/* * System-dependent procedures for pppd under Solaris 2. * * Parts re-written by Adi Masputra <adi.masputra@sun.com>, based on * the original sys-svr4.c * * Copyright (c) 2000 by Sun Microsystems, Inc. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, provided that the above copyright * notice appears in all copies. * * SUN MAKES NO REPRESENTATION OR WARRANTIES ABOUT THE SUITABILITY OF * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES * * Copyright (c) 1995-2002 Paul Mackerras. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. The name(s) of the authors of this software must not be used to * endorse or promote products derived from this software without * prior written permission. * * 3. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by Paul Mackerras * <paulus@samba.org>". * * THE AUTHORS OF THIS SOFTWARE DISCLAIM ALL WARRANTIES WITH REGARD TO * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS, IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Derived from main.c and pppd.h, which are: * * Copyright (c) 1984-2000 Carnegie Mellon University. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. The name "Carnegie Mellon University" must not be used to * endorse or promote products derived from this software without * prior written permission. For permission or any legal * details, please contact * Office of Technology Transfer * Carnegie Mellon University * 5000 Forbes Avenue * Pittsburgh, PA 15213-3890 * (412) 268-4387, fax: (412) 268-7395 * tech-transfer@andrew.cmu.edu * * 4. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by Computing Services * at Carnegie Mellon University (http://www.cmu.edu/computing/)." * * CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE * FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define RCSID "$Id: sys-solaris.c,v 1.16 2008/01/30 14:26:53 carlsonj Exp $" #include <limits.h> #include <stdio.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <termios.h> #ifndef CRTSCTS #include <sys/termiox.h> #endif #include <signal.h> #include <utmpx.h> #include <stropts.h> #include <sys/types.h> #include <sys/ioccom.h> #include <sys/stream.h> #include <sys/stropts.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysmacros.h> #include <sys/systeminfo.h> #include <sys/dlpi.h> #include <sys/stat.h> #include <sys/mkdev.h> #include <net/if.h> #include <net/if_arp.h> #include <net/route.h> #include <net/ppp_defs.h> #include <net/pppio.h> #include <netinet/in.h> #ifdef SOL2 #include <sys/tihdr.h> #include <sys/tiuser.h> #include <inet/common.h> #include <inet/mib2.h> #include <sys/ethernet.h> #endif #include "pppd.h" #include "fsm.h" #include "lcp.h" #include "ipcp.h" #include "ccp.h" #if !defined(PPP_DRV_NAME) #define PPP_DRV_NAME "ppp" #endif /* !defined(PPP_DRV_NAME) */ #if !defined(PPP_DEV_NAME) #define PPP_DEV_NAME "/dev/" PPP_DRV_NAME #endif /* !defined(PPP_DEV_NAME) */ #if !defined(AHDLC_MOD_NAME) #define AHDLC_MOD_NAME "ppp_ahdl" #endif /* !defined(AHDLC_MOD_NAME) */ #if !defined(COMP_MOD_NAME) #define COMP_MOD_NAME "ppp_comp" #endif /* !defined(COMP_MOD_NAME) */ #if !defined(IP_DEV_NAME) #define IP_DEV_NAME "/dev/ip" #endif /* !defined(IP_DEV_NAME) */ #if !defined(IP_MOD_NAME) #define IP_MOD_NAME "ip" #endif /* !defined(IP_MOD_NAME) */ #if !defined(UDP_DEV_NAME) && defined(SOL2) #define UDP_DEV_NAME "/dev/udp" #endif /* !defined(UDP_DEV_NAME) && defined(SOL2) */ #if !defined(UDP6_DEV_NAME) && defined(SOL2) #define UDP6_DEV_NAME "/dev/udp6" #endif /* !defined(UDP6_DEV_NAME) && defined(SOL2) */ static const char rcsid[] = RCSID; #if defined(SOL2) /* * "/dev/udp" is used as a multiplexor to PLINK the interface stream * under. It is used in place of "/dev/ip" since STREAMS will not let * a driver be PLINK'ed under itself, and "/dev/ip" is typically the * driver at the bottom of the tunneling interfaces stream. */ static char *mux_dev_name = UDP_DEV_NAME; #else static char *mux_dev_name = IP_DEV_NAME; #endif static int pppfd; static int fdmuxid = -1; static int ipfd; static int ipmuxid = -1; #if defined(INET6) && defined(SOL2) static int ip6fd; /* IP file descriptor */ static int ip6muxid = -1; /* Multiplexer file descriptor */ static int if6_is_up = 0; /* IPv6 interface has been marked up */ #define _IN6_LLX_FROM_EUI64(l, s, eui64, as) do { \ s->sin6_addr.s6_addr32[0] = htonl(as); \ eui64_copy(eui64, s->sin6_addr.s6_addr32[2]); \ s->sin6_family = AF_INET6; \ l.lifr_addr.ss_family = AF_INET6; \ l.lifr_addrlen = 64; \ l.lifr_addr = laddr; \ } while (0) #define IN6_LLADDR_FROM_EUI64(l, s, eui64) \ _IN6_LLX_FROM_EUI64(l, s, eui64, 0xfe800000) #define IN6_LLTOKEN_FROM_EUI64(l, s, eui64) \ _IN6_LLX_FROM_EUI64(l, s, eui64, 0) #endif /* defined(INET6) && defined(SOL2) */ #if defined(INET6) && defined(SOL2) static char first_ether_name[LIFNAMSIZ]; /* Solaris 8 and above */ #else static char first_ether_name[IFNAMSIZ]; /* Before Solaris 8 */ #define MAXIFS 256 /* Max # of interfaces */ #endif /* defined(INET6) && defined(SOL2) */ static int restore_term; static struct termios inittermios; #ifndef CRTSCTS static struct termiox inittermiox; static int termiox_ok; #endif static struct winsize wsinfo; /* Initial window size info */ static pid_t tty_sid; /* original session ID for terminal */ extern u_char inpacket_buf[]; /* borrowed from main.c */ #define MAX_POLLFDS 32 static struct pollfd pollfds[MAX_POLLFDS]; static int n_pollfds; static int link_mtu, link_mru; #define NMODULES 32 static int tty_nmodules; static char tty_modules[NMODULES][FMNAMESZ+1]; static int tty_npushed; static int if_is_up; /* Interface has been marked up */ static u_int32_t remote_addr; /* IP address of peer */ static u_int32_t default_route_gateway; /* Gateway for default route added */ static u_int32_t proxy_arp_addr; /* Addr for proxy arp entry added */ /* Prototypes for procedures local to this file. */ static int translate_speed __P((int)); static int baud_rate_of __P((int)); static int get_ether_addr __P((u_int32_t, struct sockaddr *)); static int get_hw_addr __P((char *, u_int32_t, struct sockaddr *)); static int get_hw_addr_dlpi __P((char *, struct sockaddr *)); static int dlpi_attach __P((int, int)); static int dlpi_info_req __P((int)); static int dlpi_get_reply __P((int, union DL_primitives *, int, int)); static int strioctl __P((int, int, void *, int, int)); #ifdef SOL2 /* * sifppa - Sets interface ppa * * without setting the ppa, ip module will return EINVAL upon setting the * interface UP (SIOCSxIFFLAGS). This is because ip module in 2.8 expects * two DLPI_INFO_REQ to be sent down to the driver (below ip) before * IFF_UP can be set. Plumbing the device causes one DLPI_INFO_REQ to * be sent down, and the second DLPI_INFO_REQ is sent upon receiving * IF_UNITSEL (old) or SIOCSLIFNAME (new) ioctls. Such setting of the ppa * is required because the ppp DLPI provider advertises itself as * a DLPI style 2 type, which requires a point of attachment to be * specified. The only way the user can specify a point of attachment * is via SIOCSLIFNAME or IF_UNITSEL. * * Such changes in the behavior of ip module was made to meet new or * evolving standards requirements. * */ static int sifppa(fd, ppa) int fd; int ppa; { return (int)ioctl(fd, IF_UNITSEL, (char *)&ppa); } #endif /* SOL2 */ #if