (IN_CLASSA(addr)) /* determine network mask for address class */
nmask = IN_CLASSA_NET;
else if (IN_CLASSB(addr))
nmask = IN_CLASSB_NET;
else
nmask = IN_CLASSC_NET;
/* class D nets are disallowed by bad_ip_adrs */
mask = netmask | htonl(nmask);
/*
* Scan through the system's network interfaces.
*/
#ifdef SIOCGIFNUM
if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0)
#endif
nif = MAX_IFS;
ifc.ifc_len = nif * sizeof(struct ifreq);
ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len);
if (ifc.ifc_buf == 0)
return mask;
if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) {
warn("Couldn't get system interface list: %m");
free(ifc.ifc_buf);
return mask;
}
ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len);
for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) {
/*
* Check the interface's internet address.
*/
if (ifr->ifr_addr.sa_family != AF_INET)
continue;
ina = INET_ADDR(ifr->ifr_addr);
if ((ntohl(ina) & nmask) != (addr & nmask))
continue;
/*
* Check that the interface is up, and not point-to-point or loopback.
*/
strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name));
if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0)
continue;
if ((ifreq.ifr_flags & (IFF_UP|IFF_POINTOPOINT|IFF_LOOPBACK))
!= IFF_UP)
continue;
/*
* Get its netmask and OR it into our mask.
*/
if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0)
continue;
mask |= INET_ADDR(ifreq.ifr_addr);
}
free(ifc.ifc_buf);
return mask;
}
/*
* logwtmp - write an accounting record to the /var/adm/wtmp file.
*/
void
logwtmp(line, name, host)
const char *line, *name, *host;
{
static struct utmpx utmpx;
if (name[0] != 0) {
/* logging in */
strncpy(utmpx.ut_user, name, sizeof(utmpx.ut_user));
strncpy(utmpx.ut_line, line, sizeof(utmpx.ut_line));
strncpy(utmpx.ut_host, host, sizeof(utmpx.ut_host));
if (*host != '\0') {
utmpx.ut_syslen = strlen(host) + 1;
if (utmpx.ut_syslen > sizeof(utmpx.ut_host))
utmpx.ut_syslen = sizeof(utmpx.ut_host);
}
utmpx.ut_pid = getpid();
utmpx.ut_type = USER_PROCESS;
} else {
utmpx.ut_type = DEAD_PROCESS;
}
gettimeofday(&utmpx.ut_tv, NULL);
updwtmpx("/var/adm/wtmpx", &utmpx);
}
/*
* get_host_seed - return the serial number of this machine.
*/
int
get_host_seed()
{
char buf[32];
if (sysinfo(SI_HW_SERIAL, buf, sizeof(buf)) < 0) {
error("sysinfo: %m");
return 0;
}
return (int) strtoul(buf, NULL, 16);
}
static int
strioctl(fd, cmd, ptr, ilen, olen)
int fd, cmd, ilen, olen;
void *ptr;
{
struct strioctl str;
str.ic_cmd = cmd;
str.ic_timout = 0;
str.ic_len = ilen;
str.ic_dp = ptr;
if (ioctl(fd, I_STR, &str) == -1)
return -1;
if (str.ic_len != olen)
dbglog("strioctl: expected %d bytes, got %d for cmd %x\n",
olen, str.ic_len, cmd);
return 0;
}
#if 0
/*
* lock - create a lock file for the named lock device
*/
#define LOCK_PREFIX "/var/spool/locks/LK."
static char lock_file[40]; /* name of lock file created */
int
lock(dev)
char *dev;
{
int n, fd, pid;
struct stat sbuf;
char ascii_pid[12];
if (stat(dev, &sbuf) < 0) {
error("Can't get device number for %s: %m", dev);
return -1;
}
if ((sbuf.st_mode & S_IFMT) != S_IFCHR) {
error("Can't lock %s: not a character device", dev);
return -1;
}
slprintf(lock_file, sizeof(lock_file), "%s%03d.%03d.%03d",
LOCK_PREFIX, major(sbuf.st_dev),
major(sbuf.st_rdev), minor(sbuf.st_rdev));
while ((fd = open(lock_file, O_EXCL | O_CREAT | O_RDWR, 0644)) < 0) {
if (errno == EEXIST
&& (fd = open(lock_file, O_RDONLY, 0)) >= 0) {
/* Read the lock file to find out who has the device locked */
n = read(fd, ascii_pid, 11);
if (n <= 0) {
error("Can't read pid from lock file %s", lock_file);
close(fd);
} else {
ascii_pid[n] = 0;
pid = atoi(ascii_pid);
if (pid > 0 && kill(pid, 0) == -1 && errno == ESRCH) {
/* pid no longer exists - remove the lock file */
if (unlink(lock_file) == 0) {
close(fd);
notice("Removed stale lock on %s (pid %d)",
dev, pid);
continue;
} else
warn("Couldn't remove stale lock on %s",
dev);
} else
notice("Device %s is locked by pid %d",
dev, pid);
}
close(fd);
} else
error("Can't create lock file %s: %m", lock_file);
lock_file[0] = 0;
return -1;
}
slprintf(ascii_pid, sizeof(ascii_pid), "%10d\n", getpid());
write(fd, ascii_pid, 11);
close(fd);
return 1;
}
/*
* unlock - remove our lockfile
*/
void
unlock()
{
if (lock_file[0]) {
unlink(lock_file);
lock_file[0] = 0;
}
}
#endif
/*
* cifroute - delete a route through the addresses given.