defined(SOL2) && defined(INET6) /* * get_first_ethernet - returns the first Ethernet interface name found in * the system, or NULL if none is found * * NOTE: This is the lifreq version (Solaris 8 and above) */ char * get_first_ethernet() { struct lifnum lifn; struct lifconf lifc; struct lifreq *plifreq; struct lifreq lifr; int fd, num_ifs, i, found; uint_t fl, req_size; char *req; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { return 0; } /* * Find out how many interfaces are running */ lifn.lifn_family = AF_UNSPEC; lifn.lifn_flags = LIFC_NOXMIT; if (ioctl(fd, SIOCGLIFNUM, &lifn) < 0) { close(fd); error("could not determine number of interfaces: %m"); return 0; } num_ifs = lifn.lifn_count; req_size = num_ifs * sizeof(struct lifreq); req = malloc(req_size); if (req == NULL) { close(fd); error("out of memory"); return 0; } /* * Get interface configuration info for all interfaces */ lifc.lifc_family = AF_UNSPEC; lifc.lifc_flags = LIFC_NOXMIT; lifc.lifc_len = req_size; lifc.lifc_buf = req; if (ioctl(fd, SIOCGLIFCONF, &lifc) < 0) { close(fd); free(req); error("SIOCGLIFCONF: %m"); return 0; } /* * And traverse each interface to look specifically for the first * occurence of an Ethernet interface which has been marked up */ plifreq = lifc.lifc_req; found = 0; for (i = lifc.lifc_len / sizeof(struct lifreq); i > 0; i--, plifreq++) { if (strchr(plifreq->lifr_name, ':') != NULL) continue; memset(&lifr, 0, sizeof(lifr)); strncpy(lifr.lifr_name, plifreq->lifr_name, sizeof(lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { close(fd); free(req); error("SIOCGLIFFLAGS: %m"); return 0; } fl = lifr.lifr_flags; if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) != (IFF_UP | IFF_BROADCAST)) continue; found = 1; break; } free(req); close(fd); if (found) { strncpy(first_ether_name, lifr.lifr_name, sizeof(first_ether_name)); return (char *)first_ether_name; } else return NULL; } #else /* * get_first_ethernet - returns the first Ethernet interface name found in * the system, or NULL if none is found * * NOTE: This is the ifreq version (before Solaris 8). */ char * get_first_ethernet() { struct ifconf ifc; struct ifreq *pifreq; struct ifreq ifr; int fd, num_ifs, i, found; uint_t fl, req_size; char *req; fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd < 0) { return 0; } /* * Find out how many interfaces are running */ if (ioctl(fd, SIOCGIFNUM, (char *)&num_ifs) < 0) { num_ifs = MAXIFS; } req_size = num_ifs * sizeof(struct ifreq); req = malloc(req_size); if (req == NULL) { close(fd); error("out of memory"); return 0; } /* * Get interface configuration info for all interfaces */ ifc.ifc_len = req_size; ifc.ifc_buf = req; if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) { close(fd); free(req); error("SIOCGIFCONF: %m"); return 0; } /* * And traverse each interface to look specifically for the first * occurence of an Ethernet interface which has been marked up */ pifreq = ifc.ifc_req; found = 0; for (i = ifc.ifc_len / sizeof(struct ifreq); i > 0; i--, pifreq++) { if (strchr(pifreq->ifr_name, ':') != NULL) continue; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, pifreq->ifr_name, sizeof(ifr.ifr_name)); if (ioctl(fd, SIOCGIFFLAGS, &ifr) < 0) { close(fd); free(req); error("SIOCGIFFLAGS: %m"); return 0; } fl = ifr.ifr_flags; if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) != (IFF_UP | IFF_BROADCAST)) continue; found = 1; break; } free(req); close(fd); if (found) { strncpy(first_ether_name, ifr.ifr_name, sizeof(first_ether_name)); return (char *)first_ether_name; } else return NULL; } #endif /* defined(SOL2) && defined(INET6) */ #if defined(SOL2) /* * get_if_hwaddr - get the hardware address for the specified * network interface device. */ int get_if_hwaddr(u_char *addr, char *if_name) { struct sockaddr s_eth_addr; struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data; if (if_name == NULL) return -1; /* * Send DL_INFO_REQ to the driver to solicit its MAC address */ if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) { error("could not obtain hardware address for %s", if_name); return -1; } memcpy(addr, eth_addr->ether_addr_octet, 6); return 1; } #endif /* SOL2 */ #if defined(SOL2) && defined(INET6) /* * slifname - Sets interface ppa and flags * * in addition to the comments stated in sifppa(), IFF_IPV6 bit must * be set in order to declare this as an IPv6 interface */ static int slifname(fd, ppa) int fd; int ppa; { struct lifreq lifr; int ret; memset(&lifr, 0, sizeof(lifr)); ret = ioctl(fd, SIOCGLIFFLAGS, &lifr); if (ret < 0) goto slifname_done; lifr.lifr_flags |= IFF_IPV6; lifr.lifr_flags &= ~(IFF_BROADCAST | IFF_IPV4); lifr.lifr_ppa = ppa; strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); ret = ioctl(fd, SIOCSLIFNAME, &lifr); slifname_done: return ret; } /* * ether_to_eui64 - Convert 48-bit Ethernet address into 64-bit EUI * * walks the list of valid ethernet interfaces, and convert the first * found 48-bit MAC address into EUI 64. caller also assumes that * the system has a properly configured Ethernet interface for this * function to return non-zero. */ int ether_to_eui64(eui64_t *p_eui64) { struct sockaddr s_eth_addr; struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data; char *if_name; if ((if_name = get_first_ethernet()) == NULL) { error("no persistent id can be found"); return 0; } /* * Send DL_INFO_REQ to the driver to solicit its MAC address */ if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) { error("could not obtain hardware address for %s", if_name); return 0; } /* * And convert the EUI-48 into EUI-64, per RFC 2472 [sec 4.1] */ p_eui64->e8[0] = (eth_addr->ether_addr_octet[0] & 0xFF) | 0x02; p_eui64->e8[1] = (eth_addr->ether_addr_octet[1] & 0xFF); p_eui64->e8[2] = (eth_addr->ether_addr_octet[2] & 0xFF); p_eui64->e8[3] = 0xFF; p_eui64->e8[4] = 0xFE; p_eui64->e8[5] = (eth_addr->ether_addr_octet[3] & 0xFF); p_eui64->e8[6] = (eth_addr->ether_addr_octet[4] & 0xFF); p_eui64->e8[7] = (eth_addr->ether_addr_octet[5] & 0xFF); return 1; } #endif /* defined(SOL2) && defined(INET6) */ /* * sys_init - System-dependent initialization. */ void sys_init() { int ifd, x; struct ifreq ifr; #if defined(INET6) && defined(SOL2) int i6fd; struct lifreq lifr; #endif /* defined(INET6) && defined(SOL2) */ #if !defined(SOL2) struct { union DL_primitives prim; char space[64]; } reply; #endif /* !defined(SOL2) */ ipfd = open(mux_dev_name, O_RDWR, 0); if (ipfd < 0) fatal("Couldn't open IP device: %m"); #if defined(INET6) && defined(SOL2) ip6fd = open(UDP6_DEV_NAME, O_RDWR, 0); if (ip6fd < 0) fatal("Couldn't open IP device (2): %m"); #endif /* defined(INET6) && defined(SOL2) */ if (default_device && !notty) tty_sid = getsid((pid_t)0); pppfd = open(PPP_DEV_NAME, O_RDWR | O_NONBLOCK, 0); if (pppfd < 0) fatal("Can't open %s: %m", PPP_DEV_NAME); if (kdebugflag & 1) { x = PPPDBG_LOG + PPPDBG_DRIVER; strioctl(pppfd, PPPIO_DEBUG, &x, sizeof(int), 0); } /* Assign a new PPA and get its unit number. */ if (strioctl(pppfd, PPPIO_NEWPPA, &ifunit, 0, sizeof(int)) < 0) fatal("Can't create new PPP interface: %m"); #if defined(SOL2) /* * Since sys_init() is called prior to ifname being set in main(), * we need to get the ifname now, otherwise slifname(), and others, * will fail, or maybe, I should move them to a later point ? * <adi.masputra@sun.com> */ sprintf(ifname, PPP_DRV_NAME "%d", ifunit); #endif /* defined(SOL2) */ /* * Open the ppp device again and link it under the ip multiplexor. * IP will assign a unit number which hopefully is the same as ifunit. * I don't know any way to be certain they will be the same. :-( */ ifd = open(PPP_DEV_NAME, O_RDWR, 0); if (ifd < 0) fatal("Can't open %s (2): %m", PPP_DEV_NAME); if (kdebugflag & 1) { x = PPPDBG_LOG + PPPDBG_DRIVER; strioctl(ifd, PPPIO_DEBUG, &x, sizeof(int), 0); } #if defined(INET6) && defined(SOL2) i6fd = open(PPP_DEV_NAME, O_RDWR, 0); if (i6fd < 0) { close(ifd); fatal("Can't open %s (3): %m", PPP_DEV_NAME); } if (kdebugflag & 1) { x = PPPDBG_LOG + PPPDBG_DRIVER; strioctl(i6fd, PPPIO_DEBUG, &x, sizeof(int), 0); } #endif /* defined(INET6) && defined(SOL2) */ #if defined(SOL2) if (ioctl(ifd, I_PUSH, IP_MOD_NAME) < 0) { close(ifd); #if defined(INET6) close(i6fd); #endif /* defined(INET6) */ fatal("Can't push IP module: %m"); } /* * Assign ppa according to the unit number returned by ppp device * after plumbing is completed above. */ if (sifppa(ifd, ifunit) < 0) { close (ifd); #if defined(INET6) close(i6fd); #endif /* defined(INET6) */ fatal("Can't set ppa for unit %d: %m", ifunit); } #if defined(INET6) /* * An IPv6 interface is created anyway, even when the user does not * explicitly enable it. Note that the interface will be marked * IPv6 during slifname(). */ if (ioctl(i6fd, I_PUSH, IP_MOD_NAME) < 0) { close(ifd); close(i6fd); fatal("Can't push IP module (2): %m"); } /* * Assign ppa according to the unit number returned by ppp device * after plumbing is completed above. In addition, mark the interface * as an IPv6 interface. */ if (slifname(i6fd, ifunit) < 0) { close(ifd); close(i6fd); fatal("Can't set ifname for unit %d: %m", ifunit); } #endif /* defined(INET6) */ ipmuxid = ioctl(ipfd, I_PLINK, ifd); close(ifd); if (ipmuxid < 0) { #if defined(INET6) close(i6fd); #endif /* defined(INET6) */ fatal("Can't I_PLINK PPP device to IP: %m"); } memset(&ifr, 0, sizeof(ifr)); sprintf(ifr.ifr_name, "%s", ifname); ifr.ifr_ip_muxid = ipmuxid; /* * In Sol 8 and later, STREAMS dynamic module plumbing feature exists. * This is so that an arbitrary module can be inserted, or deleted, * between ip module and the device driver without tearing down the * existing stream. Such feature requires the mux ids, which is set * by SIOCSIFMUXID (or SIOCLSIFMUXID). */ if (ioctl(ipfd, SIOCSIFMUXID, &ifr) < 0) { ioctl(ipfd, I_PUNLINK, ipmuxid); #if defined(INET6) close(i6fd); #endif /* defined(INET6) */ fatal("SIOCSIFMUXID: %m"); } #else /* else if !defined(SOL2) */ if (dlpi_attach(ifd, ifunit) < 0 || dlpi_get_reply(ifd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0) { close(ifd); fatal("Can't attach to ppp%d: %m", ifunit); } ipmuxid = ioctl(ipfd, I_LINK, ifd); close(ifd); if (ipmuxid < 0) fatal("Can't link PPP device to IP: %m"); #endif /* defined(SOL2) */ #if defined(INET6) && defined(SOL2) ip6muxid = ioctl(ip6fd, I_PLINK, i6fd); close(i6fd); if (ip6muxid < 0) { ioctl(ipfd, I_PUNLINK, ipmuxid); fatal("Can't I_PLINK PPP device to IP (2): %m"); } memset(&lifr, 0, sizeof(lifr)); sprintf(lifr.lifr_name, "%s", ifname); lifr.lifr_ip_muxid = ip6muxid; /* * Let IP know of the mux id [see comment for SIOCSIFMUXID above] */ if (ioctl(ip6fd, SIOCSLIFMUXID, &lifr) < 0) { ioctl(ipfd, I_PUNLINK, ipmuxid); ioctl(ip6fd, I_PUNLINK, ip6muxid); fatal("Can't link PPP device to IP (2): %m"); } #endif /* defined(INET6) && defined(SOL2) */ #if !defined(SOL2) /* Set the interface name for the link. */ slprintf(ifr.ifr_name, sizeof(ifr.ifr_name), PPP_DRV_NAME "%d", ifunit); ifr.ifr_metric = ipmuxid; if (strioctl(ipfd, SIOCSIFNAME, (char *)&ifr, sizeof ifr, 0) < 0) fatal("Can't set interface name %s: %m", ifr.ifr_name); #endif /* !defined(SOL2) */ n_pollfds = 0; } /* * sys_cleanup - restore any system state we modified before exiting: * mark the interface down, delete default route and/or proxy arp entry. * This should call die() because it's called from die(). */ void sys_cleanup() { #if defined(SOL2) struct ifreq ifr; #if defined(INET6) struct lifreq lifr; #endif /* defined(INET6) */ #endif /* defined(SOL2) */ #if defined(SOL2) && defined(INET6) if (if6_is_up) sif6down(0); #endif /* defined(SOL2) && defined(INET6) */ if (if_is_up) sifdown(0); if (default_route_gateway) cifdefaultroute(0, default_route_gateway, default_route_gateway); if (proxy_arp_addr) cifproxyarp(0, proxy_arp_addr); #if defined(SOL2) /* * Make sure we ask ip what the muxid, because 'ifconfig modlist' will * unlink and re-link the modules, causing the muxid to change. */ memset(&ifr, 0, sizeof(ifr)); sprintf(ifr.ifr_name, "%s", ifname); if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { error("SIOCGIFFLAGS: %m"); return; } if (ioctl(ipfd, SIOCGIFMUXID, &ifr) < 0) { error("SIOCGIFMUXID: %m"); return; } ipmuxid = ifr.ifr_ip_muxid; if (ioctl(ipfd, I_PUNLINK, ipmuxid) < 0) { error("Can't I_PUNLINK PPP from IP: %m"); return; } #if defined(INET6) /* * Make sure we ask ip what the muxid, because 'ifconfig modlist' will * unlink and re-link the modules, causing the muxid to change. */ memset(&lifr, 0, sizeof(lifr)); sprintf(lifr.lifr_name, "%s", ifname); if (ioctl(ip6fd, SIOCGLIFFLAGS, &lifr) < 0) { error("SIOCGLIFFLAGS: %m"); return; } if (ioctl(ip6fd, SIOCGLIFMUXID, &lifr) < 0) { error("SIOCGLIFMUXID: %m"); return; } ip6muxid = lifr.lifr_ip_muxid; if (ioctl(ip6fd, I_PUNLINK, ip6muxid) < 0) { error("Can't I_PUNLINK PPP from IP (2): %m"); } #endif /* defined(INET6) */ #endif /* defined(SOL2) */ } /* * sys_close - Clean up in a child process before execing. */ void sys_close() { close(ipfd); #if defined(INET6) && defined(SOL2) close(ip6fd); #endif /* defined(INET6) && defined(SOL2) */ if (pppfd >= 0) close(pppfd); } /* * sys_check_options - check the options that the user specified */ int sys_check_options() { return 1; } #if 0 /* * daemon - Detach us from controlling terminal session. */ int daemon(nochdir, noclose) int nochdir, noclose; { int pid; if ((pid = fork()) < 0) return -1; if (pid != 0) exit(0); /* parent dies */ setsid(); if (!nochdir) chdir("/"); if (!noclose) { fclose(stdin); /* don't need stdin, stdout, stderr */ fclose(stdout); fclose(stderr); } return 0; } #endif /* * ppp_available - check whether the system has any ppp interfaces */ int ppp_available() { struct stat buf; return stat(PPP_DEV_NAME, &buf) >= 0; } /* * any_compressions - see if compression is enabled or not * * In the STREAMS implementation of kernel-portion pppd, * the comp STREAMS module performs the ACFC, PFC, as well * CCP and VJ compressions. However, if the user has explicitly * declare to not enable them from the command line, there is * no point of having the comp module be pushed on the stream. */ static int any_compressions() { if ((!lcp_wantoptions[0].neg_accompression) && (!lcp_wantoptions[0].neg_pcompression) && (!ccp_protent.enabled_flag) && (!ipcp_wantoptions[0].neg_vj)) { return 0; } return 1; } /* * tty_establish_ppp - Turn the serial port into a ppp interface. */ int tty_establish_ppp(fd) int fd; { int i; /* Pop any existing modules off the tty stream. */ for (i = 0;; ++i) if (ioctl(fd, I_LOOK, tty_modules[i]) < 0 || strcmp(tty_modules[i], "ptem") == 0 || ioctl(fd, I_POP, 0) < 0) break; tty_nmodules = i; /* Push the