*/
int
cifroute(u, our, his)
int u;
u_int32_t our, his;
{
struct rtentry rt;
memset(&rt, 0, sizeof(rt));
rt.rt_dst.sa_family = AF_INET;
INET_ADDR(rt.rt_dst) = his;
rt.rt_gateway.sa_family = AF_INET;
INET_ADDR(rt.rt_gateway) = our;
rt.rt_flags = RTF_HOST;
if (ioctl(ipfd, SIOCDELRT, &rt) < 0) {
error("Can't delete route: %m");
return 0;
}
return 1;
}
/*
* have_route_to - determine if the system has a route to the specified
* IP address. Returns 0 if not, 1 if so, -1 if we can't tell.
* `addr' is in network byte order.
* For demand mode to work properly, we have to ignore routes
* through our own interface.
*/
#ifndef T_CURRENT /* needed for Solaris 2.5 */
#define T_CURRENT MI_T_CURRENT
#endif
int
have_route_to(addr)
u_int32_t addr;
{
#ifdef SOL2
int fd, r, flags, i;
struct {
struct T_optmgmt_req req;
struct opthdr hdr;
} req;
union {
struct T_optmgmt_ack ack;
unsigned char space[64];
} ack;
struct opthdr *rh;
struct strbuf cbuf, dbuf;
int nroutes;
mib2_ipRouteEntry_t routes[8];
mib2_ipRouteEntry_t *rp;
fd = open(mux_dev_name, O_RDWR);
if (fd < 0) {
warn("have_route_to: couldn't open %s: %m", mux_dev_name);
return -1;
}
req.req.PRIM_type = T_OPTMGMT_REQ;
req.req.OPT_offset = (char *) &req.hdr - (char *) &req;
req.req.OPT_length = sizeof(req.hdr);
req.req.MGMT_flags = T_CURRENT;
req.hdr.level = MIB2_IP;
req.hdr.name = 0;
req.hdr.len = 0;
cbuf.buf = (char *) &req;
cbuf.len = sizeof(req);
if (putmsg(fd, &cbuf, NULL, 0) == -1) {
warn("have_route_to: putmsg: %m");
close(fd);
return -1;
}
for (;;) {
cbuf.buf = (char *) &ack;
cbuf.maxlen = sizeof(ack);
dbuf.buf = (char *) routes;
dbuf.maxlen = sizeof(routes);
flags = 0;
r = getmsg(fd, &cbuf, &dbuf, &flags);
if (r == -1) {
warn("have_route_to: getmsg: %m");
close(fd);
return -1;
}
if (cbuf.len < sizeof(struct T_optmgmt_ack)
|| ack.ack.PRIM_type != T_OPTMGMT_ACK
|| ack.ack.MGMT_flags != T_SUCCESS
|| ack.ack.OPT_length < sizeof(struct opthdr)) {
dbglog("have_route_to: bad message len=%d prim=%d",
cbuf.len, ack.ack.PRIM_type);
close(fd);
return -1;
}
rh = (struct opthdr *) ((char *)&ack + ack.ack.OPT_offset);
if (rh->level == 0 && rh->name == 0)
break;
if (rh->level != MIB2_IP || rh->name != MIB2_IP_21) {
while (r == MOREDATA)
r = getmsg(fd, NULL, &dbuf, &flags);
continue;
}
for (;;) {
nroutes = dbuf.len / sizeof(mib2_ipRouteEntry_t);
for (rp = routes, i = 0; i < nroutes; ++i, ++rp) {
if (rp->ipRouteMask != ~0) {
dbglog("have_route_to: dest=%x gw=%x mask=%x\n",
rp->ipRouteDest, rp->ipRouteNextHop,
rp->ipRouteMask);
if (((addr ^ rp->ipRouteDest) & rp->ipRouteMask) == 0
&& rp->ipRouteNextHop != remote_addr)
return 1;
}
}
if (r == 0)
break;
r = getmsg(fd, NULL, &dbuf, &flags);
}
}
close(fd);
return 0;
#else
return -1;
#endif /* SOL2 */
}
/*
* get_pty - get a pty master/slave pair and chown the slave side to
* the uid given. Assumes slave_name points to MAXPATHLEN bytes of space.
*/
int
get_pty(master_fdp, slave_fdp, slave_name, uid)
int *master_fdp;
int *slave_fdp;
char *slave_name;
int uid;
{
int mfd, sfd;
char *pty_name;
mfd = open("/dev/ptmx", O_RDWR);
if (mfd < 0) {
error("Couldn't open pty master: %m");
return 0;
}
pty_name = ptsname(mfd);
if (pty_name == NULL) {
error("Couldn't get name of pty slave");
close(mfd);
return 0;
}
if (chown(pty_name, uid, -1) < 0)
warn("Couldn't change owner of pty slave: %m");
if (chmod(pty_name, S_IRUSR | S_IWUSR) < 0)
warn("Couldn't change permissions on pty slave: %m");
if (unlockpt(mfd) < 0)
warn("Couldn't unlock pty slave: %m");
sfd = open(pty_name, O_RDWR);
if (sfd < 0) {
error("Couldn't open pty slave %s: %m", pty_name);
close(mfd);
return 0;
}
if (ioctl(sfd, I_PUSH, "ptem") < 0)
warn("Couldn't push ptem module on pty slave: %m");
dbglog("Using %s", pty_name);
strlcpy(slave_name, pty_name, MAXPATHLEN);
*master_fdp = mfd;
*slave_fdp = sfd;
return 1;
}