async hdlc module and the compressor module. */ tty_npushed = 0; if(!sync_serial) { if (ioctl(fd, I_PUSH, AHDLC_MOD_NAME) < 0) { error("Couldn't push PPP Async HDLC module: %m"); return -1; } ++tty_npushed; } if (kdebugflag & 4) { i = PPPDBG_LOG + PPPDBG_AHDLC; strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0); } /* * There's no need to push comp module if we don't intend * to compress anything */ if (any_compressions()) { if (ioctl(fd, I_PUSH, COMP_MOD_NAME) < 0) error("Couldn't push PPP compression module: %m"); else ++tty_npushed; } if (kdebugflag & 2) { i = PPPDBG_LOG; if (any_compressions()) i += PPPDBG_COMP; strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0); } /* Link the serial port under the PPP multiplexor. */ if ((fdmuxid = ioctl(pppfd, I_LINK, fd)) < 0) { error("Can't link tty to PPP mux: %m"); return -1; } return pppfd; } /* * tty_disestablish_ppp - Restore the serial port to normal operation. * It attempts to reconstruct the stream with the previously popped * modules. This shouldn't call die() because it's called from die(). */ void tty_disestablish_ppp(fd) int fd; { int i; if (fdmuxid >= 0) { if (ioctl(pppfd, I_UNLINK, fdmuxid) < 0) { if (!hungup) error("Can't unlink tty from PPP mux: %m"); } fdmuxid = -1; if (!hungup) { while (tty_npushed > 0 && ioctl(fd, I_POP, 0) >= 0) --tty_npushed; for (i = tty_nmodules - 1; i >= 0; --i) if (ioctl(fd, I_PUSH, tty_modules[i]) < 0) error("Couldn't restore tty module %s: %m", tty_modules[i]); } if (hungup && default_device && tty_sid > 0) { /* * If we have received a hangup, we need to send a SIGHUP * to the terminal's controlling process. The reason is * that the original stream head for the terminal hasn't * seen the M_HANGUP message (it went up through the ppp * driver to the stream head for our fd to /dev/ppp). */ kill(tty_sid, SIGHUP); } } } /* * Check whether the link seems not to be 8-bit clean. */ void clean_check() { int x; char *s; if (strioctl(pppfd, PPPIO_GCLEAN, &x, 0, sizeof(x)) < 0) return; s = NULL; switch (~x) { case RCV_B7_0: s = "bit 7 set to 1"; break; case RCV_B7_1: s = "bit 7 set to 0"; break; case RCV_EVNP: s = "odd parity"; break; case RCV_ODDP: s = "even parity"; break; } if (s != NULL) { warn("Serial link is not 8-bit clean:"); warn("All received characters had %s", s); } } /* * List of valid speeds. */ struct speed { int speed_int, speed_val; } speeds[] = { #ifdef B50 { 50, B50 }, #endif #ifdef B75 { 75, B75 }, #endif #ifdef B110 { 110, B110 }, #endif #ifdef B134 { 134, B134 }, #endif #ifdef B150 { 150, B150 }, #endif #ifdef B200 { 200, B200 }, #endif #ifdef B300 { 300, B300 }, #endif #ifdef B600 { 600, B600 }, #endif #ifdef B1200 { 1200, B1200 }, #endif #ifdef B1800 { 1800, B1800 }, #endif #ifdef B2000 { 2000, B2000 }, #endif #ifdef B2400 { 2400, B2400 }, #endif #ifdef B3600 { 3600, B3600 }, #endif #ifdef B4800 { 4800, B4800 }, #endif #ifdef B7200 { 7200, B7200 }, #endif #ifdef B9600 { 9600, B9600 }, #endif #ifdef B19200 { 19200, B19200 }, #endif #ifdef B38400 { 38400, B38400 }, #endif #ifdef EXTA { 19200, EXTA }, #endif #ifdef EXTB { 38400, EXTB }, #endif #ifdef B57600 { 57600, B57600 }, #endif #ifdef B76800 { 76800, B76800 }, #endif #ifdef B115200 { 115200, B115200 }, #endif #ifdef B153600 { 153600, B153600 }, #endif #ifdef B230400 { 230400, B230400 }, #endif #ifdef B307200 { 307200, B307200 }, #endif #ifdef B460800 { 460800, B460800 }, #endif { 0, 0 } }; /* * Translate from bits/second to a speed_t. */ static int translate_speed(bps) int bps; { struct speed *speedp; if (bps == 0) return 0; for (speedp = speeds; speedp->speed_int; speedp++) if (bps == speedp->speed_int) return speedp->speed_val; warn("speed %d not supported", bps); return 0; } /* * Translate from a speed_t to bits/second. */ static int baud_rate_of(speed) int speed; { struct speed *speedp; if (speed == 0) return 0; for (speedp = speeds; speedp->speed_int; speedp++) if (speed == speedp->speed_val) return speedp->speed_int; return 0; } /* * set_up_tty: Set up the serial port on `fd' for 8 bits, no parity, * at the requested speed, etc. If `local' is true, set CLOCAL * regardless of whether the modem option was specified. */ void set_up_tty(fd, local) int fd, local; { int speed; struct termios tios; #if !defined (CRTSCTS) struct termiox tiox; #endif if (!sync_serial && tcgetattr(fd, &tios) < 0) fatal("tcgetattr: %m"); #ifndef CRTSCTS termiox_ok = 1; if (!sync_serial && ioctl (fd, TCGETX, &tiox) < 0) { termiox_ok = 0; if (errno != ENOTTY) error("TCGETX: %m"); } #endif if (!restore_term) { inittermios = tios; #ifndef CRTSCTS inittermiox = tiox; #endif if (!sync_serial) ioctl(fd, TIOCGWINSZ, &wsinfo); } tios.c_cflag &= ~(CSIZE | CSTOPB | PARENB | CLOCAL); #ifdef CRTSCTS if (crtscts > 0) tios.c_cflag |= CRTSCTS; else if (crtscts < 0) tios.c_cflag &= ~CRTSCTS; #else if (crtscts != 0 && !termiox_ok) { error("Can't set RTS/CTS flow control"); } else if (crtscts > 0) { tiox.x_hflag |= RTSXOFF|CTSXON; } else if (crtscts < 0) { tiox.x_hflag &= ~(RTSXOFF|CTSXON); } #endif if (stop_bits >= 2) tios.c_cflag |= CSTOPB; tios.c_cflag |= CS8 | CREAD | HUPCL; if (local || !modem) tios.c_cflag |= CLOCAL; tios.c_iflag = IGNBRK | IGNPAR; tios.c_oflag = 0; tios.c_lflag = 0; tios.c_cc[VMIN] = 1; tios.c_cc[VTIME] = 0; if (crtscts == -2) { tios.c_iflag |= IXON | IXOFF; tios.c_cc[VSTOP] = 0x13; /* DC3 = XOFF = ^S */ tios.c_cc[VSTART] = 0x11; /* DC1 = XON = ^Q */ } speed = translate_speed(inspeed); if (speed) { cfsetospeed(&tios, speed); cfsetispeed(&tios, speed); } else { speed = cfgetospeed(&tios); /* * We can't proceed if the serial port speed is 0, * since that implies that the serial port is disabled. */ if ((speed == B0) && !sync_serial) fatal("Baud rate for %s is 0; need explicit baud rate", devnam); } if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &tios) < 0) fatal("tcsetattr: %m"); #ifndef CRTSCTS if (!sync_serial && termiox_ok && ioctl (fd, TCSETXF, &tiox) < 0){ error("TCSETXF: %m"); } #endif baud_rate = inspeed = baud_rate_of(speed); if (!sync_serial) restore_term = 1; } /* * restore_tty - restore the terminal to the saved settings. */ void restore_tty(fd) int fd; { if (restore_term) { if (!default_device) { /* * Turn off echoing, because otherwise we can get into * a loop with the tty and the modem echoing to each other. * We presume we are the sole user of this tty device, so * when we close it, it will revert to its defaults anyway. */ inittermios.c_lflag &= ~(ECHO | ECHONL); } if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &inittermios) < 0) if (!hungup && errno != ENXIO) warn("tcsetattr: %m"); #ifndef CRTSCTS if (!sync_serial && ioctl (fd, TCSETXF, &inittermiox) < 0){ if (!hungup && errno != ENXIO) error("TCSETXF: %m"); } #endif if (!sync_serial) ioctl(fd, TIOCSWINSZ, &wsinfo); restore_term = 0; } } /* * setdtr - control the DTR line on the serial port. * This is called from die(), so it shouldn't call die(). */ void setdtr(fd, on) int fd, on; { int modembits = TIOCM_DTR; ioctl(fd, (on? TIOCMBIS: TIOCMBIC), &modembits); } /* * open_loopback - open the device we use for getting packets * in demand mode. Under Solaris 2, we use our existing fd * to the ppp driver. */ int open_ppp_loopback() { return pppfd; } /* * output - Output PPP packet. */ void output(unit, p, len) int unit; u_char *p; int len; { struct strbuf data; int retries; struct pollfd pfd; dump_packet("sent", p, len); if (snoop_send_hook) snoop_send_hook(p, len); data.len = len; data.buf = (caddr_t) p; retries = 4; while (putmsg(pppfd, NULL, &data, 0) < 0) { if (--retries < 0 || (errno != EWOULDBLOCK && errno != EAGAIN)) { if (errno != ENXIO) error("Couldn't send packet: %m"); break; } pfd.fd = pppfd; pfd.events = POLLOUT; poll(&pfd, 1, 250); /* wait for up to 0.25 seconds */ } } /* * wait_input - wait until there is data available, * for the length of time specified by *timo (indefinite * if timo is NULL). */ void wait_input(timo) struct timeval *timo; { int t; t = timo == NULL? -1: timo->tv_sec * 1000 + timo->tv_usec / 1000; if (poll(pollfds, n_pollfds, t) < 0 && errno != EINTR) fatal("poll: %m"); } /* * add_fd - add an fd to the set that wait_input waits for. */ void add_fd(fd) int fd; { int n; for (n = 0; n < n_pollfds; ++n) if (pollfds[n].fd == fd) return; if (n_pollfds < MAX_POLLFDS) { pollfds[n_pollfds].fd = fd; pollfds[n_pollfds].events = POLLIN | POLLPRI | POLLHUP; ++n_pollfds; } else error("Too many inputs!"); } /* * remove_fd - remove an fd from the set that wait_input waits for. */ void remove_fd(fd) int fd; { int n; for (n = 0; n < n_pollfds; ++n) { if (pollfds[n].fd == fd) { while (++n < n_pollfds) pollfds[n-1] = pollfds[n]; --n_pollfds; break; } } } #if 0 /* * wait_loop_output - wait until there is data available on the * loopback, for the length of time specified by *timo (indefinite * if timo is NULL). */ void wait_loop_output(timo) struct timeval *timo; { wait_input(timo); } /* * wait_time - wait for a given length of time or until a * signal is received. */ void wait_time(timo) struct timeval *timo; { int n; n = select(0, NULL, NULL, NULL, timo); if (n < 0 && errno != EINTR) fatal("select: %m"); } #endif /* * read_packet - get a PPP packet from the serial device. */ int read_packet(buf) u_char *buf; { struct strbuf ctrl, data; int flags, len; unsigned char ctrlbuf[sizeof(union DL_primitives) + 64]; for (;;) { data.maxlen = PPP_MRU + PPP_HDRLEN; data.buf = (caddr_t) buf; ctrl.maxlen = sizeof(ctrlbuf); ctrl.buf = (caddr_t) ctrlbuf; flags = 0; len = getmsg(pppfd, &ctrl, &data, &flags); if (len < 0) { if (errno == EAGAIN || errno == EINTR) return -1; fatal("Error reading packet: %m"); } if (ctrl.len <= 0) return data.len; /* * Got a M_PROTO or M_PCPROTO message. Interpret it * as a DLPI primitive?? */ if (debug) dbglog("got dlpi prim 0x%x, len=%d", ((union DL_primitives *)ctrlbuf)->dl_primitive, ctrl.len); } } /* * get_loop_output - get outgoing packets from the ppp device, * and detect when we want to bring the real link up. * Return value is 1 if we need to bring up the link, 0 otherwise. */ int get_loop_output() { int len; int rv = 0; while ((len = read_packet(inpacket_buf)) > 0) { if (loop_frame(inpacket_buf, len)) rv = 1; } return rv; } /* * netif_set_mtu - set the MTU on the PPP network interface. */ void netif_set_mtu(unit, mtu) int unit, mtu; { struct ifreq ifr; #if defined(INET6) && defined(SOL2) struct lifreq lifr; int fd; #endif /* defined(INET6) && defined(SOL2) */ memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); ifr.ifr_metric = link_mtu; if (ioctl(ipfd, SIOCSIFMTU, &ifr) < 0) { error("Couldn't set IP MTU (%s): %m", ifr.ifr_name); } #if defined(INET6) && defined(SOL2) fd = socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) error("Couldn't open IPv6 socket: %m"); memset(&lifr, 0, sizeof(lifr)); strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); lifr.lifr_mtu = link_mtu; if (ioctl(fd, SIOCSLIFMTU, &lifr) < 0) { close(fd); error("Couldn't set IPv6 MTU (%s): %m", ifr.ifr_name); } close(fd); #endif /* defined(INET6) && defined(SOL2) */ } /* * tty_send_config - configure the transmit characteristics of * the ppp interface. */ void tty_send_config(mtu, asyncmap, pcomp, accomp) int mtu; u_int32_t asyncmap; int pcomp, accomp; { int cf[2]; link_mtu = mtu; if (strioctl(pppfd, PPPIO_MTU, &mtu, sizeof(mtu), 0) < 0) { if (hungup && errno == ENXIO) { ++error_count; return; } error("Couldn't set MTU: %m"); } if (fdmuxid >= 0) { if (!sync_serial) { if (strioctl(pppfd, PPPIO_XACCM, &asyncmap, sizeof(asyncmap), 0) < 0) error("Couldn't set transmit ACCM: %m"); } cf[0] = (pcomp? COMP_PROT: 0) + (accomp? COMP_AC: 0); cf[1] = COMP_PROT | COMP_AC; if (any_compressions() && strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) error("Couldn't set prot/AC compression: %m"); } } /* * tty_set_xaccm - set the extended transmit ACCM for the interface. */ void tty_set_xaccm(accm) ext_accm accm; { if (sync_serial) return; if (fdmuxid >= 0 && strioctl(pppfd, PPPIO_XACCM, accm, sizeof(ext_accm), 0) < 0) { if (!hungup || errno != ENXIO) warn("Couldn't set extended ACCM: %m"); } } /* * tty_recv_config - configure the receive-side characteristics of * the ppp interface. */ void tty_recv_config(mru, asyncmap, pcomp, accomp) int mru; u_int32_t asyncmap; int pcomp, accomp; { int cf[2]; link_mru = mru; if (strioctl(pppfd, PPPIO_MRU, &mru, sizeof(mru), 0) < 0) { if (hungup && errno == ENXIO) { ++error_count; return; } error("Couldn't set MRU: %m"); } if (fdmuxid >= 0) { if (!sync_serial) { if (strioctl(pppfd, PPPIO_RACCM, &asyncmap, sizeof(asyncmap), 0) < 0) error("Couldn't set receive ACCM: %m"); } cf[0] = (pcomp? DECOMP_PROT: 0) + (accomp? DECOMP_AC: 0); cf[1] = DECOMP_PROT | DECOMP_AC; if (any_compressions() && strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) error("Couldn't set prot/AC decompression: %m"); } } /* * ccp_test - ask kernel whether a given compression method * is acceptable for use. */ int ccp_test(unit, opt_ptr, opt_len, for_transmit) int unit, opt_len, for_transmit; u_char *opt_ptr; { if (strioctl(pppfd, (for_transmit? PPPIO_XCOMP: PPPIO_RCOMP), opt_ptr, opt_len, 0) >= 0) return 1; return (errno == ENOSR)? 0: -1; } /* * ccp_flags_set - inform kernel about the current state of CCP. */ void ccp_flags_set(unit, isopen, isup) int unit, isopen, isup; { int cf[2]; cf[0] = (isopen? CCP_ISOPEN: 0) + (isup? CCP_ISUP: 0); cf[1] = CCP_ISOPEN | CCP_ISUP | CCP_ERROR | CCP_FATALERROR; if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { if (!hungup || errno != ENXIO) error("Couldn't set kernel CCP state: %m"); } } /* * get_idle_time - return how long the link has been idle. */ int get_idle_time(u, ip) int u; struct ppp_idle *ip; { return strioctl(pppfd, PPPIO_GIDLE, ip, 0, sizeof(struct ppp_idle)) >= 0; } /* * get_ppp_stats - return statistics for the link. */ int get_ppp_stats(u, stats) int u; struct pppd_stats *stats; { struct ppp_stats s; if (!sync_serial && strioctl(pppfd, PPPIO_GETSTAT, &s, 0, sizeof(s)) < 0) { error("Couldn't get link statistics: %m"); return 0; } stats->bytes_in = s.p.ppp_ibytes; stats->bytes_out = s.p.ppp_obytes; stats->pkts_in = s.p.ppp_ipackets; stats->pkts_out = s.p.ppp_opackets; return 1; } #if 0 /* * set_filters - transfer the pass and active filters to the kernel. */ int set_filters(pass, active) struct bpf_program *pass, *active; { int ret = 1; if (pass->bf_len > 0) { if (strioctl(pppfd, PPPIO_PASSFILT, pass, sizeof(struct bpf_program), 0) < 0) { error("Couldn't set pass-filter in kernel: %m"); ret = 0; } } if (active->bf_len > 0) { if (strioctl(pppfd, PPPIO_ACTIVEFILT, active, sizeof(struct bpf_program), 0) < 0) { error("Couldn't set active-filter in kernel: %m"); ret = 0; } } return ret; } #endif /* * ccp_fatal_error - returns 1 if decompression was disabled as a * result of an error detected after decompression of a packet, * 0 otherwise. This is necessary because of patent nonsense. */ int ccp_fatal_error(unit) int unit; { int cf[2]; cf[0] = cf[1] = 0; if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { if (errno != ENXIO && errno != EINVAL) error("Couldn't get compression flags: %m"); return 0; } return cf[0] & CCP_FATALERROR; } /* * sifvjcomp - config tcp header compression */ int sifvjcomp(u, vjcomp, xcidcomp, xmaxcid) int u, vjcomp, xcidcomp, xmaxcid; { int cf[2]; char maxcid[2]; if (vjcomp) { maxcid[0] = xcidcomp; maxcid[1] = 15; /* XXX should be rmaxcid */ if (strioctl(pppfd, PPPIO_VJINIT, maxcid, sizeof(maxcid), 0) < 0) { error("Couldn't initialize VJ compression: %m"); } } cf[0] = (vjcomp? COMP_VJC + DECOMP_VJC: 0) /* XXX this is wrong */ + (xcidcomp? COMP_VJCCID + DECOMP_VJCCID: 0); cf[1] = COMP_VJC + DECOMP_VJC + COMP_VJCCID + DECOMP_VJCCID; if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { if (vjcomp) error("Couldn't enable VJ compression: %m"); } return 1; } /* * sifup - Config the interface up and enable IP packets to pass. */ int sifup(u) int u; { struct ifreq ifr; strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { error("Couldn't mark interface up (get): %m"); return 0; } ifr.ifr_flags |= IFF_UP; if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { error("Couldn't mark interface up (set): %m"); return 0; } if_is_up = 1; return 1; } /* * sifdown - Config the interface down and disable IP. */ int sifdown(u) int u; { struct ifreq ifr; if (ipmuxid < 0) return 1; strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { error("Couldn't mark interface down (get): %m"); return 0; } ifr.ifr_flags &= ~IFF_UP; if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { error("Couldn't mark interface down (set): %m"); return 0; } if_is_up = 0; return 1; } /* * sifnpmode - Set the mode for handling packets for a given NP. */ int sifnpmode(u, proto, mode) int u; int proto; enum NPmode mode; { int npi[2]; npi[0] = proto; npi[1] = (int) mode; if (strioctl(pppfd, PPPIO_NPMODE, &npi, 2 * sizeof(int), 0) < 0) { error("ioctl(set NP %d mode to %d): %m", proto, mode); return 0; } return 1; } #if defined(SOL2) && defined(INET6) /* * sif6up - Config the IPv6 interface up and enable IPv6 packets to pass. */ int sif6up(u) int u; { struct lifreq lifr; int fd; fd = socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) { return 0; } memset(&lifr, 0, sizeof(lifr)); strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { close(fd); return 0; } lifr.lifr_flags |= IFF_UP; strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); if (ioctl(fd, SIOCSLIFFLAGS, &lifr) < 0) { close(fd); return 0; } if6_is_up = 1; close(fd); return 1; } /* * sifdown - Config the IPv6 interface down and disable IPv6. */ int sif6down(u) int u; { struct lifreq lifr; int fd; fd = socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) return 0; memset(&lifr, 0, sizeof(lifr)); strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { close(fd); return 0; } lifr.lifr_flags &= ~IFF_UP; strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { close(fd); return 0; } if6_is_up = 0; close(fd); return 1; } /* * sif6addr - Config the interface with an IPv6 link-local address */ int sif6addr(u, o, h) int u; eui64_t o, h; { struct lifreq lifr; struct sockaddr_storage laddr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&laddr; int fd; fd = socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) return 0; memset(&lifr, 0, sizeof(lifr)); strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); /* * Do this because /dev/ppp responds to DL_PHYS_ADDR_REQ with * zero values, hence the interface token came to be zero too, * and without this, in.ndpd will complain */ IN6_LLTOKEN_FROM_EUI64(lifr, sin6, o); if (ioctl(fd, SIOCSLIFTOKEN, &lifr) < 0) { close(fd); return 0; } /* * Set the interface address and destination address */ IN6_LLADDR_FROM_EUI64(lifr, sin6, o); if (ioctl(fd, SIOCSLIFADDR, &lifr) < 0) { close(fd); return 0; } memset(&lifr, 0, sizeof(lifr)); strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); IN6_LLADDR_FROM_EUI64(lifr, sin6, h); if (ioctl(fd, SIOCSLIFDSTADDR, &lifr) < 0) { close(fd); return 0; } return 1; } /* * cif6addr - Remove the IPv6 address from interface */ int cif6addr(u, o, h) int u; eui64_t o, h; { return 1; } #endif /* defined(SOL2) && defined(INET6) */ #define INET_ADDR(x) (((struct sockaddr_in *) &(x))->sin_addr.s_addr) /* * sifaddr - Config the interface IP addresses and netmask. */ int sifaddr(u, o, h, m) int u; u_int32_t o, h, m; { struct ifreq ifr; int ret = 1; memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); ifr.ifr_addr.sa_family = AF_INET; INET_ADDR(ifr.ifr_addr) = m; if (ioctl(ipfd, SIOCSIFNETMASK, &ifr) < 0) { error("Couldn't set IP netmask: %m"); ret = 0; } ifr.ifr_addr.sa_family = AF_INET; INET_ADDR(ifr.ifr_addr) = o; if (ioctl(ipfd, SIOCSIFADDR, &ifr) < 0) { error("Couldn't set local IP address: %m"); ret = 0; } /* * On some systems, we have to explicitly set the point-to-point * flag bit before we can set a destination address. */ if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) >= 0 && (ifr.ifr_flags & IFF_POINTOPOINT) == 0) { ifr.ifr_flags |= IFF_POINTOPOINT; if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { error("Couldn't mark interface pt-to-pt: %m"); ret = 0; } } ifr.ifr_dstaddr.sa_family = AF_INET; INET_ADDR(ifr.ifr_dstaddr) = h; if (ioctl(ipfd, SIOCSIFDSTADDR, &ifr) < 0) { error("Couldn't set remote IP address: %m"); ret = 0; } remote_addr = h; return ret; } /* * cifaddr - Clear the interface IP addresses, and delete routes * through the interface if possible. */ int cifaddr(u, o, h) int u; u_int32_t o, h; { #if defined(__USLC__) /* was: #if 0 */ cifroute(unit, ouraddr, hisaddr); if (ipmuxid >= 0) { notice("Removing ppp interface unit"); if (ioctl(ipfd, I_UNLINK, ipmuxid) < 0) { error("Can't remove ppp interface unit: %m"); return 0; } ipmuxid = -1; } #endif remote_addr = 0; return 1; } /* * sifdefaultroute - assign a default route through the address given. */ int sifdefaultroute(u, l, g) int u; u_int32_t l, g; { struct rtentry rt; #if defined(__USLC__) g = l; /* use the local address as gateway */ #endif memset(&rt, 0, sizeof(rt)); rt.rt_dst.sa_family = AF_INET; INET_ADDR(rt.rt_dst) = 0; rt.rt_gateway.sa_family = AF_INET; INET_ADDR(rt.rt_gateway) = g; rt.rt_flags = RTF_GATEWAY; if (ioctl(ipfd, SIOCADDRT, &rt) < 0) { error("Can't add default route: %m"); return 0; } default_route_gateway = g; return 1; } /* * cifdefaultroute - delete a default route through the address given. */ int cifdefaultroute(u, l, g) int u; u_int32_t l, g; { struct rtentry rt; #if defined(__USLC__) g = l; /* use the local address as gateway */ #endif memset(&rt, 0, sizeof(rt)); rt.rt_dst.sa_family = AF_INET; INET_ADDR(rt.rt_dst) = 0; rt.rt_gateway.sa_family = AF_INET; INET_ADDR(rt.rt_gateway) = g; rt.rt_flags = RTF_GATEWAY; if (ioctl(ipfd, SIOCDELRT, &rt) < 0) { error("Can't delete default route: %m"); return 0; } default_route_gateway = 0; return 1; } /* * sifproxyarp - Make a proxy ARP entry for the peer. */ int sifproxyarp(unit, hisaddr) int unit; u_int32_t hisaddr; { struct arpreq arpreq; memset(&arpreq, 0, sizeof(arpreq)); if (!get_ether_addr(hisaddr, &arpreq.arp_ha)) return 0; arpreq.arp_pa.sa_family = AF_INET; INET_ADDR(arpreq.arp_pa) = hisaddr; arpreq.arp_flags = ATF_PERM | ATF_PUBL; if (ioctl(ipfd, SIOCSARP, (caddr_t) &arpreq) < 0) { error("Couldn't set proxy ARP entry: %m"); return 0; } proxy_arp_addr = hisaddr; return 1; } /* * cifproxyarp - Delete the proxy ARP entry for the peer. */ int cifproxyarp(unit, hisaddr) int unit; u_int32_t hisaddr; { struct arpreq arpreq; memset(&arpreq, 0, sizeof(arpreq)); arpreq.arp_pa.sa_family = AF_INET; INET_ADDR(arpreq.arp_pa) = hisaddr; if (ioctl(ipfd, SIOCDARP, (caddr_t)&arpreq) < 0) { error("Couldn't delete proxy ARP entry: %m"); return 0; } proxy_arp_addr = 0; return 1; } /* * get_ether_addr - get the hardware address of an interface on the * the same subnet as ipaddr. */ #define MAX_IFS 32 static int get_ether_addr(ipaddr, hwaddr) u_int32_t ipaddr; struct sockaddr *hwaddr; { struct ifreq *ifr, *ifend, ifreq; int nif; struct ifconf ifc; u_int32_t ina, mask; /* * Scan through the system's network interfaces. */ #ifdef SIOCGIFNUM if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0) #endif nif = MAX_IFS; ifc.ifc_len = nif * sizeof(struct ifreq); ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len); if (ifc.ifc_buf == 0) return 0; if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) { warn("Couldn't get system interface list: %m"); free(ifc.ifc_buf); return 0; } ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len); for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) { if (ifr->ifr_addr.sa_family != AF_INET) continue; /* * Check that the interface is up, and not point-to-point or loopback. */ strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name)); if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0) continue; if ((ifreq.ifr_flags & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) != (IFF_UP|IFF_BROADCAST)) continue; /* * Get its netmask and check that it's on the right subnet. */ if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0) continue; ina = INET_ADDR(ifr->ifr_addr); mask = INET_ADDR(ifreq.ifr_addr); if ((ipaddr & mask) == (ina & mask)) break; } if (ifr >= ifend) { warn("No suitable interface found for proxy ARP"); free(ifc.ifc_buf); return 0; } info("found interface %s for proxy ARP", ifr->ifr_name); if (!get_hw_addr(ifr->ifr_name, ina, hwaddr)) { error("Couldn't get hardware address for %s", ifr->ifr_name); free(ifc.ifc_buf); return 0; } free(ifc.ifc_buf); return 1; } /* * get_hw_addr_dlpi - obtain the hardware address using DLPI */ static int get_hw_addr_dlpi(name, hwaddr) char *name; struct sockaddr *hwaddr; { char *q; int unit, iffd, adrlen; unsigned char *adrp; char ifdev[24]; struct { union DL_primitives prim; char space[64]; } reply; /* * We have to open the device and ask it for its hardware address. * First split apart the device name and unit. */ slprintf(ifdev, sizeof(ifdev), "/dev/%s", name); for (q = ifdev + strlen(ifdev); --q >= ifdev; ) if (!isdigit(*q)) break; unit = atoi(q+1); q[1] = 0; /* * Open the device and do a DLPI attach and phys_addr_req. */ iffd = open(ifdev, O_RDWR); if (iffd < 0) { error("Can't open %s: %m", ifdev); return 0; } if (dlpi_attach(iffd, unit) < 0 || dlpi_get_reply(iffd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0 || dlpi_info_req(iffd) < 0 || dlpi_get_reply(iffd, &reply.prim, DL_INFO_ACK, sizeof(reply)) < 0) { close(iffd); return 0; } adrlen = reply.prim.info_ack.dl_addr_length; adrp = (unsigned char *)&reply + reply.prim.info_ack.dl_addr_offset; #if DL_CURRENT_VERSION >= 2 if (reply.prim.info_ack.dl_sap_length < 0) adrlen += reply.prim.info_ack.dl_sap_length; else adrp += reply.prim.info_ack.dl_sap_length; #endif hwaddr->sa_family = AF_UNSPEC; memcpy(hwaddr->sa_data, adrp, adrlen); return 1; } /* * get_hw_addr - obtain the hardware address for a named interface. */ static int get_hw_addr(name, ina, hwaddr) char *name; u_int32_t ina; struct sockaddr *hwaddr; { /* New way - get the address by doing an arp request. */ int s; struct arpreq req; s = socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) return 0; memset(&req, 0, sizeof(req)); req.arp_pa.sa_family = AF_INET; INET_ADDR(req.arp_pa) = ina; if (ioctl(s, SIOCGARP, &req) < 0) { error("Couldn't get ARP entry for %s: %m", ip_ntoa(ina)); return 0; } *hwaddr = req.arp_ha; hwaddr->sa_family = AF_UNSPEC; return 1; } static int dlpi_attach(fd, ppa) int fd, ppa; { dl_attach_req_t req; struct strbuf buf; req.dl_primitive = DL_ATTACH_REQ; req.dl_ppa = ppa; buf.len = sizeof(req); buf.buf = (void *) &req; return putmsg(fd, &buf, NULL, RS_HIPRI); } static int dlpi_info_req(fd) int fd; { dl_info_req_t req; struct strbuf buf; req.dl_primitive = DL_INFO_REQ; buf.len = sizeof(req); buf.buf = (void *) &req; return putmsg(fd, &buf, NULL, RS_HIPRI); } static int dlpi_get_reply(fd, reply, expected_prim, maxlen) union DL_primitives *reply; int fd, expected_prim, maxlen; { struct strbuf buf; int flags, n; struct pollfd pfd; /* * Use poll to wait for a message with a timeout. */ pfd.fd = fd; pfd.events = POLLIN | POLLPRI; do { n = poll(&pfd, 1, 1000); } while (n == -1 && errno == EINTR); if (n <= 0) return -1; /* * Get the reply. */ buf.maxlen = maxlen; buf.buf = (void *) reply; flags = 0; if (getmsg(fd, &buf, NULL, &flags) < 0) return -1; if (buf.len < sizeof(ulong)) { if (debug) dbglog("dlpi response short (len=%d)\n", buf.len); return -1; } if (reply->dl_primitive == expected_prim) return 0; if (debug) { if (reply->dl_primitive == DL_ERROR_ACK) { dbglog("dlpi error %d (unix errno %d) for prim %x\n", reply->error_ack.dl_errno, reply->error_ack.dl_unix_errno, reply->error_ack.dl_error_primitive); } else { dbglog("dlpi unexpected response prim %x\n", reply->dl_primitive); } } return -1; } /* * Return user specified netmask, modified by any mask we might determine * for address `addr' (in network byte order). * Here we scan through the system's list of interfaces, looking for * any non-point-to-point interfaces which might appear to be on the same * network as `addr'. If we find any, we OR in their netmask to the * user-specified netmask. */ u_int32_t GetMask(addr) u_int32_t addr; { u_int32_t mask, nmask, ina; struct ifreq *ifr, *ifend, ifreq; int nif; struct ifconf ifc; addr = ntohl(addr); if (IN_CLASSA(addr)) /* determine network mask for address class */ nmask = IN_CLASSA_NET; else if (IN_CLASSB(addr)) nmask = IN_CLASSB_NET; else nmask = IN_CLASSC_NET; /* class D nets are disallowed by bad_ip_adrs */ mask = netmask | htonl(nmask); /* * Scan through the system's network interfaces. */ #ifdef SIOCGIFNUM if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0) #endif nif = MAX_IFS; ifc.ifc_len = nif * sizeof(struct ifreq); ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len); if (ifc.ifc_buf == 0) return mask; if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) { warn("Couldn't get system interface list: %m"); free(ifc.ifc_buf); return mask; } ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len); for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) { /* * Check the interface's internet address. */ if (ifr->ifr_addr.sa_family != AF_INET) continue; ina = INET_ADDR(ifr->ifr_addr); if ((ntohl(ina) & nmask) != (addr & nmask)) continue; /* * Check that the interface is up, and not point-to-point or loopback. */ strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name)); if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0) continue; if ((ifreq.ifr_flags & (IFF_UP|IFF_POINTOPOINT|IFF_LOOPBACK)) != IFF_UP) continue; /* * Get its netmask and OR it into our mask. */ if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0) continue; mask |= INET_ADDR(ifreq.ifr_addr); } free(ifc.ifc_buf); return mask; } /* * logwtmp - write an accounting record to the /var/adm/wtmp file. */ void logwtmp(line, name, host) const char *line, *name, *host; { static struct utmpx utmpx; if (name[0] != 0) { /* logging in */ strncpy(utmpx.ut_user, name, sizeof(utmpx.ut_user)); strncpy(utmpx.ut_line, line, sizeof(utmpx.ut_line)); strncpy(utmpx.ut_host, host, sizeof(utmpx.ut_host)); if (*host != '\0') { utmpx.ut_syslen = strlen(host) + 1; if (utmpx.ut_syslen > sizeof(utmpx.ut_host)) utmpx.ut_syslen = sizeof(utmpx.ut_host); } utmpx.ut_pid = getpid(); utmpx.ut_type = USER_PROCESS; } else { utmpx.ut_type = DEAD_PROCESS; } gettimeofday(&utmpx.ut_tv, NULL); updwtmpx("/var/adm/wtmpx", &utmpx); } /* * get_host_seed - return the serial number of this machine. */ int get_host_seed() { char buf[32]; if (sysinfo(SI_HW_SERIAL, buf, sizeof(buf)) < 0) { error("sysinfo: %m"); return 0; } return (int) strtoul(buf, NULL, 16); } static int strioctl(fd, cmd, ptr, ilen, olen) int fd, cmd, ilen, olen; void *ptr; { struct strioctl str; str.ic_cmd = cmd; str.ic_timout = 0; str.ic_len = ilen; str.ic_dp = ptr; if (ioctl(fd, I_STR, &str) == -1) return -1; if (str.ic_len != olen) dbglog("strioctl: expected %d bytes, got %d for cmd %x\n", olen, str.ic_len, cmd); return 0; } #if 0 /* * lock - create a lock file for the named lock device */ #define LOCK_PREFIX "/var/spool/locks/LK." static char lock_file[40]; /* name of lock file created */ int lock(dev) char *dev; { int n, fd, pid; struct stat sbuf; char ascii_pid[12]; if (stat(dev, &sbuf) < 0) { error("Can't get device number for %s: %m", dev); return -1; } if ((sbuf.st_mode & S_IFMT) != S_IFCHR) { error("Can't lock %s: not a character device", dev); return -1; } slprintf(lock_file, sizeof(lock_file), "%s%03d.%03d.%03d", LOCK_PREFIX, major(sbuf.st_dev), major(sbuf.st_rdev), minor(sbuf.st_rdev)); while ((fd = open(lock_file, O_EXCL | O_CREAT | O_RDWR, 0644)) < 0) { if (errno == EEXIST && (fd = open(lock_file, O_RDONLY, 0)) >= 0) { /* Read the lock file to find out who has the device locked */ n = read(fd, ascii_pid, 11); if (n <= 0) { error("Can't read pid from lock file %s", lock_file); close(fd); } else { ascii_pid[n] = 0; pid = atoi(ascii_pid); if (pid > 0 && kill(pid, 0) == -1 && errno == ESRCH) { /* pid no longer exists - remove the lock file */ if (unlink(lock_file) == 0) { close(fd); notice("Removed stale lock on %s (pid %d)", dev, pid); continue; } else warn("Couldn't remove stale lock on %s", dev); } else notice("Device %s is locked by pid %d", dev, pid); } close(fd); } else error("Can't create lock file %s: %m", lock_file); lock_file[0] = 0; return -1; } slprintf(ascii_pid, sizeof(ascii_pid), "%10d\n", getpid()); write(fd, ascii_pid, 11); close(fd); return 1; } /* * unlock - remove our lockfile */ void unlock() { if (lock_file[0]) { unlink(lock_file); lock_file[0] = 0; } } #endif /* * cifroute - delete a route through the addresses given. */ int cifroute(u, our, his) int u; u_int32_t our, his; { struct rtentry rt; memset(&rt, 0, sizeof(rt)); rt.rt_dst.sa_family = AF_INET; INET_ADDR(rt.rt_dst) = his; rt.rt_gateway.sa_family = AF_INET; INET_ADDR(rt.rt_gateway) = our; rt.rt_flags = RTF_HOST; if (ioctl(ipfd, SIOCDELRT, &rt) < 0) { error("Can't delete route: %m"); return 0; } return 1; } /* * have_route_to - determine if the system has a route to the specified * IP address. Returns 0 if not, 1 if so, -1 if we can't tell. * `addr' is in network byte order. * For demand mode to work properly, we have to ignore routes * through our own interface. */ #ifndef T_CURRENT /* needed for Solaris 2.5 */ #define T_CURRENT MI_T_CURRENT #endif int have_route_to(addr) u_int32_t addr; { #ifdef SOL2 int fd, r, flags, i; struct { struct T_optmgmt_req req; struct opthdr hdr; } req; union { struct T_optmgmt_ack ack; unsigned char space[64]; } ack; struct opthdr *rh; struct strbuf cbuf, dbuf; int nroutes; mib2_ipRouteEntry_t routes[8]; mib2_ipRouteEntry_t *rp; fd = open(mux_dev_name, O_RDWR); if (fd < 0) { warn("have_route_to: couldn't open %s: %m", mux_dev_name); return -1; } req.req.PRIM_type = T_OPTMGMT_REQ; req.req.OPT_offset = (char *) &req.hdr - (char *) &req; req.req.OPT_length = sizeof(req.hdr); req.req.MGMT_flags = T_CURRENT; req.hdr.level = MIB2_IP; req.hdr.name = 0; req.hdr.len = 0; cbuf.buf = (char *) &req; cbuf.len = sizeof(req); if (putmsg(fd, &cbuf, NULL, 0) == -1) { warn("have_route_to: putmsg: %m"); close(fd); return -1; } for (;;) { cbuf.buf = (char *) &ack; cbuf.maxlen = sizeof(ack); dbuf.buf = (char *) routes; dbuf.maxlen = sizeof(routes); flags = 0; r = getmsg(fd, &cbuf, &dbuf, &flags); if (r == -1) { warn("have_route_to: getmsg: %m"); close(fd); return -1; } if (cbuf.len < sizeof(struct T_optmgmt_ack) || ack.ack.PRIM_type != T_OPTMGMT_ACK || ack.ack.MGMT_flags != T_SUCCESS || ack.ack.OPT_length < sizeof(struct opthdr)) { dbglog("have_route_to: bad message len=%d prim=%d", cbuf.len, ack.ack.PRIM_type); close(fd); return -1; } rh = (struct opthdr *) ((char *)&ack + ack.ack.OPT_offset); if (rh->level == 0 && rh->name == 0) break; if (rh->level != MIB2_IP || rh->name != MIB2_IP_21) { while (r == MOREDATA) r = getmsg(fd, NULL, &dbuf, &flags); continue; } for (;;) { nroutes = dbuf.len / sizeof(mib2_ipRouteEntry_t); for (rp = routes, i = 0; i < nroutes; ++i, ++rp) { if (rp->ipRouteMask != ~0) { dbglog("have_route_to: dest=%x gw=%x mask=%x\n", rp->ipRouteDest, rp->ipRouteNextHop, rp->ipRouteMask); if (((addr ^ rp->ipRouteDest) & rp->ipRouteMask) == 0 && rp->ipRouteNextHop != remote_addr) return 1; } } if (r == 0) break; r = getmsg(fd, NULL, &dbuf, &flags); } } close(fd); return 0; #else return -1; #endif /* SOL2 */ } /* * get_pty - get a pty master/slave pair and chown the slave side to * the uid given. Assumes slave_name points to MAXPATHLEN bytes of space. */ int get_pty(master_fdp, slave_fdp, slave_name, uid) int *master_fdp; int *slave_fdp; char *slave_name; int uid; { int mfd, sfd; char *pty_name; mfd = open("/dev/ptmx", O_RDWR); if (mfd < 0) { error("Couldn't open pty master: %m"); return 0; } pty_name = ptsname(mfd); if (pty_name == NULL) { error("Couldn't get name of pty slave"); close(mfd); return 0; } if (chown(pty_name, uid, -1) < 0) warn("Couldn't change owner of pty slave: %m"); if (chmod(pty_name, S_IRUSR | S_IWUSR) < 0) warn("Couldn't change permissions on pty slave: %m"); if (unlockpt(mfd) < 0) warn("Couldn't unlock pty slave: %m"); sfd = open(pty_name, O_RDWR); if (sfd < 0) { error("Couldn't open pty slave %s: %m", pty_name); close(mfd); return 0; } if (ioctl(sfd, I_PUSH, "ptem") < 0) warn("Couldn't push ptem module on pty slave: %m"); dbglog("Using %s", pty_name); strlcpy(slave_name, pty_name, MAXPATHLEN); *master_fdp = mfd; *slave_fdp = sfd; return 1; }